
Package mathfont v. 3.0 Implementation
Conrad Kosowsky

January 2026
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your preamble
and compile with X ELATEX or LuaLATEX:

\usepackage[〈font name〉]{mathfont}

As of version 2.0, using LuaLATEX is recommended. Minor
backwards incompatible changes in version 3.0.

Overview
The mathfont package adapts Unicode text fonts for math mode. The
package allows the user to specify a default font for different classes
of math symbols, and it enables Unicode input in math mode. The
package provides tools to change the font locally for math alphabet
characters. When typesetting with LuaTEX, mathfont adds resizable
delimiters, big operators, and a MathConstants table to text fonts.

This file documents the code for the mathfont package. It is not a user guide!
If you are looking for instructions on how to use mathfont in your document,
see mathfont-user-guide.pdf, which is included with the mathfont installa-
tion and is available on ctan. See also the other pdf documentation files for
mathfont. Section 1 of this document begins with the implementation basics,
including package declaration and package options. Section 2 provides package
default settings, and section 3 deals with errors and messaging. Section 4 con-
tains the fontloader, and section 5 contains the optional-argument parser for
\mathfont. Section 6 documents the code for the \mathfont command itself.
Section 7 contains the code for local font changes. Section 8 contains miscella-
neous material. Sections 9–11 contain the Lua code to modify font objects at
loading, and section 12 lists the Unicode hex values used in symbol declaration.
Version history and code index appear at the end of the document.

Acknowledgements: Thanks to Lyric Bingham for her work checking my Unicode hex
values. Thanks to Matthew Braham, Sergio Callegari, Daniel Flipo, Shyam Sundar, Adrian
Vollmer, Herbert Voss, and Andreas Zidak for pointing out bugs in previous versions of
mathfont. Thanks to Jean-François Burnol for pointing out an error in the documentation
in reference to his mathastext package.

1

2 Implementation Setup

At high level, the package works as follows: the font-loader \M@newfont is
a wrapper around nfss macros to declare fonts—namely \DeclareFontFamily
and \DeclareFontShape—or, if the user requested to use fontspec as a
backend, the macro \fontspec_set_family:Nnn. All font-setting macros
in the package will call \M@newfont. The primary font-setting command
\mathfont is a wrapper around \DeclareSymbolFont and calls various
\M@〈keyword〉@set commands. Each \M@〈keyword〉@set macro is a wrap-
per around a number of \Umathcode declarations that do the actual work
of setting default font(s). The local font-change commands are wrappers
around \DeclareMathAlphabet, and the Lua font adjustments alter the font
table through the luaotfload.patch_font callback when TEX loads the font.
Specifically, we change the top-level flag nomath to false, alter character-level
entries in the table to make the font more suitable for math typesetting, and
add a MathConstants table based on font dimensions.

1 Setup
First, the package should declare itself. The first 61 lines of mathfont.sty are
comments.

62 \NeedsTeXFormat{LaTeX2e}
63 \ProvidesPackage{mathfont}[2026/01/22 v. 3.0]

Informational message.
64 \def\@mathfontinfo#1{\wlog{Package mathfont Info: #1}}

We specify conditionals and one count variable that we use later in handling
options and setup.

65 \newif\ifM@XeTeXLuaTeX % is engine one of xetex or luatex?
66 \newif\ifM@Noluaotfload % cannot find luaotfload.sty?
67 \newif\ifM@adjust@font % should adjust fonts with lua script?
68 \newif\ifM@font@loaded % load mathfont with font specified?
69 \newif\ifE@sterEggDecl@red % already did easter egg?
70 \newcount\M@loader % specifies which font-loader to use

We disable the twenty user-level commands. If mathfont runs normally, it will
overwrite these “bad” definitions later, but if it throws one of its two fatal
errors, it will \endinput while the user-level commands are error messages.
That way the commands don’t do anything in the user’s document, and the
user gets information on why not. The bad definitions gobble their original
arguments to avoid a “missing \begin{document}” error. To streamline the
process, we metacode most of the error messages, namely the macros that
\@gobble their argument and the macros that \@gobbletwo their argument.

Setup Implementation 3

71 \long\def\@gobble@brackets[#1]{}
72 \def\M@NoMathfontError#1{\PackageError{mathfont}\M@NoMathfontError
73 {\MessageBreak Invalid command\MessageBreak
74 \string#1 on line \the\inputlineno}
75 {Your command was ignored. I couldn't\MessageBreak
76 load mathfont, so I never defined this\MessageBreak
77 control sequence.}}

The macro \M@robust@def is an engine-dependent command to define robust
control sequences. We want this part of the package to work regardless of
the engine, so we need an approach that doesn’t depend on ε-TEX support.
However, I don’t want to use \DeclareRobustCommand with X ETEX or LuaTEX
because that will leave useless macros like \mathfont defined when we fill in
the proper definitions of the user-level commands later.

78 \ifx\protected\@undefined
79 \let\M@robust@def\DeclareRobustCommand
80 \else
81 \def\M@robust@def{\protected\def}
82 \fi

First the commands that normally accept a single argument—the “bad” ver-
sions \@gobble the argument. To keep the syntax straightforward, we ex-
pand the definition using \edef. (We can’t use \expanded because that’s
X ETEX/LuaTEX only.) We need to do this because the macro name is stored in
\@i, and otherwise, we would end up with a mess of \expandafters to expand
all instances of \@i.

83 \@tfor\@i:=\setfont
84 \RuleThicknessFactor
85 \IntegralItalicFactor
86 \SurdVerticalFactor
87 \SurdHorizontalFactor
88 \charmline
89 \charmfile
90 \CharmLine
91 \CharmFile
92 \CharmInfo
93 \CharmType\do{%
94 \edef\@tempa{\noexpand\M@robust@def\expandafter\noexpand\@i{%
95 \noexpand\M@NoMathfontError\expandafter\noexpand\@i
96 \noexpand\@gobble}}
97 \@tempa}

Now for the macros that \@gobbletwo their argument. The code is essentially
the same.

4 Implementation Setup

98 \@tfor\@i:=\newmathrm
99 \newmathit

100 \newmathbf
101 \newmathbfit
102 \newmathsc
103 \newmathscit
104 \newmathbfsc
105 \newmathbfscit\do{%
106 \edef\@tempa{\noexpand\M@robust@def\expandafter\noexpand\@i{%
107 \noexpand\M@NoMathfontError\expandafter\noexpand\@i
108 \noexpand\@gobbletwo}}
109 \@tempa}

The two commands with weird “arguments”: \charminfo and \charmtype
scan and remove the next integer, so we assign a count value instead of gob-
bling stuff.
110 \M@robust@def\charminfo{\M@NoMathfontError\charminfo
111 \begingroup
112 \afterassignment\endgroup
113 \count@}
114 \M@robust@def\charmtype{\M@NoMathfontError\charmtype
115 \begingroup
116 \afterassignment\endgroup
117 \count@}

For the optional argument, we check if the following character is a [. If yes, we
gobble first the brackets and then the mandatory argument. If not, we gobble
the single mandatory argument.
118 \@tfor\@i:=\documentfont
119 \mathfont
120 \mainfont
121 \mathfontshapes
122 \mathconstantsfont\do{%
123 \edef\@tempa{\noexpand\M@robust@def\expandafter\noexpand\@i{%
124 \noexpand\M@NoMathfontError\expandafter\noexpand\@i
125 \noexpand\@ifnextchar[%
126 {\noexpand\expandafter\noexpand\@gobble
127 \noexpand\@gobble@brackets}
128 {\noexpand\@gobble}}}
129 \@tempa}

We code \newmathfontcommand by hand because it is the only command with
four arguments.
130 \M@robust@def\newmathfontcommand{%

Setup Implementation 5

131 \M@NoMathfontError\newmathfontcommand\@gobblefour}

Check that the engine is X ETEX or LuaTEX. If yes, set \ifM@XeTeXLuaTeX to
true. (Otherwise the conditional will be false by default.)
132 \ifx\directlua\@undefined
133 \else
134 \M@XeTeXLuaTeXtrue
135 \fi
136 \ifx\XeTeXrevision\@undefined
137 \else
138 \M@XeTeXLuaTeXtrue
139 \fi

The package can raise two fatal errors: one if the engine is not X ETEX or
LuaTEX (and cannot load OpenType fonts) and one if TEX cannot find the
luaotfload package. In both cases, the package will stop loading, so we want a
particularly conspicuous error message. For each message, we check the appro-
priate conditional to determine if we need to raise the error. If yes, we change
space to catcode 12 inside a group. We define a \GenericError inside a macro
and then call the macro for a cleaner error context line. The \@gobbletwo
eats the extra period and return that LATEX adds to the error message. Notice
that we expand the error before the \endgroup—this is because we need to
switch \M@XeTeXLuaTeXError with its replacement text while it is still defined
before we leave the group. At the same time, we want \AtBeginDocument and
\endinput outside the group. The second \expandafter means that we ex-
pand the final \fi before \endinput, which balances the original conditional.
140 \ifM@XeTeXLuaTeX\else
141 \begingroup
142 \catcode`\ =12\relax
143 \def\M@XeTeXLuaTeXError{\GenericError{}%\M@XeTeXLuaTeXErro
144 {\MessageBreak\MessageBreak
145 Package mathfont error:%
146 \MessageBreak\MessageBreak
147 *************************\MessageBreak
148 * *\MessageBreak
149 * UNABLE TO *\MessageBreak
150 * LOAD MATHFONT *\MessageBreak
151 * *\MessageBreak
152 * Missing XeTeX *\MessageBreak
153 * or LuaTeX *\MessageBreak
154 * *\MessageBreak
155 *************************\MessageBreak\@gobbletwo}%
156 {See the mathfont package documentation for explanation.}%

6 Implementation Setup

157 {I need XeTeX or LuaTeX to use mathfont. It\MessageBreak
158 looks like the current engine is something\MessageBreak
159 else, so I'm going to stop reading in the\MessageBreak
160 package file now. (You won't be able to use\MessageBreak
161 commands from mathfont in your document.) To\MessageBreak
162 load mathfont correctly, please retypeset your\MessageBreak
163 document with one of those two engines.^^J}}%
164 \expandafter\endgroup
165 \M@XeTeXLuaTeXError
166 \AtEndOfPackage{%
167 \typeout{:: mathfont :: Failed to load\on@line.}}
168 \expandafter\endinput % we \endinput with a balanced conditional
169 \fi

Now do the same thing in checking for luaotfload. If the engine is LuaTEX,
we tell mathfont to implement Lua-based font adjustments by default. The
conditional \ifM@Noluaotfload will keep track of whether TEX could find
luaotfload.sty. If the engine is X ETEX, issue a warning.
170 \ifdefined\directlua
171 \M@adjust@fonttrue % if engine is LuaTeX, adjust font by default
172 \IfFileExists{luaotfload.sty}
173 {\M@Noluaotfloadfalse\RequirePackage{luaotfload}}
174 {\M@Noluaotfloadtrue}
175 \else
176 \AtEndOfPackage{\PackageWarningNoLine{mathfont}{%
177 The current engine is XeTeX, but as\MessageBreak
178 of mathfont version 2.0, LuaTeX is\MessageBreak
179 recommended. Consider compiling with\MessageBreak
180 LuaLaTeX. Certain features will not\MessageBreak
181 work with XeTeX}}
182 \fi

If the engine is LuaTEX, we must have luaotfload because LuaTEX needs this
package to load OpenType fonts. Before anything else, TEX should check
whether it can find luaotfload.sty and stop reading in mathfont if it cannot.
Same command structure as before. Newer LATEX versions load luaotfload as
part of the format, but it never hurts to double check.
183 \ifM@Noluaotfload % true if LuaTeX AND no luaotfload.sty
184 \begingroup
185 \catcode`\ =12\relax
186 \def\M@NoluaotfloadError{\GenericError{}%\M@NoluaotfloadErr
187 {\MessageBreak\MessageBreak
188 Package mathfont error:%

Setup Implementation 7

189 \MessageBreak\MessageBreak
190 *************************\MessageBreak
191 * *\MessageBreak
192 * UNABLE TO *\MessageBreak
193 * LOAD MATHFONT *\MessageBreak
194 * *\MessageBreak
195 * Cannot find the *\MessageBreak
196 * file luaotfload.sty *\MessageBreak
197 * *\MessageBreak
198 *************************\MessageBreak\@gobbletwo}%
199 {You are likely seeing this message because you haven't^^J%
200 installed luaotfload. Check your TeX distribution for a^^J%
201 list of the packages on your system.^^J^^J%
202 See the mathfont documentation for further explanation.}%
203 {You're in trouble here. It looks like the current\MessageBreak
204 engine is LuaTeX, so I need the luaotfload package\MessageBreak
205 to make mathfont work correctly. However, I can't\MessageBreak
206 find luaotfload, which likely means something is\MessageBreak
207 wrong with your TeX installation. I'm going to stop\MessageBreak
208 reading in the mathfont package file. (You won't be\MessageBreak
209 able to use commands from mathfont in your document.)\MessageBreak
210 To load mathfont properly, make sure you installed\MessageBreak
211 luaotfload.sty in a directory searchable by TeX or\MessageBreak
212 compile with XeLaTeX.^^J}}%
213 \expandafter\endgroup
214 \M@NoluaotfloadError
215 \AtEndOfPackage{%
216 \typeout{:: mathfont :: Failed to load\on@line.}}
217 \expandafter\endinput % we \endinput with a balanced conditional
218 \fi

Easter egg!!
219 \DeclareOption{easter-egg}{%
220 \ifE@sterEggDecl@red\else
221 \E@sterEggDecl@redtrue
222 \newcount\@easter@egg@
223 \protected\def\EasterEggUpdate{%
224 \ProcessE@sterEgg\showtokens\expandafter{\E@sterEggUpd@te}}
225 \let\ProcessE@sterEgg\relax

Two status updates during package loading.
226 \edef\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
227 Okay, opening your Easter egg.^^J%

8 Implementation Setup

228 Type \string\EasterEggUpdate\space in your^^J%
229 document to see the status.^^J^^J}
230 \EasterEggUpdate
231 \def\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
232 Uh oh. It looks like your Easter^^J%
233 egg flew out the window. I don't^^J%
234 I don't suppose you know the best^^J%
235 kind of bait to lure an egg?^^J^^J}
236 \EasterEggUpdate
Possible updates if the user types \EasterEggUpdate. We define the
status update with \ProcessE@sterEgg, which stores the current mes-
sage in \E@sterEggUpd@te and changes the message as the user calls
\EasterEggUpdate. The count \@easter@egg@ keeps track of how many times
the user has requested a status update.
237 \def\ProcessE@sterEgg{%
238 \edef\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
239 \ifodd\@easter@egg@
240 \ifcase\numexpr(\@easter@egg@ - 1) / 2\relax
241 An Easter bunny must be related to a^^J%
242 platypus, no? Some sort of monotreme...%
243 \or
244 Don't count your chickens before they hatch^^J%
245 out of Easter eggs! But we don't have any^^J%
246 chickens right now because there are no eggs,^^J%
247 and the supply chain is sad.%
248 \or
249 Sorry, I'm late to a meeting. Can't talk right now.%
250 \or
251 Sunday, Monday, Tuesday, Wednesday, also^^J%
252 known as hump day, as in camel humps, which^^J%
253 I must say look distinctly egg-like if you^^J%
254 squint.%
255 \or
256 I'm calling Eggs Anonymous!%
257 \or
258 Sorry, I'm on the phone. Can't talk right now.%
259 \or
260 Still haven't found your Easter egg. I know^^J%
261 it's floating around here somewhere. Like an^^J%
262 asteroid in space, hopefully without the^^J%
263 massive extinction event.%
264 \or

Setup Implementation 9

265 Did you know eggs are used to make certain^^J%
266 types of vaccines? PSA: get your flu shot^^J%
267 and your covid shot!%
268 \or
269 Three large eggs.^^J%
270 Three large eggs.^^J%
271 See how they crack.^^J%
272 See how they crack.^^J%
273 Their broken shells are so pearly white.^^J%
274 In simmering water they catch the light.^^J%
275 Did you ever see such a sight in your life^^J%
276 As three poached eggs?%
277 \or
278 Do gnus eat eggs? Surely they must.%
279 \or
280 Okay, I have a fishing rod, some twine, and^^J%
281 a hook, but I still haven't caught your Easter^^J%
282 egg. Apparently it's harder to catch an egg^^J%
283 than a fish.%
284 \or
285 Sorry, I'm out fishing. Can't talk right now.%
286 \or
287 Is ghoti really an acceptable phonetic^^J%
288 spelling of fish? I am skeptical.%
289 \or
290 Perhaps an Easter bunny is actually a species^^J%
291 of fish. A rabbit fish.%
292 \else
293 Sorry, I'm all out of witty things to say.^^J%
294 Check back later.%
295 \fi
296 \else
297 Still wrangling. Check back later.%
298 \fi^^J^^J}%
299 \global\advance\@easter@egg@\@ne}

One status update \AtBeginDocument.
300 \AtBeginDocument{\bgroup
301 \let\ProcessE@sterEgg\relax
302 \def\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
303 If we have zero eggs^^J%
304 and zero bunnies, how^^J%
305 many gnats does it take^^J%

10 Implementation Setup

306 to change a lightbulb??^^J^^J}
307 \EasterEggUpdate
308 \egroup}

One update at the first instance of math mode, assuming another package
doesn’t overwrite the contents of \everymath first.
309 \def\math@E@sterEggUpd@te{\begingroup
310 \let\ProcessE@sterEgg\relax
311 \def\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
312 Scrambled, poached, or sunny side up?^^J^^J}%
313 \EasterEggUpdate
314 \endgroup
315 \global\let\math@E@sterEggUpd@te\relax}
316 \everymath\expandafter{\the\everymath\math@E@sterEggUpd@te}

Two status updates \AtEndDocument, including the egg itself. First, we disable
\ProcessE@sterEgg since we don’t need it anymore. Then inside a group, we
make the control symbols *, \/, and \= expand to their own names and do
some extreme catcode sports. We convert + to active and make it expand to a
space. Because everything has already been tokenized inside \DeclareOption,
we have to retokenize the definition of + inside \scantokens, and we set
\everyeof to \noexpand to avoid an end-of-file error.
317 \AtEndDocument{\let\ProcessE@sterEgg\relax
318 \begingroup
319 \edef*{\@backslashchar*}
320 \edef\/{\@backslashchar/}
321 \edef\={\@backslashchar=}
322 \catcode`\+=\active
323 \everyeof{\noexpand}
324 \scantokens{\def+{ }}

At this point we are ready to make the egg message Again, we have to retok-
enize everything with \scantokens because it was previously tokenized. How-
ever, if we write ^^J directly inside \scantokens, that primitive will convert
the newline to a blank space, so instead we store ^^J in \@tempb. After the
\edef expands \scantokens, it also expands each \@tempb, so \@tempa has
the line breaks we want.
325 \def\@tempb{^^J}
326 \edef\@tempa{\scantokens{Easter Egg Status:\@tempb\@tempb
327 The egg has been retrieved. What\@tempb
328 pinnacle of pulchritude!\@tempb\@tempb
329 +++++++++++++******\@tempb
330 ++++++++++************\@tempb

Setup Implementation 11

331 +++++++******************\@tempb
332 +++++----------------------\@tempb
333 +++**************************\@tempb
334 ++****/****/****/****/****\@tempb
335 +*****\/****\/****\/****\/*****\@tempb
336 +******************************\@tempb
337 ********************************\@tempb
338 ***/****/****/****/****/***\@tempb
339 ***\/****\/****\/****\/****\/***\@tempb
340 ********************************\@tempb
341 ********************************\@tempb
342 ******/****/****/****/******\@tempb
343 +*****\/****\/****\/****\/*****\@tempb
344 ++****************************\@tempb
345 +++--------------------------\@tempb
346 +++++**********************\@tempb
347 +++++++******************\@tempb
348 +++++++++\============/\@tempb
349 +++++++++++\========/\@tempb
350 ++++++++++++\======/\@tempb
351 +++++++++++++|====|\@tempb
352 ++++++++++++/======\@backslashchar\@tempb
353 +++++++++++(________)\@tempb}}

Then end the group and store the message in \E@sterEggUpd@te.
354 \expandafter\endgroup\expandafter
355 \def\expandafter\E@sterEggUpd@te\expandafter{\@tempa}
356 \EasterEggUpdate
357 \def\E@sterEggUpd@te{Easter Egg Status:^^J^^J%
358 Happy, happy day! Happy,^^J%
359 happy day! Clap your hands,^^J%
360 and be glad your hovercraft^^J%
361 isn't full of eels!^^J^^J}
362 \EasterEggUpdate
363 \let\E@sterEggUpd@te\relax
364 \let\EasterEggUpdate\relax}
365 \fi}% my easter egg :)

The five real package options. The default-loader and fontspec-loader
tell mathfont what to use as a backend for loading fonts.
366 \DeclareOption{default-loader}{\M@loader\z@}
367 \DeclareOption{fontspec-loader}{\M@loader\@ne}

12 Implementation Setup

The options adjust and no-adjust determine whether mathfont applies Lua-
based font adjustments to fonts loaded in the future.
368 \DeclareOption{adjust}{\M@adjust@fonttrue}
369 \DeclareOption{no-adjust}{\M@adjust@fontfalse}

Interpret an unknown option as a font name and save it for loading. In this
case, the package sets \ifM@font@loaded to true and stores the font name in
\M@font@load.
370 \DeclareOption*{\M@font@loadedtrue
371 \edef\M@font@load{\CurrentOption}}
372 \ProcessOptions*

For the font-loader, we have a bit of processing to do. First print an infor-
mational message in the log file. The default loader is easy, but if the user
requests fontspec, we have to make sure to load everything properly.
373 \ifcase\M@loader
374 \@mathfontinfo{Default font-loader was
375 requested for font loading.}
376 \or
377 \@mathfontinfo{Package fontspec was
378 requested for font loading.}

If fontspec was already loaded, check whether \g__fontspec_math_bool is
true or not. If it is, change it to false.
379 \@ifpackageloaded{fontspec}
380 {\@mathfontinfo{Package fontspec detected.}
381 \csname bool_if:NTF\expandafter\endcsname
382 \csname g__fontspec_math_bool\endcsname
383 {\@mathfontinfo{Setting
384 \string\g__fontspec_math_bool to false.}
385 \csname bool_set_false:N\expandafter\endcsname
386 \csname g__fontspec_math_bool\endcsname}{\relax}}

If fontspec was not loaded, check that the package file exists.
387 {\@mathfontinfo{Package fontspec not detected.}
388 \IfFileExists{fontspec.sty}
389 {\@mathfontinfo{File fontspec.sty was found.}
390 \@mathfontinfo{Loading fontspec.}
391 \RequirePackage[no-math]{fontspec}}
392 {\PackageError{mathfont}
393 {Missing package fontspec;^^J%
394 using default font-loader instead}
395 {You requested fontspec as the font-loader\MessageBreak
396 for mathfont. However, I can't find the\MessageBreak

Setup Implementation 13

397 package file for fontspec, so I'm going to\MessageBreak
398 use mathfont's built-in font-loader. (This\MessageBreak
399 likely means that something is wrong with\MessageBreak
400 your TeX installation.) Check your TeX\MessageBreak
401 distribution for a list of the packages\MessageBreak
402 installed on your system. To resolve this\MessageBreak
403 error, make sure fontspec is installed in\MessageBreak
404 a directory searchable by TeX or load\MessageBreak
405 mathfont with the default-loader option.^^J}
406 \M@loader\z@}}
407 \fi

We print an informational message specifying the font-loader in use. We store
default OpenType features in \M@otf@features. The contents depend on the
font-loader because we use X ETEX/luaotfload syntax versus fontspec syntax.
By default, mathfont loads fonts with Latin script, default language, TEX and
common ligatures, and lining numbers.
408 \ifcase\M@loader
409 \@mathfontinfo{Using default font-loader.}
410 \AtEndOfPackage{%
411 \typeout{:: mathfont :: Using default font-loader.}}
412 \def\M@otf@features{language=DFLT;+tlig;+liga;+lnum}\M@otf@features
413 \or
414 \@mathfontinfo{Using fontspec as font-loader.}
415 \AtEndOfPackage{%
416 \typeout{:: mathfont :: Using fontspec as font-loader.}}
417 \def\M@otf@features{Language=Default,\M@otf@features
418 Ligatures={TeX,Common},
419 Numbers=Lining}
420 \fi

We print an informational message depending on whether the user enabled
Lua-based font adjustments. If \directlua is defined, that means we are using
LuaTEX, so we print a message depending on \ifM@adjust@font.
421 \ifdefined\directlua
422 \ifM@adjust@font
423 \@mathfontinfo{Enabling Lua-based font adjustments.}
424 \AtEndOfPackage{%
425 \typeout{:: mathfont :: Lua-based font adjustments
426 enabled.}}
427 \else
428 \@mathfontinfo{Disabling Lua-based font adjustments.}
429 \AtEndOfPackage{%

14 Implementation Default Settings

430 \typeout{:: mathfont :: Lua-based font adjustments
431 disabled.}}
432 \fi
433 \else

If \directlua is undefined, we make sure Lua-based font adjustments are dis-
abled, and we issue an error if the user tried to manually enable them.
434 \ifM@adjust@font
435 \PackageError{mathfont}{Option^^J"adjust" ignored with XeTeX}
436 {Your package option "adjust" was ignored.\MessageBreak
437 This option works only with LuaTeX, and it\MessageBreak
438 looks like the current engine is XeTeX. To\MessageBreak
439 enable Lua-based font adjustments, typeset\MessageBreak
440 with LuaLaTeX.^^J}
441 \M@adjust@fontfalse
442 \fi
443 \@mathfontinfo{Disabling Lua-based font adjustments.}
444 \AtEndOfPackage{%
445 \typeout{:: mathfont :: Lua-based font adjustments disabled.}}
446 \fi

2 Default Settings
We save four macros from the LATEX kernel for safe-keeping, and then we
change their definitions. As of version 3.0 of mathfont, the new definitions for
\set@mathchar, etc. are not necessary for implementing mathfont, but we keep
them in the package to make \DeclareMathSymbol and friends compatible
with Unicode. For these three control sequences, we convert the hexadecimal
digits in \count0 and \count2 back to decimal and change the \math primi-
tive to \Umath.
447 \let\@@set@mathchar\set@mathchar
448 \let\@@set@mathsymbol\set@mathsymbol
449 \let\@@set@mathaccent\set@mathaccent
450 \let\@@DeclareSymbolFont\DeclareSymbolFont
451 \let\@@DeclareSymbolFont@m@dropped\DeclareSymbolFont@m@dropped
452 \@onlypreamble\@@set@mathchar
453 \@onlypreamble\@@set@mathsymbol
454 \@onlypreamble\@@set@mathaccent
455 \@onlypreamble\@@DeclareSymbolFont
456 \@onlypreamble\@@DeclareSymbolFont@m@dropped
457 \@mathfontinfo{Adapting \noexpand\set@mathchar for Unicode.}

Default Settings Implementation 15

458 \@mathfontinfo{Adapting \noexpand\set@mathsymbol for Unicode.}
459 \@mathfontinfo{Adapting \noexpand\set@mathaccent for Unicode.}
460 \@mathfontinfo{Increasing upper bound on
461 \noexpand\DeclareSymbolFont to 256.}

Kernel command to set math characters from keystrokes.
462 \def\set@mathchar#1#2#3#4{%
463 \multiply\count\z@ by 16\relax
464 \advance\count\z@\count\tw@
465 \global\Umathcode`#2=\mathchar@type#3+#1+\count\z@\relax}

Kernel command to set math characters from control sequences.
466 \def\set@mathsymbol#1#2#3#4{%
467 \multiply\count\z@ by 16\relax
468 \advance\count\z@\count\tw@
469 \global\Umathchardef#2=\mathchar@type#3+#1+\count\z@\relax}

Kernel command to set accents.
470 \def\set@mathaccent#1#2#3#4{%
471 \multiply\count\z@ by 16\relax
472 \advance\count\z@\count\tw@
473 \protected\xdef#2{%
474 \Umathaccent\mathchar@type#3+\number#1+\the\count\z@\relax}}

We increase the upper bound on the number of symbol fonts to be 256.
LuaTEX and X ETEX allow up to 256 math families, but the LATEX kernel
keeps the old upper bound of 16 symbol fonts under these two engines.
We patch \DeclareSymbolFont to change the \count18<15 to \count18
<\e@mathgroup@top, where \e@mathgroup@top is the number of math fam-
ilies, which is 256 in X ETEX and LuaTEX. We get a sanitized defini-
tion with \meaning and \strip@prefix, implement the patch by expand-
ing \M@p@tch@decl@re, and retokenize the whole thing. A simpler ap-
proach, such as calling \M@p@tch@decl@re directly on the expansion of
\DeclareSymbolFont, won’t work because of how TEX stores and expands
parameter symbols inside macros.

As of November 2022, the LATEX team renamed \DeclareSymbolFont to
\DeclareSymbolFont@m@dropped, and now \DeclareSymbolFont is a wrap-
per around the old version of itself. This was done for error checking pur-
poses to remove extra m’s from certain nfss family names. This means that if
\DeclareSymbolFont@m@dropped is defined, we should patch that macro, and
otherwise, we should patch \DeclareSymbolFont.
475 \ifx\DeclareSymbolFont@m@dropped\@undefined
476 \edef\@tempa{\expandafter
477 \strip@prefix\meaning\DeclareSymbolFont}

16 Implementation Default Settings

478 \def\@tempb{\def\DeclareSymbolFont##1##2##3##4##5}
479 \else
480 \edef\@tempa{\expandafter
481 \strip@prefix\meaning\DeclareSymbolFont@m@dropped}
482 \def\@tempb{\def\DeclareSymbolFont@m@dropped##1##2##3##4##5}
483 \fi
484 \def\M@p@tch@decl@re#1<15#2\@nil{#1<\e@mathgroup@top#2}\M@p@tch@decl@re
485 \edef\M@DecSymDef{\expandafter\M@p@tch@decl@re\@tempa\@nil}\M@DecSymDef

Now \M@DecSymDef contains the patched text of our new \DeclareSymbolFont,
all with catcode 12. In order to make it useable, we have to retokenize it. If this
package was LuaTEX only, we could use \scantextokens, which is nicely be-
haved and does what we expect. However, to make it compatible with X ETEX,
we use \scantokens. Unfortunately, while \scantextokens is straightforward,
\scantokens is a menace. The problem is that when it expands, the primi-
tive inserts an end-of-file token (because \scantokens mimics writing to a file
and \inputing what it just wrote) after the retokenized code, and as a result,
\scantokens can produce an end-of-file error. The trick (realized after much
trial and error) is that if we scan the entire definition statement including \def
and the macro definition, the end-of-file token doesn’t end up in the macro
definition, and we avoid the “file ended” error message.
486 \scantokens\expandafter{%
487 \expandafter\@tempb\expandafter{\M@DecSymDef}}

We need to keep track of the number of times we have loaded fonts, and
\M@count fulfills this role. The \toks will record a message that displays in
the log file when the user calls \mathfont. The \newread is for Lua-based
font adjustments.
488 \newbox\surdbox
489 \newcount\M@count
490 \newcount\M@num@localfonts
491 \newcount\rulethicknessfactor
492 \newcount\hsurdfactor
493 \newcount\vsurdfactor
494 \newmuskip\radicandoffset
495 \newread\M@Charm
496 \M@count\z@
497 \rulethicknessfactor\@m
498 \hsurdfactor\@m
499 \vsurdfactor\@m
500 \radicandoffset=1mu\relax

Necessary booleans and default math font shapes.

Default Settings Implementation 17

501 \newif\ifM@upper
502 \newif\ifM@lower
503 \newif\ifM@diacritics
504 \newif\ifM@greekupper
505 \newif\ifM@greeklower
506 \newif\ifM@agreekupper
507 \newif\ifM@agreeklower
508 \newif\ifM@cyrillicupper
509 \newif\ifM@cyrilliclower
510 \newif\ifM@hebrew
511 \newif\ifM@digits
512 \newif\ifM@operator
513 \newif\ifM@symbols
514 \newif\ifM@extsymbols
515 \newif\ifM@delimiters
516 \newif\ifM@radical
517 \newif\ifM@arrows
518 \newif\ifM@bigops
519 \newif\ifM@extbigops
520 \newif\ifM@bb
521 \newif\ifM@cal
522 \newif\ifM@frak
523 \newif\ifM@bcal
524 \newif\ifM@bfrak
525 \newif\if@optionpresent
526 \newif\if@suboptionpresent
527 \newif\ifM@arg@good
528 \newif\ifM@mode@

Default shapes.
529 \def\upperdefault{italic} % latin upper
530 \def\lowerdefault{italic} % latin lower
531 \def\diacriticsdefault{upright} % diacritics
532 \def\greekupperdefault{upright} % greek upper
533 \def\greeklowerdefault{italic} % greek lower
534 \def\agreekupperdefault{upright} % ancient greek upper
535 \def\agreeklowerdefault{italic} % ancient greek lower
536 \def\cyrillicupperdefault{upright} % cyrillic upper
537 \def\cyrilliclowerdefault{italic} % cyrillic lower
538 \def\hebrewdefault{upright} % hebrew
539 \def\digitsdefault{upright} % numerals
540 \def\operatordefault{upright*} % operator font
541 \def\delimitersdefault{upright} % delimiters

18 Implementation Default Settings

542 \def\radicaldefault{upright} % surd
543 \def\bigopsdefault{upright} % big operators
544 \def\extbigopsdefault{upright} % extended big operators
545 \def\symbolsdefault{upright} % basic symbols
546 \def\extsymbolsdefault{upright} % extended symbols
547 \def\arrowsdefault{upright} % arrows
548 \def\bbdefault{upright} % blackboard bold
549 \def\caldefault{upright} % caligraphic
550 \def\frakdefault{upright} % fraktur
551 \def\bcaldefault{upright} % bold caligraphic
552 \def\bfrakdefault{upright} % bold fraktur

The \M@keys list stores all the possible keyword options, and \M@defaultkeys
stores the character classes that \mathfont acts on by default.
553 \def\M@keys{upper,lower,diacritics,greekupper,%\M@keys
554 greeklower,agreekupper,agreeklower,cyrillicupper,%
555 cyrilliclower,hebrew,digits,operator,delimiters,%
556 radical,bigops,extbigops,symbols,extsymbols,arrows,%
557 bb,cal,frak,bcal,bfrak}
558 \def\M@defaultkeys{upper,lower,diacritics,greekupper,%\M@defaultkeys
559 greeklower,digits,operator,symbols}

If the user enabled Lua-based font adjustments, the \M@defaultkeys list also
includes delimiters, surd, and big operator symbols.
560 \ifM@adjust@font
561 \edef\M@defaultkeys{\M@defaultkeys,delimiters,radical,bigops}\M@defaultkeys
562 \fi

A few macros that we use for assembling lists of font information and printing
messages \AtBeginDocument.
563 \let\M@localfonts\@empty
564 \let\M@symbolfonts\@empty
565 \let\M@families\@empty\M@families

And now the macros to add to those three control sequences. First is a helper
macro that accepts two arguments and stores information about declaration of
local font changes. The macro successively adds comma-separated pairs of con-
trol sequence and font name information to \M@localfonts. It also keeps track
of the number of distinct font names in \M@localfonts with the count variable
\M@num@localfonts. The #1 argument is a control sequence (with all charac-
ters having catcode 12 from \string), and the #2 argument is a font name. We
have two different approaches depending on whether \M@localfonts is empty,
i.e. if it’s the first time calling \M@addto@localfonts. If \M@localfonts is
\@empty, that means we haven’t added any fonts to the list yet, so we increase

Messages and Errors Implementation 19

\M@num@localfonts. Otherwise we loop through \M@localfonts, and we in-
crease \M@num@localfonts only if none of the entries in \M@localfonts use
the #2 font. After incrementing (or not) the count, we append #1 and #2 to
\M@localfonts.
566 \def\M@addto@localfonts#1#2#3#4{%
567 \begingroup
568 \@tempswatrue % increase by default
569 \def\@tempa##1##2##3##4{##2}%
570 \@for\@j:=\M@localfonts\do{%
571 \edef\@tempb{\expandafter\@tempa\@j}%
572 \ifx\@tempbase\@tempb
573 \@tempswafalse % if \@tempbase is in list, don't add
574 \fi}%
575 \expandafter
576 \endgroup
577 \if@tempswa
578 \advance\M@num@localfonts\@ne
579 \fi
580 \ifx\M@localfonts\@empty
581 \else
582 \edef\M@localfonts{\M@localfonts,}%
583 \fi
584 \edef\M@localfonts{\M@localfonts{#1}{#2}{#3}{#4}}}

Same thing for symbol fonts.
585 \def\M@addto@symbolfonts#1#2#3#4{%
586 \ifx\M@symbolfonts\@empty
587 \else
588 \edef\M@symbolfonts{\M@symbolfonts,}%
589 \fi
590 \edef\M@symbolfonts{\M@symbolfonts{#1}{#2}{#3}{#4}}}

And font families.
591 \def\M@addto@families#1{%\M@addto@families
592 \ifx\M@families\@empty
593 \else
594 \edef\M@families{\M@families,}%\M@families
595 \fi
596 \xdef\M@families{\M@families#1}}\M@families

20 Implementation Messages and Errors

Table 1: Package Messages and Errors and Their Uses
Command Use

\@mathfontinfo General informational macro
\M@FontChangeInfo When using a new symbol font
\M@FontFamilyInfo Declaring new font shape in the nfss
\M@NewFontCommandInfo New local font-change command
\M@SymbolFontInfo Declare new symbol font

\M@FamilyTypeError Error if bad argument for \mainfont
\M@NFSSShapesWarning Warning if font is missing shapes
\M@NoBaseModeError Error if no base-mode version of a font

\M@InvalidOptionError Bad keyword for font-change command
\M@InvalidSupoptionError Bad suboption for font-change command
\M@MissingOptionError Missing keyword for font-change command
\M@MissingSuboptionError Missing suboption for font-change command

\M@FontShapesError Tried to add font shapes after preamble
\M@LuaTeXOnlyWarning User called LuaTEX-only macro in X ETEX

\M@HModeError Font-change command used outside math
\M@MissingCSError No macro for font-change command

\M@BadIntegerError Non-integer value for font adjustment
\M@NoCharmFileError Bad file name for \charmfile
\M@NoFontAdjustError Macro used without Lua font adjustments

3 Messages and Errors
Some error and informational messages. Table 1 lists all macros defined in
this section along with a brief description of their use. We begin with general
informational messages.
597 \def\M@FontChangeInfo#1#2{\@mathfontinfo{Setting #1 chars to #2!}}\M@FontChangeInfo
598 \def\M@FontFamilyInfo#1{\@mathfontinfo{Adding #1 to the nfss.}}\M@FontFamilyInfo
599 \def\M@SymbolFontInfo#1#2#3{%\M@SymbolFontInfo
600 \@mathfontinfo{New symbol font uses TU/#1/#2/#3.}}
601 \def\M@NewFontCommandInfo#1#2#3#4{%\M@NewFontCommandI
602 \@mathfontinfo{New \string#1 uses TU/#2/#3/#4.}}
Warnings and errors related to font declaration.
603 \def\M@NFSSShapesWarning#1#2{%\M@NFSSShapesWarni
604 \PackageWarningNoLine{mathfont}
605 {The nfss family "#1"\MessageBreak

Messages and Errors Implementation 21

606 from line \the\inputlineno\space is missing shapes.\MessageBreak
607 You may see some substitutions\MessageBreak
608 or errors. See the log file for\MessageBreak
609 details}
610 \@mathfontinfo{Shapes missing: #2.}}
611 \def\M@NoBaseModeError#1{%\M@NoBaseModeError
612 \PackageError{mathfont}
613 {Missing base-mode^^J%
614 version of font family "#1"}
615 {With LuaTeX, when you tell mathfont to\MessageBreak
616 use a font family from the nfss, I try to\MessageBreak
617 find aversion of that font in the nfss\MessageBreak
618 that uses base mode. I couldn't do that\MessageBreak
619 here, so you may see some problems with\MessageBreak
620 your math. To resolve this error, either\MessageBreak
621 use XeTeX, or make sure the nfss contains\MessageBreak
622 a version of your font in base mode, and\MessageBreak
623 define \string\-base to be the nfss\MessageBreak
624 name for your base-mode family.^^J}}
625 \def\M@FamilyTypeError#1{%\M@FamilyTypeError
626 \PackageError{mathfont}
627 {Invalid family type/^^J%
628 optional argument "#1" for \string\mainfont}
629 {The optional argument of
630 \string\mainfont\space should\MessageBreak
631 be one of rm, sf, or tt. You used something\MessageBreak
632 else, so I'm changing it to rm.^^J}}

Error and warning messages for keywords and shape identifiers.
633 \def\M@InvalidOptionError#1{%\M@InvalidOptionEr
634 \PackageError{mathfont}
635 {Invalid^^Jkeyword "#1" on line \the\inputlineno}
636 {You used a character keyword that I'm\MessageBreak
637 not familiar with. Check that you spelled\MessageBreak
638 everything correctly. To resolve this\MessageBreak
639 error, make sure you use keywords that\MessageBreak
640 are listed in the documentation.^^J\@gobble}}
641 \def\M@InvalidSuboptionError#1{%\M@InvalidSuboptio
642 \PackageError{mathfont}
643 {Invalid^^Jshape identifer "#1" on line \the\inputlineno}
644 {You used a suboption/shape identifier\MessageBreak
645 that I'm not familiar with. Check that\MessageBreak
646 you spelled everything correctly. To\MessageBreak

22 Implementation Messages and Errors

647 resolve this error, make sure you use\MessageBreak
648 shape identifiers that are listed in\MessageBreak
649 the documentation.^^J}}
650 \def\M@MissingOptionError{%\M@MissingOptionEr
651 \PackageError{mathfont}
652 {Missing keyword on line \the\inputlineno}
653 {I didn't see a character keyword\MessageBreak
654 where I was expecting to. This can\MessageBreak
655 happen if you type ,, or ,= by\MessageBreak
656 mistake. To resolve this error,\MessageBreak
657 make sure you provided a comma-\MessageBreak
658 separated list of keywords.^^J}}
659 \def\M@MissingSuboptionError{%\M@MissingSuboptio
660 \PackageError{mathfont}
661 {Missing suboption/^^Jshape identifier on line \the\inputlineno}
662 {I didn't see a suboption/shape identifier\MessageBreak
663 where I was expecting to. This can happen\MessageBreak
664 if you type ,, or =, or == by mistake. To\MessageBreak
665 resolve this error, make sure that every\MessageBreak
666 = sign comes before a suboption or that you\MessageBreak
667 provided a comma-separated list of shape\MessageBreak
668 identifiers, depending on the context.^^J}}

Error messages regarding arguments previously fed to \mathfont and friends.
669 \def\M@FontShapesError{%\M@FontShapesError
670 \PackageError{mathfont}
671 {^^JCan't declare new font shapes after
672 \string\begin{document}}
673 {This error means that you (1) requested\MessageBreak
674 to use a family/series/shape combination\MessageBreak
675 for a font-change command in this package\MessageBreak
676 (2) after your document preamble (3) that\MessageBreak
677 does not match any font you used for this\MessageBreak
678 package in the preamble. To resolve this\MessageBreak
679 error, try declaring more font shapes in\MessageBreak
680 your preamble with \string\mathfontshapes.^^J}}
681 \def\M@LuaTeXOnlyWarning#1{%\M@LuaTeXOnlyWarni
682 \PackageWarningNoLine{mathfont}
683 {Your \string#1\space on line
684 \the\inputlineno\MessageBreak
685 is mainly for use in LuaTeX with font\MessageBreak
686 adjustments enabled. In the current\MessageBreak
687 situation, it is probably not doing\MessageBreak

Messages and Errors Implementation 23

688 anything}}

Error messages for the \newmathrm, etc. commands.
689 \def\M@MissingCSError#1#2{%\M@MissingCSError
690 \PackageError{mathfont}
691 {Missing control sequence^^J%
692 for\string#1\space on line \the\inputlineno}
693 {Your command was ignored. Instead of\MessageBreak
694 "#2,"\MessageBreak
695 I was expecting a single control\MessageBreak
696 sequence. To resolve this error,\MessageBreak
697 please use one control sequence instead.^^J}}
698 \def\M@HModeError#1{%\M@HModeError
699 \PackageError{mathfont}
700 {Missing \string$ inserted^^J%
701 on line \the\inputlineno}
702 {I raised an error because you used\MessageBreak
703 \string#1\space outside of math mode,\MessageBreak
704 which isn't allowed. I inserted a \string$\MessageBreak
705 before your control sequence, so we\MessageBreak
706 should be all good now.^^J}}

We need error messages related to Lua-based font adjustments.
707 \def\M@NoFontAdjustError#1{%\M@NoFontAdjustErr
708 \PackageError{mathfont}
709 {\string#1^^J%
710 is invalid without Lua-based font adjustments}
711 {Your control sequence won't do anything\MessageBreak
712 without Lua-based font adjustments, but\MessageBreak
713 you didn't enable them. To resolve this\MessageBreak
714 error, load mathfont with LuaTeX and the\MessageBreak
715 package option "adjust" or remove your\MessageBreak
716 control sequence.^^J}}
717 \def\M@BadIntegerError#1#2{%\M@BadIntegerError
718 \PackageError{mathfont}
719 {Bad argument^^J%
720 "#2" for \string#1 on line \the\inputlineno}
721 {Your command was ignored. Please make sure\MessageBreak
722 that your argument for \string#1\MessageBreak
723 is a nonnegative integer.^^J}}
724 \def\M@NoCharmFileError#1{%\M@NoCharmFileErro
725 \PackageError{mathfont}{Missing Charm File}
726 {You requested to read the file\MessageBreak

24 Implementation Font Declaration

727 "#1"\MessageBreak
728 with \string\charmfile. I can't find that file,\MessageBreak
729 so I'm ignoring your command. To resolve\MessageBreak
730 this error, make sure the filename is\MessageBreak
731 correct, and double check that the file\MessageBreak
732 is in a directory searchable by TeX.^^J}}

4 Font Declaration
We come to the fontloader. The main font declaration macro is \M@newfont,
and it accepts one argument that is a combination of font name and op-
tional OpenType feature information separated by a colon. The macro accom-
plishes four tasks: (1) it separates the font name and features and stores them
in \@tempbase and \@tempfeatures; (2) it checks whether tbe argument is
present as a font name in the nfss; (3) if not, it declares the font in the nfss,
either with the built-in font loader or using fontspec; and (4) it stores the nfss
family name(s) in \M@f@ntn@me and \M@f@ntn@meb@se. If \M@newfont reaches
step 3 after \begin{document}, it raises a “can’t declare new font shapes”
error.

Checking the nfss happens in two steps. First, \M@newfont removes the
spaces from its argument and checks whether the result matches a previous call
to \M@newfont, and if yes, \M@newfont uses the family name from the previous
call. If no, the macro checks whether the argument with spaces removed ap-
pears in the nfss. (Properly declared nfss font families shouldn’t have spaces
in their names because LATEX ignores spaces when scanning a font family dec-
laration.) If \M@newfont finds an nfss family, it looks at the font shapes asso-
ciated with that family using the helper macro \M@check@nfss@shapes. This
command prints a warning if the nfss is missing any standard series/shape
combinations (m/n, m/it, b/n, and b/it) for the font family. The package does
not add any font shapes to the nfss at this point in the font-loading process.

If both checks of the nfss fail, mathfont assumes the nfss does not contain
the user’s desired font and proceeds to declare it in the nfss. For the built-
in font loader, font declaration uses the helper macros \M@fill@nfss@shapes
and \M@declare@shape. The first of these two macros loops through se-
ries/shape pairs and feeds them to the second macro, which acts as a wrap-
per around \DeclareFontShape. If the user requested to use fontspec for
the font loader, \M@newfont feeds the font name and requested features to
\fontspec_set_family:Nnn, which modifies the nfss accordingly. Advanced
users should keep in mind the difference between font declaration and font load-

Font Declaration Implementation 25

ing in LATEX. Font declaration, the subject of this section, means adding font in-
formation to the nfss through \DeclareFontFamily and \DeclareFontShape,
and font loading is when TEX reads a font file into memory via the \font prim-
itive. LATEX handles font loading automatically at a \selectfont command
or upon entering math mode, so a call to \M@newfont will not actually load
any fonts into memory, just prepare LATEX to do so at a later time.

In LuaTEX, users can load fonts in one of three modes, namely node (the
default), base, or harf. Node mode works well for text, but it has more lim-
ited capabilities for math. Harf mode uses the HarfBuzz renderer and is appro-
priate for more complicated scripts. Accordingly, when the engine is LuaTEX,
mathfont loads fonts once in base mode for math and once in unspecified (so
likely node) mode for text. If the user specifies a font family already in the
nfss, \M@newfont tries to find a base-mode version of the font family and
raises an error if it cannot. When \M@newfont declares the font, it does so
twice, once in unspecified mode and once in base mode. This is why we have
two control sequences for font family names: \M@f@ntn@me is the font family,
and \M@f@nt@n@me@base contains the nfss family name of the base-mode ver-
sion of the font. In X ETEX, these control sequences will be identical because
mathfont does not load a font multiple times in that case.

During font declaration, mathfont links several pieces of information as
follows:

• Given an 〈argument〉 with spaces removed, \M@newfont stores the corre-
sponding nfss family name in \M@fontfamily@〈argument〉

• The nfss family name for the base-mode version of the font goes in
\M@fontfamily@base@〈argument〉

• Given a 〈family name〉, \M@newfont stores the corresponding base-mode
font family name in the control sequence \〈family name〉-base. Users
who want to declare their own fonts in the nfss prior to using them with
mathfont should manually define this control sequence so that mathfont
knows where your base-mode font lives.

• Each nfss font family is assigned a unique value of \M@count that is
stored in \M@fontid@〈family〉.

These macro assignments are global. The difference relative to \M@f@ntn@me
and \M@f@ntn@meb@se is that \M@f@ntn@me and \M@f@ntn@meb@se are tempo-
rary and always hold the font family from the most recent call to \M@newfont.

The \M@check@nfss@shapes macro checks if a font family has shapes de-
clared in upright, italic, bold, and bold italic. If any of those shapes are miss-
ing, we issue a warning. We store the missing series/shape pairs in \@tempb
to print them as part of the warning message.

26 Implementation Font Declaration

733 \def\M@check@nfss@shapes#1{%\M@check@nfss@shap
734 \let\@tempb\@empty
735 \let\@tempwarning\@gobble
736 \@for\@i:=\mddefault/\shapedefault,%
737 \mddefault/\itdefault,%
738 \bfdefault/\shapedefault,%
739 \bfdefault/\itdefault\do{%
740 \expandafter\ifx\csname TU/#1/\@i\endcsname\relax
741 \def\@tempwarning{\M@NFSSShapesWarning{#1}}%
742 \edef\@tempb{\@tempb, \@i}%
743 \fi}%

We use a small hack to get everything to print correctly. If all shapes are
present, then \@tempwarning is \@gobble, and the argument disappears. Oth-
erwise, the argument becomes part of the warning message. The \@gobble
eats the (unnecessary) first comma inside \@tempb.
744 \@tempwarning{\expandafter\@gobble\@tempb}}

Next we have commands to add series and shape information to the nfss for a
given font family. The \M@declare@shape macro takes several arguments. It
checks whether the series/shape pair exists in the nfss, and if not, it adds it
using \DeclareFontShape. The argument structure is

• #1—nfss font family name
• #2—optional /B or /I (or /BI) suffix on the font name
• #3—a list of (default) OpenType feature tags
• #4—a list of (the user’s) OpenType feature tags
• #5—nfss series identifier
• #6—nfss shape identifier

We assume that the font file reference has already been stored in \@tempbase.
745 \def\M@declare@shape#1#2#3#4#5#6{%\M@declare@shape
746 \ifcsname TU/#1/#5/#6\endcsname
747 \else
748 \DeclareFontShape{TU}{#1}{#5}{#6}{<->"\@tempbase#2:#3;#4"}{}%
749 \fi}

The \M@fill@nfss@shapes command does the work of populating the nfss
with the correct shape information. The argument structure is:

• #1—nfss font family name
• #2—a list of (default) OpenType feature tags
• #3—a list of (the user’s) OpenType feature tags

Font Declaration Implementation 27

We call \M@declare@shape for each combination of medium/bold series and
upright/italic shape, and the result is an entry in the nfss for each combina-
tion. We have separate declarations for regular and small caps because they
have different shape identifiers in the nfss. We manually set smcp to be true
or false accordingly.
750 \def\M@fill@nfss@shapes#1#2#3{%\M@fill@nfss@shape
751 \@for\@i:={#1}{}{#2;-smcp}{#3}{\mddefault}{\shapedefault},%
752 {#1}{/I}{#2;-smcp}{#3}{\mddefault}{\itdefault},%
753 {#1}{/B}{#2;-smcp}{#3}{\bfdefault}{\shapedefault},%
754 {#1}{/BI}{#2;-smcp}{#3}{\bfdefault}{\itdefault},%

And do small caps. If a small caps font face is separate from the main font
file, TEX won’t be able to find it automatically. In that case, you will have to
write your own fd file or \DeclareFontShape commands.
755 {#1}{}{#2;+smcp}{#3}{\mddefault}{\scdefault},%
756 {#1}{/I}{#2;+smcp}{#3}{\mddefault}{\scdefault\itdefault},%
757 {#1}{/B}{#2;+smcp}{#3}{\bfdefault}{\scdefault},%
758 {#1}{/BI}{#2;+smcp}{#3}{\bfdefault}{\scdefault\itdefault}%
759 \do{\expandafter\M@declare@shape\@i}}

We use \M@split@colon and \M@strip@colon for parsing the argument of
\mathfont. If the user calls \mathfont{〈name〉:〈features〉}, we store the
name in \@tempbase and the features in \@tempfeatures. If the user speci-
fies a name only, then \@tempfeatures will be empty. Syntactically, we use
\M@strip@colon to remove a final : the same way we remove a final = when
we parse the optional argument in the next section.
760 \def\M@split@colon#1:#2\@nil{%\M@split@colon
761 \def\@tempbase{#1}%
762 \def\@tempfeatures{#2}}
763 \def\M@strip@colon#1:{#1}\M@strip@colon

The main font-loading macro. It takes a single argument, which should look
like either 〈nfss family〉 or 〈font name〉:〈optional features〉. The first thing
\M@newfont does is split the font name and OpenType features and store each
portion in \@tempbase and \@tempfeatures. If \@tempfeatures is not empty,
it has an extra colon at the end, so we remove it.
764 \def\M@newfont#1{%\M@newfont
765 \expandafter\M@split@colon\expanded{#1}:\@nil
766 \ifx\@tempfeatures\@empty\else
767 \edef\@tempfeatures{\expandafter\M@strip@colon\@tempfeatures}%
768 \fi

Then we find the font family name. We remove spaces from the argument,
store it in \@tempa, and check whether the result matches a previous call to

28 Implementation Font Declaration

\M@newfont. If yes, we retrieve the font family and base-mode family names
and store them in the appropriate control sequences.
769 \edef@nospace\@tempa{#1}%
770 \ifcsname M@fontfamily@\@tempa\endcsname
771 \edef\M@f@ntn@me
772 {\csname M@fontfamily@\@tempa\endcsname}%
773 \edef\M@f@ntn@meb@se
774 {\csname M@fontfamily@base@\@tempa\endcsname}%
775 \else

Next check whether \@tempa appears as a font family in the nfss.
776 \ifcsname TU+\@tempa\endcsname% is #1 font family in the nfss?
777 \let\M@f@ntn@me\@tempa

Check that the nfss contains some font shapes. If any are missing, we issue a
warning but do not fill them.
778 \M@check@nfss@shapes\M@f@ntn@me

With LuaTEX, we want a proper base-mode version of the font. In this situ-
ation, mathfont expects to find a second font family whose nfss identifier is
stored in \〈font family〉-base, and we assume this second font was loaded with
mode=base. If that information exists, we use it for the base-mode version.
779 \ifdefined\directlua % if LuaTeX?
780 \ifcsname\M@f@ntn@me-base\endcsname % if base-mode version
781 \edef\M@f@ntn@meb@se
782 {\csname\M@f@ntn@me-base\endcsname}%

If the package found a base-mode font, again check that it contains some font
shapes, and issue a warning if not.
783 \M@check@nfss@shapes\M@f@ntn@meb@se
784 \else

Raise an error if we can’t find a base-mode font family, and use the regular
font instead.
785 \M@NoBaseModeError\M@f@ntn@me
786 \expandafter\xdef
787 \csname\M@f@ntn@me-base\endcsname{\M@f@ntn@me}%
788 \let\M@f@ntn@meb@se\M@f@ntn@me
789 \fi

Base mode is a LuaTEX-only feature version of a font, so we link the base-mode
identifier to the same font.
790 \else % if XeTeX?
791 \expandafter\xdef
792 \csname\M@f@ntn@me-base\endcsname{\M@f@ntn@me}%

Font Declaration Implementation 29

793 \let\M@f@ntn@meb@se\M@f@ntn@me
794 \fi
Now save the font families for reference later.
795 \expandafter\xdef
796 \csname M@fontfamily@\@tempa\endcsname
797 {\M@f@ntn@me}%
798 \expandafter\xdef
799 \csname M@fontfamily@base@\@tempa\endcsname
800 {\M@f@ntn@meb@se}%
801 \else % if #1 is not in nfss
If the argument does not match a known font family, we have to load it our-
selves. First, we check that we are still in the document preamble, and if not,
we issue an error.
802 \ifx\@onlypreamble\@notprerr % if after \begin{document}
803 \M@FontShapesError
804 \else % if in preamble
If we are in the document preamble, we can still add information to the nfss.
We store the font family name in \M@f@ntn@me and print messages in the log
file. Then we declare the font family and call \M@fill@nfss@shapes to declare
all the shapes.
805 \ifcase\M@loader % are we using default font-loader?
806 \let\M@f@ntn@me\@tempa
807 \M@FontFamilyInfo\M@f@ntn@me
808 \DeclareFontFamily{TU}{\M@f@ntn@me}{}%
809 \M@fill@nfss@shapes{\M@f@ntn@me}{\M@otf@features}
810 {\@tempfeatures}%
If the engine is LuaTEX, we load a separate version of the font with mode=base
and script=math. We need to set the script because luaotfload processes
math information only for fonts with the script set to math, and we definitely
want that information loaded if present. Then we link the base-mode and
regular versions.
811 \ifdefined\directlua
812 \edef\M@f@ntn@meb@se{\M@f@ntn@me-base}%
813 \M@FontFamilyInfo\M@f@ntn@meb@se
814 \DeclareFontFamily{TU}{\M@f@ntn@meb@se}{}%
815 \M@fill@nfss@shapes{\M@f@ntn@meb@se}{\M@otf@features}
816 {\@tempfeatures;mode=base;script=math}%
817 \else
818 \let\M@f@ntn@meb@se\M@f@ntn@me
819 \fi
820 \or % are we using fontspec as font-loader?

30 Implementation Font Declaration

If the user requested fontspec as the font-loader, we pass the font name and
features to \fontspec_set_family:Nnn for loading and store the nfss family
name in \M@f@ntn@me. In LuaTEX, we request a separate base-mode version
by specifying Renderer=Base and Script=Math.
821 \@mathfontinfo{Passing \@tempbase\space
822 to fontspec for handling!}%
823 \csname fontspec_set_family:Nnn\endcsname\M@f@ntn@me
824 {\M@otf@features,\@tempfeatures}{\@tempbase}%
825 \ifdefined\directlua
826 \@mathfontinfo{Passing \@tempbase\space
827 with Renderer=Base to fontspec for handling!}%
828 \csname fontspec_set_family:Nnn\endcsname
829 \M@f@ntn@meb@se
830 {\M@otf@features,\@tempfeatures,%
831 Renderer=Base,Script=Math}
832 {\@tempbase}%
833 \else
834 \edef\M@f@ntn@meb@se{\M@f@ntn@me}%
835 \fi
836 \fi

Now link the base-mode family name and store the family names for future
reference.
837 \expandafter\xdef\csname\M@f@ntn@me-base\endcsname
838 {\M@f@ntn@meb@se}%
839 \expandafter\xdef\csname M@fontfamily@\@tempa\endcsname
840 {\M@f@ntn@me}%
841 \expandafter\xdef
842 \csname M@fontfamily@base@\@tempa\endcsname
843 {\M@f@ntn@meb@se}%
844 \fi
845 \fi
846 \fi

Finally, assign \M@count values to the font family(ies) if needed and save their
names in \M@families.
847 \ifcsname M@fontid@\M@f@ntn@me\endcsname % need new \M@count?
848 \else
849 \expandafter\xdef
850 \csname M@fontid@\M@f@ntn@me\endcsname{\the\M@count}%
851 \global\advance\M@count\@ne
852 \M@addto@families{\M@f@ntn@me}%
853 \fi

Parse Input Implementation 31

Same thing with the base-mode version of the font.
854 \ifcsname M@fontid@\M@f@ntn@meb@se\endcsname
855 \else
856 \expandafter\xdef
857 \csname M@fontid@\M@f@ntn@meb@se\endcsname{\the\M@count}%
858 \global\advance\M@count\@ne
859 \M@addto@families{\M@f@ntn@meb@se}%
860 \fi}

The font-loading commands should appear only in the preamble.
861 \@onlypreamble\M@declare@shape
862 \@onlypreamble\M@fill@nfss@shapes

5 Parse Input
This section provides the macros to parse the optional argument of \mathfont.
We have two parts to this section: error checking and parsing. For parsing,
we extract option and suboption information, and for error checking, we make
sure that both are valid. The command \M@check@opt accepts a macro con-
taining (what is hopefully) the text of a keyword-option. The macro defines
\@temperror to be an invalid option error and loops through all possible op-
tions. If the argument matches one of the correct possibilities, mathfont changes
\@temperror to \relax. The macro ends by calling \@temperror and issuing
an error if and only if the argument is invalid. If \M@check@opt finds a valid
keyword-option, it changes \if@optionpresent to true.
863 \def\M@check@opt#1{%\M@check@opt
864 \@optionpresentfalse % set switch to false by default
865 \ifx#1\@empty
866 \M@MissingOptionError
867 \else
868 \let\@temperror\M@InvalidOptionError % error by default
869 \@for\@j:=\M@keys\do{%
870 \ifx\@j#1%
871 \let\@temperror\@gobble % eliminate error
872 \@optionpresenttrue % set switch to true
873 \fi}%
874 \@temperror{#1}%
875 \fi}

Now we have to parse the optional argument of \mathfont. The macro
\M@parse@option carries out the following tasks:

32 Implementation Parse Input

1. Store the keyword in \@temp@opt and the suboption (if present) in
\@temp@sub. Set the boolean corresponding to the presence of a subop-
tion.

2. Check that \@temp@opt is actually a keyword and set the corresponding
boolean.

3. Convert \@temp@sub into nfss series and shape keywords.
We want to allow the user to specify options using an xkeyval-type syntax.
However, we do not need the full package; a slim few lines of code will suffice.
When \mathfont reads one segment of text from its optional argument, it
calls \M@parse@option〈text〉=\@nil. The \M@parse@option macro splits the
option and suboption by looking for the first =.
876 \def\M@strip@equals#1={#1}\M@strip@equals
877 \def\M@parse@option#1=#2\@nil{%\M@parse@option
878 \def\@temp@opt{#1}% % store option
879 \def\@temp@sub{#2}% % store suboption

After storing the option and suboption, check for errors. If the user specified a
suboption, \@temp@sub contains 〈suboption〉=, and we use \M@strip@equals
to get rid of the extra =. If the user does not specify a suboption, \@temp@sub
will be empty. After \M@parse@sub, the nfss series and shape codes for the
suboption (if provided) will be stored in \@tempseries and \@tempshape.
880 \M@check@opt\@temp@opt

At this point, we have three possibilities for \@temp@sub:
1. \@temp@sub is =, which means the user wrote something like ,〈keyword〉=,

and indicates a missing suboption.
2. \@temp@sub is empty, which indicates the user didn’t provide a subop-

tion, and we should use the default setting.
3. Otherwise, we try to extract series and shape information from

\@temp@sub.
We process \@temp@sub in that order. In case 3, we expect \@temp@sub to
look like 〈shape identifier〉=, so we have to strip the final = before processing.
881 \begingroup
882 \def\@tempa{=}%
883 \expandafter
884 \endgroup
885 \@suboptionpresentfalse % set switch to false by default
886 \ifx\@temp@sub\@tempa % if missing suboption
887 \M@MissingSuboptionError
888 \else

Parse Input Implementation 33

889 \ifx\@temp@sub\@empty % if no suboption provided
890 \else % if suboption provided, parse it
891 \@suboptionpresenttrue % set switch to true
892 \edef\@temp@sub{\expandafter\M@strip@equals\@temp@sub}%
893 \M@parse@sub\@temp@sub
894 \fi
895 \fi}

Now a macro to convert a shape identifier into nfss series and shape codes.
Here the #1 argument is a control sequence such as \@temp@sub. The first
thing we do is check whether #1 ends in an asterisk and set \M@base@ accord-
ingly. This boolean is true if we use base mode (if no asterisk) and false oth-
erwise (if asterisk). Note that \M@parse@sub should always be called when
\@suboptionpresent is set to true. If we encounter a bad shape identifier in
#1, we change \@suboptionpresent to false. (So it may be more accurate to
name the conditional something like \@suboptioncheck, but I’m keeping the
name as is to match \@optionpresent.)
896 \def\M@parse@sub#1{%\M@parse@sub
897 \expanded{\noexpand\in@*{#1}}%

If #1 contains an asterisk, we check that it is the final character in #1 and strip
it.
898 \ifin@
899 \begingroup
900 \expandafter\M@split@star#1\@nil
901 \ifx\@tempb\@empty
902 \expanded{\endgroup % first branch \endgroup
903 \def\noexpand#1{\@tempa}}%
904 \M@mode@true

If the asterisk is not the final character, that probably means something went
wrong. (But we’ll catch the problem later.)
905 \else
906 \endgroup % second branch \endgroup
907 \M@mode@false
908 \fi
909 \else
910 \M@mode@false
911 \fi

If the shape identifier contains a /, we interpret it as nfss identifiers and do not
check further, and otherwise, we check that the argument is one of upright,
italic, bold, or bolditalic. We also accept roman for backwards compati-
bility. We store nfss information in \@tempseries and \@tempshape.

34 Implementation Parse Input

912 \expanded{\noexpand\in@/{#1}}%
913 \ifin@
914 \expandafter\M@split@slash#1\@nil
915 \else

If the user wrote out a shape identifier, we have a bit more checking to do:
we have to check whether #1 is one of roman, upright, italic, bold, or
bolditalic. We let \@tempa be equal to different strings inside a group,
and for each possibility, if #1 is that string, we set \@tempseries and
\@tempshape to the correct definitions. We have multiple \endgroups for
the same \begingroup because they occur on different branches of the com-
pound conditional.
916 \begingroup
917 \def\@tempa{roman}%
918 \ifx#1\@tempa
919 \endgroup % first branch \endgroup

If \@temp@sub is roman, we change it to upright.
920 \def#1{upright}%
921 \let\@tempseries\mddefault
922 \let\@tempshape\shapedefault
923 \else
924 \def\@tempa{upright}%
925 \ifx#1\@tempa
926 \endgroup % second branch \endgroup
927 \let\@tempseries\mddefault
928 \let\@tempshape\shapedefault
929 \else
930 \def\@tempa{italic}%
931 \ifx#1\@tempa
932 \endgroup % third branch \endgroup
933 \let\@tempseries\mddefault
934 \let\@tempshape\itdefault
935 \else
936 \def\@tempa{bold}%
937 \ifx#1\@tempa
938 \endgroup % fourth branch \endgroup
939 \let\@tempseries\bfdefault
940 \let\@tempshape\shapedefault
941 \else
942 \def\@tempa{bolditalic}%
943 \ifx#1\@tempa
944 \endgroup % fifth branch \endgroup

Default Font Changes Implementation 35

945 \let\@tempseries\bfdefault
946 \let\@tempshape\itdefault
947 \else

Otherwise, the user specified a bad suboption.
948 \endgroup % sixth branch \endgroup
949 \@suboptionpresentfalse
950 \M@InvalidSuboptionError{#1}%
951 \fi
952 \fi
953 \fi
954 \fi
955 \fi
956 % no \fi at this level of indentation
957 \fi}

Helper macro to parse the shape identifier if it contains a / character.
958 \def\M@split@slash#1/#2\@nil{%\M@split@slash
959 \def\@tempseries{#1}%
960 \def\@tempshape{#2}}

Helper macros for processing asterisks in the shape identifier. The first macro
here should be called inside a group since it uses \@tempa and \@tempb and
therefore will mess with temporary assignments otherwise.
961 \def\M@split@star#1*#2\@nil{%\M@split@star
962 \def\@tempa{#1}%
963 \def\@tempb{#2}}
964 \def\M@strip@star#1*{#1}\M@strip@star

We code a general-purpose definition macro that defines its first argument to
be the second argument fully expanded and with spaces removed.
965 \long\def\edef@nospace#1#2{%
966 \edef#1{\expandafter\zap@space\expanded{#2} \@empty}}

Perhaps something that sets spaces to \catcode9 and then retokenizes #2
would be better, but I don’t think it matters very much.

6 Default Font Changes
This section documents default font changes. We have three main user-level
commands in this section: \mathfont, which makes changes for math mode;
\mainfont, which makes changes for horizontal mode; and \documentfont,
which calls both \mathfont and \mainfont. The \mainfont command is
straightforward: set \rmdefault to be the font family corresponding to the

36 Implementation Default Font Changes

user’s argument and, when necessary, call \selectfont to change the font fam-
ily in use. (So unlike \mathfont, \mainfont can result in font loading rather
than just font declaration.)

The \mathfont command serves as the primary font-changing command
for this package and is more complicated than \mainfont. This command is a
wrapper around \@mathfont, the internal command that does the actual font
changing, and when a user calls \mathfont, the \@mathfont macro carries out
the following tasks:

1. Call \M@newfont on the mandatory argument of \mathfont, and store
\M@count values.

2. Loop through the optional argument of \mathfont and determine nfss
series and shape codes from any suboptions using macros from the pre-
vious section.

3. On each iteration, check whether mathfont added a symbol font to the
nfss that uses the series and shape corresponding to the current subop-
tion (or the default series and shape if there is no suboption). If not, call
\DeclareSymbolFont to add the symbol font or raise a “Can’t declare
new font shapes after \begin{document}” error.

4. Call \M@〈keyword〉@set to actually change the font.
Each \M@〈keyword〉@set macro is a wrapper around \Umathcode declarations
and is defined in the last section of this document.

For a given 〈keyword〉, \M@fontinfo@〈keyword〉 stores the human-readable
name of the new default font for 〈keyword〉 as well as the nfss series and shape
identifiers. (This is the name in \@tempbase, not \M@f@ntn@me.) We use this
information for writing messages to the user. Additionally, \M@〈keyword〉shape
holds the series and shape pair for 〈keyword〉. If the user specified a subop-
tion, the contents of this macro come from the suboption via \M@parse@sub,
and if the user did not specify a suboption, the information comes from
\〈keyword〉default.

For a combination of 〈font family〉, 〈series〉, and 〈shape〉 identifiers, mathfont
calls the associated symbol font M〈count〉-〈series〉/〈shape〉, where 〈count〉
is the \M@count value associated to the 〈font family〉, i.e. the contents of
\M@fontid@〈font family〉. The 〈series〉 and 〈shape〉 values should be entries in
the nfss. For example, calls to \mathfont will often result symbol font names
like M0-m/n. Including a count value in the symbol font name serves two pur-
poses. First, it enables consistent formatting of symbol font names regardless
of underlying nfss family names. In particular, using the built-in fontloader
vs. fontspec will result in different family names for the same font face with the
same OpenType features, but the symbol font names will still match. Second,

Default Font Changes Implementation 37

it simplifies the symbol font names and makes them human readable regardless
of the underlying nfss family names, which may be complicated.

The last two user-level commands in this section are \mathconstantsfont
and \mathfontshapes. The first of these two commands only works in LuaTEX
and makes TEX use the math parameters from a given font when formatting
equations. Traditional TEX expects to see extra parameters in the font(s) in
\〈math style〉font2 and \〈math style〉font3, and it uses those parameters to
format equations. LuaTEX can pull these extra parameters from the fonts in
any math family, and \mathconstantsfont tells LuaTEX to do so for a given
font family. The command \mathfontshapes declares extra font shapes for
the nfss as well as extra symbol fonts. The purpose of this command is to
allow the user to declare symbol fonts in the document preamble for use after
\begin{document}.

We begin by coding \mainfont. This command is a wrapper around
\@mainfont.
967 \protected\def\mainfont{\@testopt{\@mainfont}{rm}}\mainfont

Now the internal \@mainfont command. This command doesn’t do anything
in math mode, so we include \@nomath. We check whether #1 is one of
rm, sf, tt, or empty. If not, we issue an error and change \@tempa to rm.
We use \@tempswa to check whether we are storing the font family name in
\〈type〉default macros.
968 \def\@mainfont[#1]#2{%\@mainfont
969 \@nomath\mainfont
970 \M@newfont{#2}%
971 \edef@nospace\@tempa{#1}%
972 \@tempswatrue
973 \def\@tempb{rm}%
974 \ifx\@tempa\@tempb
975 \else
976 \def\@tempb{sf}%
977 \ifx\@tempa\@tempb
978 \else
979 \def\@tempb{tt}%
980 \ifx\@tempa\@tempb
981 \else
982 \ifx\@tempa\@empty
983 \@tempswafalse
984 \else
985 \M@FamilyTypeError\@tempa
986 \def\@tempa{rm}%
987 \fi

38 Implementation Default Font Changes

988 \fi
989 \fi
990 \fi

Now close the group and save the font family in \〈#1〉default and change the
default family to #1.
991 \if@tempswa
992 \expandafter\let\csname\@tempa default\endcsname\M@f@ntn@me
993 \edef\familydefault{\expandafter\noexpand\familydefault
994 \csname\@tempa default\endcsname}
995 \fi

If the current font is not \nullfont or \M@f@ntn@me, select \M@f@ntn@me as
the font family.
996 \expandafter\ifx\the\font\nullfont
997 \else
998 \ifx\f@family\M@f@ntn@me
999 \else

1000 \fontfamily\M@f@ntn@me\selectfont
1001 \fi
1002 \fi}

Now we come to \mathfont. This macro is a wrapper around \@mathfont
that we use to check for an optional argument. The default argument is
\M@defaultkeys.
1003 \protected\def\mathfont{\@testopt{\@mathfont}{\M@defaultkeys}}

The internal font-changing command. We call \M@newfont on the mandatory
argument of \mathfont, which stores the nfss family name(s) in \M@f@ntn@me
and \M@f@ntn@meb@se. We check whether each family name corresponds to
a value of \M@newcount, and if not, we define it. Throughout the definition
of \mathfont, \@tempa stores the value of \M@count that corresponds to the
#1 font, and \@tempb stores the value of \M@count that corresponds to the #1
font in base mode.
1004 \def\@mathfont[#1]#2{%
1005 \wlog{}%
1006 \M@newfont{#2}%

Temporarily store values of \M@count.
1007 \edef\@tempa{\csname M@fontid@\M@f@ntn@me\endcsname}%
1008 \edef\@tempb{\csname M@fontid@\M@f@ntn@meb@se\endcsname}%

Expand, zap spaces from, and store the optional argument in \@tempc, and then
perform the loop. (At that point, we do not need \@tempc anymore.) We store
the current keyword-suboption pair in \@i and feed it to \M@parse@option.

Default Font Changes Implementation 39

1009 \edef@nospace\@tempc{#1}%
1010 \@for\@i:=\@tempc\do{%
1011 \expandafter\M@parse@option\@i=\@nil
1012 \if@optionpresent

If the user did not specify a suboption, parse the default option, and use that
instead. We set \@suboptionpresent to true before calling \M@parse@sub
so that we can check whether the default shape identifier is valid. If
\@suboptionpresent is false after \M@parse@sub, we use m/n as the se-
ries/shape pair.
1013 \if@suboptionpresent
1014 \else
1015 \@suboptionpresenttrue
1016 \expandafter\M@parse@sub
1017 \csname\@temp@opt default\endcsname
1018 \if@suboptionpresent
1019 \else
1020 \let\@tempseries\mddefault
1021 \let\@tempshape\shapedefault
1022 \fi
1023 \fi

Now store the series and shape in \M@〈option〉shape.
1024 \expandafter\edef\csname M@\@temp@opt shape\endcsname{%
1025 \@tempseries/\@tempshape}%

At this point we have the information we need to declare the symbol
font, namely the nfss family (\M@f@ntn@me or \M@f@ntn@meb@se), series
(\@tempseries), and shape (\@tempshape). We check if the symbol font
we want to use is defined, and if not, we define it. We have two cases to con-
sider: if \M@base@ is true, we use the base-mode version of the font (corre-
sponding to information in \@tempb and \M@f@ntn@meb@se), and if \M@base@
is false, we use the default-mode version of the font (corresponding to informa-
tion in \@tempa and \M@f@ntn@me). We let \@tempc be the count value in use
for the current iteration of the loop.
1026 \ifM@mode@ % if default/node mode
1027 \let\@tempc\@tempa
1028 \ifcsname symM\@tempa-\@tempseries/\@tempshape\endcsname

If the symbol font has not been declared, check that we are still in the pream-
ble. If no, issue an error message.
1029 \else
1030 \ifx\@onlypreamble\@notprerr
1031 \M@FontShapesError

40 Implementation Default Font Changes

Otherwise, we declare the symbol font.
1032 \else
1033 \M@SymbolFontInfo{\M@f@ntn@me}
1034 {\@tempseries}{\@tempshape}%
1035 \M@addto@symbolfonts
1036 {M\@tempa-\@tempseries/\@tempshape}
1037 {\@tempbase}{\@tempseries}{\@tempshape}%
1038 \DeclareSymbolFont
1039 {M\@tempa-\@tempseries/\@tempshape}{TU}
1040 {\M@f@ntn@me}{\@tempseries}{\@tempshape}%
1041 \fi
1042 \fi

Now do the same thing for default (node) mode.
1043 \else % if default/node mode
1044 \let\@tempc\@tempb
1045 \ifcsname
1046 symM\@tempb-\@tempseries/\@tempshape\endcsname
1047 \else
1048 \ifx\@onlypreamble\@notprerr
1049 \M@FontShapesError

The only difference is we use different font family and symbol font names.
1050 \else
1051 \M@SymbolFontInfo{\M@f@ntn@meb@se}
1052 {\@tempseries}{\@tempshape}%
1053 \M@addto@symbolfonts
1054 {M\@tempb-\@tempseries/\@tempshape}
1055 {\@tempbase(base)}{\@tempseries}
1056 {\@tempshape}%
1057 \DeclareSymbolFont
1058 {M\@tempb-\@tempseries/\@tempshape}{TU}
1059 {\M@f@ntn@meb@se}{\@tempseries}{\@tempshape}%
1060 \fi
1061 \fi
1062 \fi

We store the new font information so we can write it to the log file
\AtBeginDocument and send an informational message to the user.
1063 \expandafter\edef
1064 \csname M@fontinfo@\@temp@opt\endcsname{%
1065 {\@tempbase}{\@tempseries}{\@tempshape}}%
1066 \M@FontChangeInfo{\@temp@opt}{\@tempbase}%

Default Font Changes Implementation 41

We have extra information to keep track of when \@temp@opt is bb, cal, frak,
bcal, or bfrak because then mathfont effectively creates a new local font-change
command. We make sure that information gets added to \M@localfonts (a
macro that tracks the font names used for local font changes).
1067 \@tfor\@j:={bb}{cal}{frak}{bcal}{bfrak}\do{%
1068 \ifx\@temp@opt\@j
1069 \M@addto@localfonts{\expandafter\string
1070 \csname math\@temp@opt\endcsname}
1071 {\@tempbase}{\@tempseries}{\@tempshape}%
1072 \@break@tfor
1073 \fi}%

And now the magic happens!
1074 \csname M@\@temp@opt @set\endcsname % set default font
1075 \csname M@\@temp@opt true\endcsname % set switch to true
1076 \fi}%

Display concluding messages for the user.
1077 \ifx\@tempa\@empty
1078 \wlog{The \string\mathfont\space command on line
1079 \the\inputlineno\space did not change the font
1080 for any characters!}%
1081 \else
1082 \typeout{:: mathfont :: Using font \@tempbase\space
1083 on line \the\inputlineno.}%
1084 \fi
1085 \wlog{}}

Using \documentfont calls \mainfont, \mathfont, and \mathconstantsfont.
It also calls \mathfontcommands if the user is still in the preamble. The op-
tional argument gets fed directly to \@mainfont.
1086 \protected\def\documentfont{\@testopt{\@documentfont}{rm}}\documentfont

The internal command.
1087 \def\@documentfont[#1]#2{%\@documentfont
1088 \@mainfont[#1]{#2}%
1089 \mathfont{#2}%
1090 \ifdefined\directlua
1091 \mathconstantsfont{#2}%
1092 \fi
1093 \ifx\@onlypreamble\@notprerr
1094 \else
1095 \mathfontcommands{#2}%
1096 \fi}

42 Implementation Default Font Changes

For backwards compatibility, we make \setfont expand to \documentfont
(plus a warning message).
1097 \protected\def\setfont{%\setfont
1098 \PackageWarningNoLine{mathfont}
1099 {Using \string\setfont\space is deprecated; I\MessageBreak
1100 replaced it with \string\documentfont}%
1101 \documentfont}

The macro \mathconstantsfont chooses a font for setting math parameters.
It is intended for LuaTEX when mathfont can adjust text fonts and add a Math-
Constants table. It issues a warning if called without font adjustments enabled.
First, we check for an optional argument, which should be a shape identifier.
1102 \let\M@SetMathConstants\relax\M@SetMathConstant
1103 \protected\def\mathconstantsfont{%\mathconstantsfont
1104 \@testopt{\@mathconstantsfont}{upright}}

The internal command that does the processing. We begin by feeding the #2
argument to \M@newfont and parsing the #1 argument.
1105 \def\@mathconstantsfont[#1]#2{%\@mathconstantsfon
1106 \M@newfont{#2}%
1107 \edef@nospace\@tempa{#1}%
1108 \M@parse@sub\@tempa

Store the family, series, and shape information. Because it doesn’t make sense
to use a font that is loaded with node mode, we force use of the base-mode
version of the font regardless of the value of \ifM@mode@.
1109 \let\m@th@const@nts@f@mily\M@f@ntn@meb@se\m@th@const@nts@f@
1110 \let\m@th@const@nts@series\@tempseries\m@th@const@nts@se
1111 \let\m@th@const@nts@sh@pe\@tempshape\m@th@const@nts@sh

Temporarily store the value of \M@count.
1112 \edef\@tempa{\csname M@fontid@\m@th@const@nts@f@mily\endcsname}%

Now check whether the desired symbol font has been declared. If no, we de-
clare it or issue an error.
1113 \ifcsname symM\@tempa-\@tempseries/\@tempshape\endcsname
1114 \else
1115 \ifx\@onlypreamble\@notprerr
1116 \M@FontShapesError
1117 \else

Declare the symbol font.
1118 \M@SymbolFontInfo{\m@th@const@nts@f@mily}
1119 {\@tempseries}{\@tempshape}%
1120 \M@addto@symbolfonts

Default Font Changes Implementation 43

1121 {M\@tempb-\@tempseries/\@tempshape}
1122 {\@tempbase(base)}{\@tempseries}{\@tempshape}%
1123 \DeclareSymbolFont
1124 {M\@tempa-\@tempseries/\@tempshape}{TU}
1125 {\m@th@const@nts@f@mily}{\@tempseries}{\@tempshape}%
1126 \fi
1127 \fi
We come to the tricky problem of making sure to use the correct MathCon-
stants table. LuaTEX automatically initializes all math parameters based on
the most recent \textfont, etc. assignment, so we want to tell LATEX to reas-
sign whatever font we’re using to the correct math family right after we finish
assigning other math fonts. This is possible, but the implementation is super
hacky. When LATEX enters math mode, it checks whether it needs to redo any
math family assignments, typically because of a change in font size, and if so,
it calls \getanddefine@fonts repeatedly to append \textfont, etc. assign-
ments onto the macro \math@fonts. Usually \math@fonts is empty because
this process always happens inside a group, so we can hook into the code by
defining \math@font to be \aftergroup〈extra code〉. In this case, the extra
code will be another call to \getanddefine@fonts.

We initialize \M@SetMathConstants to be \relax, and we define it the
first time the user calls \mathconstantsfont. When that happens, mathfont
begins by calling \getanddefine@fonts inside a group and uses as arguments
the upright face of the font corresponding to #1. That puts the \textfont,
\scriptfont, and \scriptscriptfont assignments corresponding to #1 in-
side \math@fonts. Then we call \math@fonts, and to avoid an infinite loop,
we gobble the \aftergroup\M@SetMathConstants macros that mathfont has
inserted at the start of \math@fonts. Setting \globaldefs to 1 makes the
\textfont, etc. assignments from \getanddefine@fonts global when we call
\math@fonts.
1128 \ifx\M@SetMathConstants\relax
1129 \protected\def\M@SetMathConstants{%\M@SetMathConstant
1130 \begingroup
1131 \escapechar\m@ne
1132 \expandafter\getanddefine@fonts
1133 \csname symM%
1134 \csname M@fontid@\m@th@const@nts@f@mily\endcsname
1135 -\m@th@const@nts@series/\m@th@const@nts@sh@pe
1136 \expandafter
1137 \endcsname % expands to e.g. \symM0-m/n
1138 \csname TU/\m@th@const@nts@f@mily
1139 /\m@th@const@nts@series

44 Implementation Default Font Changes

1140 /\m@th@const@nts@sh@pe
1141 \endcsname % expands to \TU/<family>/<series>/<shape>
1142 \globaldefs\@ne
1143 \expandafter\@gobbletwo\math@fonts % avoid infinite loop
1144 \endgroup}%
1145 \fi
1146 \ifM@adjust@font
1147 \else
1148 \M@LuaTeXOnlyWarning\mathconstantsfont
1149 \fi}
1150 \def\math@fonts{\aftergroup\M@SetMathConstants}\math@fonts

Now \mathfontshapes. This macro adds extra font shapes to the nfss and
defines symbol fonts. Its purpose is to allow the user to easily declare symbol
fonts in the preamble without using them right away. The user-level command
is a wrapper around \@mathfontshapes.
1151 \protected\def\mathfontshapes{\@testopt{\@mathfontshapes}\mathfontshapes
1152 {upright,upright*,italic,bold}}

For the internal command, we feed the font name to \M@newfont and then
loop through the optional argument. For each shape identifier in the optional
argument, we parse it and then use it to declare a symbol font. This macro is
very similar to parts of \@mathfont.
1153 \protected\def\@mathfontshapes[#1]#2{%\@mathfontshapes
1154 \wlog{}%
1155 \M@newfont{#2}%

As in \@mathfont, we temporarily store values of \M@count.
1156 \edef\@tempa{\csname M@fontid@\M@f@ntn@me\endcsname}%
1157 \edef\@tempb{\csname M@fontid@\M@f@ntn@meb@se\endcsname}%

Expand, zap spaces, and loop through the optional argument.
1158 \edef@nospace\@tempc{#1}%
1159 \@for\@i:=\@tempc\do{%
1160 \@suboptionpresenttrue
1161 \M@parse@sub\@i

Then check whether the symbol font exists and if not, declare it. We start with
default/node mode. We print a message in the log file, add the information to
\M@symbolfonts, and call \DeclareSymbolFont.
1162 \if@suboptionpresent
1163 \ifM@mode@ % if default/node mode
1164 \ifcsname symM\@tempa-\@tempseries/\@tempshape\endcsname
1165 \else
1166 \M@SymbolFontInfo{\M@f@ntn@me}

Local Font Changes Implementation 45

1167 {\@tempseries}{\@tempshape}%
1168 \M@addto@symbolfonts
1169 {M\@tempa-\@tempseries/\@tempshape}
1170 {\@tempbase}{\@tempseries}{\@tempshape}%
1171 \DeclareSymbolFont
1172 {M\@tempa-\@tempseries/\@tempshape}{TU}
1173 {\M@f@ntn@me}{\@tempseries}{\@tempshape}%
1174 \fi

And do the same thing for base mode.
1175 \else % if base mode
1176 \ifcsname symM\@tempb-\@tempseries/\@tempshape\endcsname
1177 \else
1178 \M@SymbolFontInfo{\M@f@ntn@meb@se}
1179 {\@tempseries}{\@tempshape}%
1180 \M@addto@symbolfonts
1181 {M\@tempb-\@tempseries/\@tempshape}
1182 {\@tempbase(base)}{\@tempseries}{\@tempshape}%
1183 \DeclareSymbolFont
1184 {M\@tempb-\@tempseries/\@tempshape}{TU}
1185 {\M@f@ntn@meb@se}{\@tempseries}{\@tempshape}%
1186 \fi
1187 \fi
1188 \fi}}
1189 \@onlypreamble\mathfontshapes
1190 \@onlypreamble\@mathfontshapes

7 Local Font Changes
This section deals with local font changes. The main user-level macro in
this section is \newmathfontcommand, which creates macros that change
the font for math alphabet characters and is basically a wrapper around
\DeclareMathAlphabet. Other user-level commands are a special case of this
one.

We begin with two helper macros. First is \M@check@csarg, which accepts
two arguments and handles some error checking. The #1 argument is a user-
level command that we use in error messaging, and #2 should be a single control
sequence. The way \M@check@csarg scans the following tokens is a bit tricky:
(1) check the length of the argument (number of tokens) by seeing if \@gobble
eats it completely; and (2) check that the argument is a control sequence. If
the user specifies an argument of the form {..}, i.e. extra text inside braces,

46 Implementation Local Font Changes

the \ifcat will catch it and issue an error. If \M@check@csarg likes the input,
it sets \ifM@arg@good to true, and otherwise, it sets \ifM@arg@good to false.
1191 \def\M@check@csarg#1#2{%\M@check@csarg
1192 \expandafter\ifx\expandafter\@nnil\@gobble#2\@nnil % good
1193 \ifcat\relax\noexpand#2 % good
1194 \M@arg@goodtrue
1195 \else % if #2 not a control sequence
1196 \M@MissingCSError#1{\detokenize{#2}}
1197 \M@arg@goodfalse
1198 \fi
1199 \else % if #2 is multiple tokens
1200 \M@MissingCSError#1{\detokenize{#2}}
1201 \M@arg@goodfalse
1202 \fi}

The macro \M@checkspecials accepts a control sequence as its #1 argument
and a font name as its #2 argument, and it checks whether #1 is \mathbb or
a related command. If yes, we assume that the user is using some variant of
\newmathrm instead of, for example, \mathfont[bb], so we do some processing
analogous to what happens inside \@mathfont.
1203 \def\M@checkspecials#1#2{%\M@checkspecials
1204 \in@#1{\mathbb\mathcal\mathfrak\mathbcal\mathbfrak}
1205 \ifin@

We set \escapechar to −1 and use \@gobblefour to remove the \math from
the start of #1. The string of \expandafters hits the \string inside \@tempa,
and then the \edef expands the \@gobblefour. We are left with just the
keyword inside \@tempa.
1206 \begingroup
1207 \escapechar\m@ne
1208 \expandafter
1209 \endgroup
1210 \expandafter\edef\expandafter\@tempa\expandafter{%
1211 \expandafter\@gobblefour\string#1}%

Then write a message to the log file and set the corresponding boolean to true.
1212 \@mathfontinfo{Interpreting your new macro \string#1\space
1213 as \@tempa\space chars.}%
1214 \@mathfontinfo{Setting \expandafter\string
1215 \csname ifM@\@tempa\endcsname\space to true.}%
1216 \csname M@\@tempa true\endcsname

And store the information to write to the log file \AtBeginDocument.
1217 \expandafter\edef\csname M@fontinfo@\@tempa\endcsname{%

Local Font Changes Implementation 47

1218 {\@tempbase}{\@tempseries}{\@tempshape}}%
1219 \expandafter\edef\csname M@\@tempa shape\endcsname
1220 {\@tempseries/\@tempshape}%
1221 \fi}

Now declare the math alphabet. This macro first checks that its #1 argument
is a control sequence using \M@check@csarg. If yes, load the #2 argument with
\M@newfont, call \DeclareMathAlphabet, and check whether #1 is \mathbb
or a related command. Finally, add #1 and #2 to the list of local font-change
commands.
1222 \protected\def\newmathfontcommand#1#2#3#4{%\newmathfontcomman
1223 \M@check@csarg\newmathfontcommand{#1}%
1224 \ifM@arg@good
1225 \M@newfont{#2}
1226 \M@NewFontCommandInfo{#1}{\M@f@ntn@meb@se}{#3}{#4}
1227 \DeclareMathAlphabet{#1}{TU}{\M@f@ntn@meb@se}{#3}{#4}
1228 \M@checkspecials{#1}{\@tempbase}
1229 \M@addto@localfonts{\string#1}{\@tempbase}{#3}{#4}
1230 \fi}
1231 \@onlypreamble\newmathfontcommand

Then define macros that create local font-changing commands with default se-
ries and shape information. Because they’re all similar, we metacode them.
We define the commands themselves with \define@newmath@cmd. The argu-
ment structure is:

• #1—\newmath〈key〉 macro name
• #2—font series
• #3—font shape
• ##1—the user’s control sequence
• ##2—the user’s font information (family name)

We feed ##1, ##2, #2, and #3 to \newmathfontcommand, and we load ##2 with
\M@newfont. Each \newmath〈key〉 macro will check its first argument using
\M@check@csarg and then call \newmathfontcommand on both of its two argu-
ments. We store the list of \newmath〈key〉 commands that we want to define
with their series and shape information in \M@default@newmath@cmds, and we
loop through it with \@for.
1232 \def\M@define@newmath@cmd#1#2#3{%\M@define@newmath@
1233 \protected\def#1##1##2{%
1234 \M@check@csarg{#1}{##1}\M@check@csarg
1235 \newmathfontcommand{##1}{##2}{#2}{#3}}}
1236 \def\M@default@newmath@cmds{%\M@default@newmath

48 Implementation Miscellaneous

1237 \newmathrm{\mddefault}{\shapedefault},%
1238 \newmathit{\mddefault}{\itdefault},%
1239 \newmathbf{\bfdefault}{\shapedefault},%
1240 \newmathbfit{\bfdefault}{\itdefault},%
1241 \newmathsc{\mddefault}{\scdefault},%
1242 \newmathscit{\mddefault}{\scdefault\itdefault},%
1243 \newmathbfsc{\bfdefault}{\scdefault},%
1244 \newmathbfscit{\bfdefault}{\scdefault\itdefault}}
1245 \@for\@i:=\M@default@newmath@cmds\do{%
1246 \expandafter\M@define@newmath@cmd\@i}
1247 \@onlypreamble\newmathrm
1248 \@onlypreamble\newmathit
1249 \@onlypreamble\newmathbf
1250 \@onlypreamble\newmathbfit
1251 \@onlypreamble\newmathsc
1252 \@onlypreamble\newmathscit
1253 \@onlypreamble\newmathbfsc
1254 \@onlypreamble\newmathbfscit
1255 \@onlypreamble\M@define@newmath@cmd
1256 \let\M@default@newmath@cmds\@undefined\M@default@newmath

The command \mathfontcommands sets all the default local font-change com-
mands at once.
1257 \protected\def\mathfontcommands#1{%\mathfontcommands
1258 \newmathrm\mathrm{#1}
1259 \newmathit\mathit{#1}
1260 \newmathbf\mathbf{#1}
1261 \newmathbfit\mathbfit{#1}
1262 \newmathsc\mathsc{#1}
1263 \newmathscit\mathscit{#1}
1264 \newmathbfsc\mathbfsc{#1}
1265 \newmathbfscit\mathbfscit{#1}}
1266 \@onlypreamble\mathfontcommands

8 Miscellaneous
We begin this section with the user-level macros that provide information for
Lua-based font adjustments. We define a macro \M@check@int to determine
if #1 is a nonnegative integer and set the switch \M@arg@good accordingly.
Checking happens in three stages inside a group. Immediately after the group,
we will check whether \@tempb is \@empty, so to force the switch to be false,

Miscellaneous Implementation 49

we sometimes set \@tempb to \@nnil inside the group. The first stage is a
check whether #1 is empty.
1267 \ifM@adjust@font
1268 \def\M@check@int#1{%\M@check@int
1269 \begingroup
1270 \def\@tempa{#1}%
1271 \ifx\@tempa\@empty
1272 \let\@tempb\@nnil

If #1 is not empty, we check whether it is a nonnegative integer. If #1 is a
nonnegative integer, the entirety of 0#1 becomes the value of \count@, and
\@tempb will end up empty. Otherwise, \@tempb will be nonempty. The use
of \afterassignment here is inspired by \@defaultunits from the kernel.
1273 \else
1274 \def\@tempa##1\relax\@nil{\def\@tempb{##1}}%
1275 \afterassignment\@tempa
1276 \count@=0#1\relax\@nil

If \@tempb is nonempty, we handle the case where #1 is an octal or hexadeci-
mal integer. We use \if to check whether the first character of #1 is ' or ",
and if yes, we replace it with '0 or "0 and repeat the same check with \@tempb.
The \relax prevents \if from scanning past #1 if #1 expands to something
empty. The \remove@to@nnil gobbles everything in #1 (except the ' or ",
which is eaten by \if) when the test is successful, and it gobbles the \@nnil
after the \else when the test is unsuccessful.
1277 \ifx\@tempb\@empty
1278 \else
1279 \expandafter\remove@to@nnil\if'#1\relax
1280 \@nnil
1281 \afterassignment\@tempa
1282 \count@'0\expandafter\@gobble
1283 \expanded{#1}\relax\@nil
1284 \else
1285 \@nnil
1286 \expandafter\remove@to@nnil\if"#1\relax
1287 \@nnil
1288 \afterassignment\@tempa
1289 \count@"0\expandafter\@gobble
1290 \expanded{#1}\relax\@nil

If #1 is neither octal nor hexadecimal, we check whether it starts with \numexpr.
This case is good, so we set \@tempb to \@empty.
1291 \else

50 Implementation Miscellaneous

1292 \@nnil
1293 \expandafter\remove@to@nnil\ifx\numexpr#1\@nnil
1294 \let\@tempb\@empty

The last possibility is if #1 has the form `〈character〉. To allow for the possi-
bility of, for example, `\%, we check whether #1 begins with ` and contains
two tokens. This is not foolproof, and sufficiently bad input, such as `\relax,
will break this macro. (So don’t do that.) Checking the catcode of the second
token in #1 doesn’t seem worth the effort. If #1 is a single ` character, then
\@gobbletwo will eat #1 and \@nnil, so the \ifx will compare \@nnil and
\relax.
1295 \else
1296 \@nnil
1297 \expandafter\remove@to@nnil\if`#1\relax
1298 \@nnil
1299 \expandafter\ifx\expandafter\@nnil
1300 \@gobbletwo#1\@nnil\relax
1301 \let\@tempb\@empty
1302 \else
1303 \let\@tempb\@nnil
1304 \fi
1305 \else
1306 \@nnil
1307 \let\@tempb\@nnil
1308 \fi
1309 \fi
1310 \fi
1311 \fi
1312 \fi
1313 \fi
1314 \expandafter
1315 \endgroup
1316 \ifx\@tempb\@empty
1317 \M@arg@goodtrue
1318 \else
1319 \M@arg@goodfalse
1320 \fi}

Making the \rulethicknessfactor, etc. counts accessible to the user means
that we don’t need \RuleThicknessFactor and friends anymore, but we keep
them for backwards compatibility and convenience. Each of these commands
uses \M@check@int to check its argument, then calls the appropriate other
commands.

Miscellaneous Implementation 51

1321 \protected\def\RuleThicknessFactor#1{%\RuleThicknessFact
1322 \M@check@int{#1}%
1323 \ifM@arg@good
1324 \rulethicknessfactor=#1\relax
1325 \else
1326 \M@BadIntegerError\RuleThicknessFactor{\detokenize{#1}}%
1327 \fi}
1328 \protected\def\SurdHorizontalFactor#1{%\SurdHorizontalFac
1329 \M@check@int{#1}%
1330 \ifM@arg@good
1331 \hsurdfactor=#1\relax
1332 \else
1333 \M@BadIntegerError\SurdHorizontalFactor{\detokenize{#1}}%
1334 \fi}
1335 \protected\def\SurdVerticalFactor#1{%\SurdVerticalFacto
1336 \M@check@int{#1}%
1337 \ifM@arg@good
1338 \vsurdfactor=#1\relax
1339 \else
1340 \M@BadIntegerError\SurdVerticalFactor{\detokenize{#1}}%
1341 \fi}

For the integral italic factor, we input the information to \charmline
1342 \protected\def\IntegralItalicFactor#1{%\IntegralItalicFac
1343 \M@check@int{#1}%
1344 \ifM@arg@good
1345 \charmline{0x222B * * * * * * * * * *
1346 * * * * * * * * * *
1347 * * * * * * * * * *
1348 * * #1}%
1349 \else
1350 \M@BadIntegerError\IntegralItalicFactor{\detokenize{#1}}%
1351 \fi}

If automatic font adjustments are disabled, we should also disable the related
user-level commands. In this case, each of the font-adjustment macros expands
to raise an \M@NoFontAdjustError and gobble its argument.
1352 \else
1353 \@tfor\@i:=\RuleThicknessFactor\IntegralItalicFactor
1354 \SurdHorizontalFactor\SurdVerticalFactor\charmline
1355 \charmfile\CharmLine\CharmFile\CharmInfo\CharmType
1356 \do{%
1357 \protected\expandafter\edef\@i{%

52 Implementation Miscellaneous

1358 \noexpand\M@NoFontAdjustError\expandafter\noexpand\@i
1359 \noexpand\@gobble}}
1360 \protected\def\charminfo{\M@NoFontAdjustError\charminfo\charminfo
1361 \begingroup
1362 \afterassignment\endgroup
1363 \count@}
1364 \protected\def\charmtype{\M@NoFontAdjustError\charmtype\charmtype
1365 \begingroup
1366 \afterassignment\endgroup
1367 \count@}
1368 \fi

These commands should appear in the preamble only.
1369 \@onlypreamble\charmline
1370 \@onlypreamble\charmfile
1371 \@onlypreamble\CharmLine
1372 \@onlypreamble\CharmFile
1373 \@onlypreamble\RuleThicknessFactor
1374 \@onlypreamble\IntegralItalicFactor
1375 \@onlypreamble\SurdHorizontalFactor
1376 \@onlypreamble\SurdVerticalFactor

We use the next three macros in defining \simeq and \cong. The construc-
tion is clunky and needs the intermediate macro \st@ck@fl@trel because
\mathchoice is a bit of an odd macro. It feels like it should be expandable,
but it isn’t. Instead, it fully typesets each of its four arguments and then takes
the one corresponding to the correct style. This is due to fundamental aspects
of how TEX processes math-mode material.
1377 \protected\gdef\clap#1{\hb@xt@\z@{\hss#1\hss}}
1378 \protected\def\stack@flatrel#1#2{\expandafter\stack@flatrel
1379 \st@ck@fl@trel\expandafter#1\@firstofone#2}
1380 \protected\def\st@ck@fl@trel#1#2#3{%\st@ck@fl@trel
1381 {\setbox0\hbox{$#1#2\m@th$}% contains \mathrel symbol
1382 \setbox1\hbox{$#1#3\m@th$}% gets raised over \box0
1383 \if\wd0>\wd1\relax
1384 \hb@xt@\wd0{%
1385 \hfil
1386 \clap{\raise0.7\ht0\box1}%
1387 \clap{\box0}\hfil}%
1388 \else
1389 \hb@xt@\wd1{%
1390 \hfil
1391 \clap{\raise0.7\ht0\box1}%

Miscellaneous Implementation 53

1392 \clap{\box0}\hfil}%
1393 \fi}}

Some fonts do not contain characters that mathfont can declare as math sym-
bols. We want to make sure that if this happens, TEX prints a message in the
log file and terminal.
1394 \ifnum\tracinglostchars<\tw@
1395 \tracinglostchars\tw@
1396 \fi

We \typeout a message about local font-change commands.
1397 \AtBeginDocument{%
1398 \ifcase\M@num@localfonts
1399 \or
1400 \def\@tempa#1#2#3\@nil{#2}
1401 \wlog{}
1402 \typeout{:: mathfont :: Using
1403 \expandafter\@tempa\M@localfonts\@nil\space
1404 for local font changes.}
1405 \else
1406 \wlog{}
1407 \typeout{:: mathfont :: Using \the\M@num@localfonts\space
1408 fonts for local font changes.}
1409 \fi}

A helper macro for printing messages \AtBeginDocument. This macro adds
characters from #1 into \@tempa until the length of \@tempa, as measured
by \count@ becomes #2 − 2. If \@tempa has too many characters to fit,
\M@addtab@count@tempa instead ends \@tempa with an ellipsis. Then the
macro appends spaces to the end of \@tempa until it is #2 characters long,
again measured using \count@.
1410 \def\M@addtab@count@tempa#1#2{%
1411 \let\@tempb\@empty
1412 \@tempcntb\z@
1413 \@tfor\@i:=#1\do{%
1414 \ifnum\count@=\numexpr#2 - 5\relax
1415 \edef\@tempb{\@tempb\@i}
1416 \advance\@tempcntb\@ne
1417 \else
1418 \edef\@tempa{\@tempa\@i}
1419 \advance\count@\@ne
1420 \fi}
1421 \ifnum\@tempcntb<4\relax
1422 \edef\@tempa{\@tempa\@tempb}

54 Implementation Miscellaneous

1423 \advance\count@\@tempcntb
1424 \else
1425 \edef\@tempa{\@tempa...}
1426 \advance\count@\thr@@
1427 \fi
1428 \@whilenum\count@<#2\do{%
1429 \edef\@tempa{\@tempa\space}
1430 \advance\count@\@ne}}

Write to the log file \AtBeginDocument all font changes carried out by
mathfont. The command \M@fontinfo@begin accepts accepts a keyword as
its #1 argument and prints a message on the log file showing whether mathfont
set a default font for that keyword and, if yes, the name, series, and shape for
that font.
1431 \def\M@fontinfo@begin#1{%\M@fontinfo@begin
1432 \expandafter\ifx % next lines are two cs to be compared
1433 \csname ifM@#1\expandafter\endcsname
1434 \csname iftrue\endcsname
1435 \expanded{\noexpand\M@fontinfo@begin@{#1}
1436 \csname M@fontinfo@#1\endcsname}
1437 \else
1438 \bgroup
1439 \let\@tempa\@empty
1440 \count@\z@
1441 \M@addtab@count@tempa{#1}{35}
1442 \M@addtab@count@tempa{No\space change}{78}
1443 \wlog{\@tempa}
1444 \egroup
1445 \fi}

Helper macro that handles printing the message. The four arguments appear
sequentially on the same line in the log file: #1 is the keyword, #2 is the font
name, #3 is the series, and #4 is the shape. We allocate 18, 30, 15, and 15
characters respectively, for a total of 78 characters. The default width of the
log file is 80 characters, so we should fit everything on one line that way.
1446 \def\M@fontinfo@begin@#1#2#3#4{%\M@fontinfo@begin@
1447 \bgroup
1448 \let\@tempa\@empty
1449 \count@\z@
1450 \M@addtab@count@tempa{#1}{18}
1451 \M@addtab@count@tempa{font:\space#2}{48}
1452 \M@addtab@count@tempa{series:\space#3}{63}
1453 \M@addtab@count@tempa{shape:\space#4}{78}

Miscellaneous Implementation 55

And print the message.
1454 \wlog{\@tempa}
1455 \egroup}

The macro \M@localfonts@begin does the same thing except for the local
font-change commands.
1456 \let\M@localfonts@begin\M@fontinfo@begin@\M@localfonts@begi

And for symbol fonts declared.
1457 \let\M@symbolfonts@begin\M@fontinfo@begin@\M@symbolfonts@beg

The command for font families is different because we only have two pieces of
information to display.
1458 \def\M@families@begin#1{%\M@families@begin
1459 \bgroup
1460 \let\@tempa\@empty
1461 \count@\z@
1462 \expanded{%
1463 \noexpand\M@addtab@count@tempa
1464 {\csname M@fontid@#1\endcsname}{5}
1465 \noexpand\M@addtab@count@tempa{#1}{78}}
1466 \wlog{\@tempa}
1467 \egroup}

Now print the messages. We start with the font families that mathfont uses.
We don’t need to store a list of font families in \M@families because we can
simply increment the fontid count until we reach a value that is large enough
to not have a corresponding font.
1468 \AtBeginDocument{%
1469 \wlog{^^J------------------ Changes made by mathfont
1470 in the preamble ------------------}
1471 \wlog{}
1472 \wlog{**********************^^J%
1473 * Font families used *^^J%
1474 **********************}
1475 \ifx\M@families\@empty
1476 \wlog{No font families declared by mathfont.}
1477 \else
1478 \@for\@i:=\M@families\do{%
1479 \expandafter\M@families@begin\expandafter{\@i}}
1480 \fi
1481 \wlog{}

Same thing for symbol fonts.
1482 \wlog{*************************^^J%

56 Implementation Miscellaneous

1483 * Symbol fonts declared *^^J%
1484 *************************}
1485 \ifx\M@symbolfonts\@empty
1486 \wlog{No symbol fonts declared by mathfont.}
1487 \else
1488 \@for\@i:=\M@symbolfonts\do{%
1489 \expandafter\M@symbolfonts@begin\@i}
1490 \fi
1491 \wlog{}

Character keywords.
1492 \wlog{************^^J%
1493 * Keywords *^^J%
1494 ************}
1495 \@for\@i:=\M@keys\do{%
1496 \expandafter\M@fontinfo@begin\expandafter{\@i}}
1497 \wlog{}

And information in the log file about local font-change commands.
1498 \wlog{******************************^^J%
1499 * Local font-change commands *^^J%
1500 ******************************}
1501 \ifnum\M@num@localfonts=\z@
1502 \wlog{No local font change commands declared.}
1503 \else
1504 \@for\@j:=\M@localfonts\do{%
1505 \expandafter\M@localfonts@begin\@j}
1506 \fi
1507 \wlog{}
1508 \wlog{------------------------------- End of changes
1509 -------------------------------}
1510 \wlog{}}

Warn the user about possible problems with a multi-word optional package
argument in X ETEX.
1511 \ifdefined\XeTeXrevision
1512 \ifM@font@loaded
1513 \AtEndOfPackage{%
1514 \PackageWarningNoLine{mathfont}
1515 {It looks like you specified a font\MessageBreak
1516 when you loaded mathfont. If you run\MessageBreak
1517 into problems with a font whose name\MessageBreak
1518 is multiple words, try using LuaLaTeX\MessageBreak
1519 or call \string\documentfont\space or

Adjust Fonts: Setup Implementation 57

1520 \string\mathfont\MessageBreak
1521 manually}}
1522 \fi
1523 \fi

If the user passed a font name to mathfont, we set it as the default
\AtEndOfPackage.
1524 \ifM@font@loaded
1525 \AtEndOfPackage{\documentfont\M@font@load}
1526 \fi

9 Adjust Fonts: Setup
The next three sections implement Lua-based font adjustments and apply only
if the user has enabled font adjustment. Most of the implementation happens
through Lua code, but we need some TEX code in case the user wants to adjust
character metric information. Here is a rough outline of what happens in the
next three sections:

1. Initialize a Lua table that contains new metrics for certain characters
specific to math mode, such as letters with wider bounding boxes and
large operator symbols.

2. Provide an interface for the user to change this metric information.
3. Write functions that accept a fontdata object and (a) change top-level

math specs to indicate that we have a math function; (b) alter characters
according to our Lua table of new metric information; and (c) populate
a MathConstants table for the font.

4. Create callbacks that call these functions. Put a wrapper around them,
and insert the wrapper-function into luaotfload.patch_font.

Step 2 happens on the TEX side of things and is documented next, and every-
thing else happens inside \directlua. On the Lua side of things, we store all
the functions and character metric information in the table mathfont. With
the exception of a handful of integers used to track encoding slots, every entry
in mathfont is either a function or a subtable indexed by an 〈integer〉. The
integer is a Unicode encoding number and indicates which Unicode character
the subtable corresponds to. See tables 2 and 3 for a list of the functions in
mathfont and the fields in character subtables. See section 10 for discussion
of the callbacks for editing fontdata objects.

Changing the top-level nomath flag in a font object is easy. Creating a
MathConstants table is complicated but largely self-contained. We take a

58 Implementation Adjust Fonts: Setup

Table 2: Fields of Character Subtables in mathfont

Field Type In a In e Used For

type string Yes Yes Type is a or e
data_rm table Yes Yes Information for upright font shapes
data_it table Yes Yes Information for italic font shapes
num_variants integer No Yes Number of large variants
smash integer No Yes Encoding slot for smashed character
next table No Yes Encoding slots for large variants

few parameters that the user has set, define traditional TEX math parameters
based on the essential parameters of the font, and assign their values to the
corresponding entries in a MathConstants table. However, editing character
metrics during font loading is convoluted with many moving parts. For ev-
ery glyph that we want modify, we store character metric information for that
glyph as a subtable in mathfont. The entries of the subtable describe how to
scale the bounding box, scale the glyph itself, or determine math accent place-
ment. For characters of type a (“alphabet”), we specify information to stretch
the bounding box (not the glyph) horizontally, so we equivalently add extra
space around the character. For type e (“extensible”), we stretch the bound-
ing box and glyph, so we create an ensemble of scaled versions, which we use
as a family of large variants.

Here’s how to think about the dynamics of our approach. We use character
metric information at three different times: pre-processing, interim processing,
and post-processing. In pre-processing, which we implement in this section,
we assemble initial character metric information into entries in mathfont. In
other words, pre-processing means creating the initial mathfont subtables and
happens during package loading. Interim processing means the user altering
entries in mathfont and happens through \charmline and \charmfile. This
can occur at any point in the pramble. In post-processing, which we implement
in the next section, mathfont extracts information from the current state of the
mathfont table and uses it to alter a fontdata object. Post-processing happens
through the luaotfload.patch_font callback and occurs once at the point
when TEX loads the font file. As a rule, LATEX does not like to load fonts before
it uses them, so post-processing typically happens \AtBeginDocument in the
case of the main text font or whenever the user calls a \text〈font keyword〉
command or enters math mode. This is also why you cannot adjust fonts that
TEX loaded before mathfont.

We set mathnolimitsmode to 4 to make integral signs look nice. Or at
least nicer than they would otherwise.

Adjust Fonts: Setup Implementation 59

Table 3: Functions in mathfont

Function Argument(s) Used For

strint number Format number as a string

new_type_a index, data Add type a entry to mathfont
new_type_e index, data Add type e entry to mathfont

add_to_charm string of charm info Add charm info to mathfont
parse_charm string of charm info Split string, validate inputs
parse_num numeric string Parse numeric value

empty none Does nothing
glyph_info character subtable Get height, width, depth, italic
make_a_commands index, offset Return virtual font commands
make_a_table index, charm data,

fontdata
Make new subtable for type a
character

make_e_commands index, scale factors Return virtual font commands
make_e_table index, charm data,

fontdata
Make new subtable for type e
character

smash_glyph index, fontdata Make table for smashed char
utf_16BE integer Return UTF-16BE format

adjust_font fontdata Call callbacks
apply_charm_info fontdata Change character metrics in font
math_constants fontdata Create MathConstants table
set_nomath_false fontdata Set nomath (top-level flag in the

font) to false

get_font_name fontdata Return font name
info string Write message in the log file

1527 \ifM@adjust@font
1528 \mathnolimitsmode=4\relax

We need some error messages. We change the catcode of \ to 12 in order to
use it freely as a Lua escape character. We change ~ to catcode 0 to define the
macros.
1529 \bgroup
1530 \catcode`\~=0
1531 ~catcode`~\=12
1532 ~@firstofone{%
1533 ~egroup

60 Implementation Adjust Fonts: Setup

1534 ~let~@tempa~%
1535 ~let~%~@percentchar
1536 ~def~M@empty@ssert{"\n\n%
1537 Package mathfont error: Empty charm information.\n\n%
1538 Your argument for \\charmline is empty, or a\n%
1539 line in your \\charmfile is blank. Make sure\n%
1540 your calls to \\charmline and all lines in\n%
1541 your \\charmfile contain integers, floats,\n%
1542 and asterisks separated by commas or spaces.\n"}
1543 ~def~M@missing@ssert{"\n\n%
1544 Package mathfont error: Missing charm entries.\n\n%
1545 I'm having trouble with a character metric.\n%
1546 Your \\charmline or \\charmfile contains\n%
1547 \"".. temp_string .. ",\"\n%
1548 which looks to me like you provided an index\n%
1549 without any commas or spaces to specify the\n%
1550 numbers for charm values. Make sure that you\n%
1551 use commas or spaces to separate each entry\n%
1552 in your charm information.\n"}
1553 ~def~M@number@ssert{"\n\n%
1554 Package mathfont error: Nonnumeric charm value.\n\n%
1555 I'm having trouble with a character metric.\n%
1556 Your \\charmline or \\charmfile contains \""
1557 .. s .. ",\"\n%
1558 which is not a number. Make sure that your\n%
1559 charm information is all integers, floats,\n%
1560 and asterisks separated by commas or spaces.\n"}
1561 ~def~M@index@ssert{"\n\n%
1562 Package mathfont error: Invalid Unicode index.\n\n%
1563 The Unicode index \""
1564 .. temp_string .. "\" is invalid. Make sure\n%
1565 that the first entry in your \\charmline and in each\n%
1566 line of your \\charmfile is an integer between 0 and\n%
1567 1,114,111 (0x10FFFF), possibly with an exclamation\n%
1568 point or question mark.\n"}
1569 ~def~M@bound@ssert{"\n\n%
1570 Package mathfont error: Exceeded Unicode table.\n\n%
1571 You asked me to do something with an encoding slot\n%
1572 number that exceeds the number of slots in the\n%
1573 Unicode table. You are probably seeing this error\n%
1574 because you declared too many type e characters.\n"}

We previously defined \% to contain a single % with catcode 12, so when we

Adjust Fonts: Setup Implementation 61

put \% in an \edef, it becomes easy to get %’s inside the definition of our
next two macros. This is important because it lets us use string.format to
create informative error and warning messages using straightforward syntax.
To insert the Unicode character in the messages, we use utf8.char function,
which is the Lua code for producing arbitrary Unicode characters.
1575 ~edef~M@entries@ssert{string.format("\n\n%
1576 Package mathfont error: Charm values too short.\n\n%
1577 Your charm information for U+~%X ~%s (index ~%d)\n%
1578 needs more entries. Right now you have ~%d\n%
1579 entries (besides the index), but you need at\n%
1580 least ~%d. If you aren't sure what to do, try\n%
1581 adding asterisks to your \\charmline or line in\n%
1582 your \\charmfile. See the user guide for more\n%
1583 information.\n",
1584 index, utf8.char(index), index,
1585 number_of_entries, entries_needed)}
1586 ~edef~M@entries@warning{string.format("\n\n%
1587 Package mathfont warning: Charm values too long.\n\n%
1588 Your charm information for U+~%X ~%s (index ~%d)\n%
1589 has more entries than it needs. Right now you\n%
1590 have ~%d entries (besides the index), but you\n%
1591 only need ~%d. This isn't a problem per se\n%
1592 because I can easily ignore the extra numbers,\n%
1593 but it may indicate confusion about Unicode\n%
1594 characters and charm values. See the user\n%
1595 guide for more information.\n\n",
1596 index, utf8.char(index), index,
1597 number_of_entries, entries_needed)}

Error message if the user tries to adjust the left side of the bounding box on a
virtual character.
1598 ~edef~M@virtual@ssert{string.format("\n\n%
1599 Package mathfont error: Can't adjust left side\n%
1600 of the bounding box on a virtual character.\n\n%
1601 Your charm information for U+~%X ~%s (index ~%d)\n%
1602 instructs me to change the left side of the bounding\n%
1603 box around this character. However, in the font\n%
1604 ~%s,\n%
1605 that character is a virtual character, and I'm not\n%
1606 programmed to change the left side of the bounding\n%
1607 box on a virtual character. To resolve this error,\n%
1608 try including\n%

62 Implementation Adjust Fonts: Setup

1609 \\charmline{~%d 0 * * *}\n%
1610 at the end of your document preamble.\n\n",
1611 index, utf8.char(index), index,
1612 mathfont.get_font_name(fontdata), index)}}
1613 \let\%\@tempa

The user inputs charm information at the TEX level. We define the
macros \charmline that interfaces with mathfont:add_to_charm directly
and \charmfile that reads lines from a file and individually feeds them to
\charmline. The macros \charminfo and \charmtype print information from
mathfont about the charm information currently in memory for certain char-
acters.
1614 \newluafunction\addtocharm@
1615 \newluafunction\charminfo@
1616 \newluafunction\charmtype@
1617 \directlua{%
1618 local t = lua.get_functions_table()
1619 t[\number\addtocharm@] = function()
1620 mathfont:add_to_charm(token.scan_string())
1621 end

We also define the Lua function \charminfo@ for use in \charminfo. This
function scans the following integer and prints the charm information for the
Unicode character whose index is that integer.
1622 t[\number\charminfo@] = function()
1623 local temp = token.scan_int()
1624 temp = mathfont[temp]

If mathfont contains an entry for index temp, gather the charm information
from that entry. We will print to TEX a string in the same format as the
argument of \charmline. We loop through data_rm, and on each iteration,
we add that entry to a temporary string and then add italic charm information
if it is different.
1625 if temp then
1626 local temp_str = ""
1627 local temp_rm = {}
1628 local temp_it = {}

We have to possibilities depending on the type of the input. For type a charac-
ters, all entries in data_rm and data_it are integers, and we can loop the list
without issue. For type e characters, data_rm and data_it contain 15 two-
entry subtables and three integers, so we have to flatten the list before we use
it.
1629 for k,v in pairs(temp.data_rm) do

Adjust Fonts: Setup Implementation 63

1630 if type(v) == "number" then
1631 temp_rm[k] = v * 1000
1632 temp_it[k] = temp.data_it[k] * 1000
1633 elseif type(v) == "table" then
1634 temp_rm[2*k-1] = v[1] * 1000
1635 temp_rm[2*k] = v[2] * 1000
1636 temp_it[2*k-1] = temp.data_it[k][1] * 1000
1637 temp_it[2*k] = temp.data_it[k][2] * 1000
1638 end
1639 end

Now we loop through temp_rm and add the contents to temp_str.
1640 for k,v in pairs(temp_rm) do
1641 if temp_str \noexpand~= "" then
1642 temp_str = temp_str .. " "
1643 end
1644 temp_str = temp_str .. mathfont.strint(v)

Now check the corresponding charm entry for italic fonts and add that if dif-
ferent from v.
1645 if temp_it[k] \noexpand~= v then
1646 temp_str = temp_str .. "/" ..
1647 mathfont.strint(temp_it[k])
1648 end
1649 end

Now print the result.
1650 tex.print(temp_str)
1651 else
1652 tex.print("none")
1653 end
1654 end

Same thing for \charmtype@.
1655 t[\number\charmtype@] = function()
1656 local temp = token.scan_int()
1657 temp = mathfont[temp]
1658 if temp then
1659 tex.print(temp.type)
1660 else
1661 tex.print("none")
1662 end
1663 end}
1664 \protected\def\charmline{\luafunction\addtocharm@}\charmline

64 Implementation Adjust Fonts: Setup

The argument of \charmfile should be a valid filename, and we open it in
\M@Charm. The macro processes each line of the file as a piece of charm infor-
mation.
1665 \protected\def\charmfile#1{%\charmfile
1666 \IfFileExists{#1}{%
1667 \begingroup
1668 \endlinechar\m@ne
1669 \immediate\openin\M@Charm{#1}

The macro \next reads a line into #1, feeds it to \charmline, and calls itself
if the file has more lines. TEX adds an extra line to the end of files it reads
(why??), so we check whether the current line is empty before feeding it to
\charmline. (The last line of the file is empty because we set \endlinechar
to −1. Otherwise, the file would have a spurious \par at the end.)
1670 \def\next{%
1671 \read\M@Charm to \@tempa
1672 \ifx\@tempa\@empty
1673 \else
1674 \charmline\@tempa
1675 \fi
1676 \ifeof\M@Charm\else % if file has more lines?
1677 \expandafter\next
1678 \fi}

Call \next, close the file, and end the group.
1679 \next
1680 \immediate\closein\M@Charm
1681 \endgroup}

If the file does not exist, raise an error.
1682 {\M@NoCharmFileError{\detokenize{#1}}}}

Alternative names.
1683 \let\CharmLine\charmline\CharmLine
1684 \let\CharmFile\charmfile\CharmFile

Now the macros \charminfo and \charmtype. The structure is a bit different
because we want them to be fully expandable. The macros don’t have an
argument. Instead, they call the appropriate \luafunction, which scans the
next integer and processes it.
1685 \def\charminfo{\luafunction\charminfo@}\charminfo
1686 \def\charmtype{\luafunction\charmtype@}\charmtype

The wrapped versions are more user-friendly. For \CharmInfo, we first check
whether mathfont contains an entry with index #1.

Adjust Fonts: Setup Implementation 65

1687 \protected\def\CharmInfo#1{%\CharmInfo
1688 \M@check@int{#1}%
1689 \ifM@arg@good
1690 \begingroup % \begingroup
1691 \edef\@tempa{\charminfo#1}%
1692 \def\@tempb{none}%
1693 \edef\@tempc{\number#1}%

Now the actual check. If there is no entry, we print a message saying so.
1694 \ifx\@tempa\@tempb
1695 \expandafter\endgroup % first branch \endgroup
1696 \expanded{\showtokens{no charm info assigned to
1697 index \@tempc}}%

If yes, we print the charm information to the terminal.
1698 \else
1699 \expandafter\endgroup % second branch \endgroup
1700 \expanded{\showtokens{index \@tempc\space
1701 has charm info: \@tempa}}%
1702 \fi
1703 \else
1704 \M@BadIntegerError\CharmInfo{\detokenize{#1}}%
1705 \fi}

Now for \CharmType.
1706 \protected\def\CharmType#1{%\CharmType
1707 \M@check@int{#1}%
1708 \ifM@arg@good
1709 \begingroup
1710 \edef\@tempa{\number#1}%
1711 \expandafter\endgroup
1712 \expanded{\showtokens{index \@tempa\space has type
1713 \charmtype\numexpr\@tempa\relax}}%
1714 \else
1715 \M@BadIntegerError\CharmType{\detokenize{#1}}%
1716 \fi}

This concludes the TEX-based portion of font adjustments. The rest of this sec-
tion and the next two sections are the Lua code that adapts a text font for math
mode. First, we create the mathfont table. We use mathfont.encoding_slot
in new_type_e to keep track of the encoding slots where we will artificially
add large versions of type e characters during loading.
1717 \directlua{
1718 mathfont = {}

66 Implementation Adjust Fonts: Setup

1719 mathfont.extra_chars = 0xFA000
1720 mathfont.encoding_slot = 0xFA010
1721 mathfont.fakel = mathfont.extra_chars + 4
1722 mathfont.faker = mathfont.extra_chars + 5
1723 mathfont.fakell = mathfont.extra_chars + 6
1724 mathfont.fakerr = mathfont.extra_chars + 7

Helper function for use in \charminfo@.
1725 function mathfont.strint(i)
1726 if i == (i // 1) then
1727 return string.format("\@percentchar d", i)
1728 else
1729 return tostring(i)
1730 end
1731 end

Each character whose metrics we want to change will have one of two types:
a for alphabet or e for extensible. We begin with type a. The index is the
base-10 Unicode encoding value of the character that we will later modify. The
data arguments are tables with 4 entries that store sizing information and
information regarding accent placement. We divide the information by 1000
as is standard in TEX.
1732 function mathfont:new_type_a(index, data_rm, data_it)
1733 self[index] = {}
1734 self[index].type = "a"
1735 self[index].data_rm = {}
1736 self[index].data_it = {}
1737 for i = 1, 4, 1 do
1738 self[index].data_rm[i] = data_rm[i] / 1000
1739 self[index].data_it[i] = data_it[i] / 1000
1740 end
1741 end

Initializing type e characters is more complicated. The index and data argu-
ments are the same as in the type a case, and we process them similarly. The
entries in mathfont for type e characters contain additional information. The
smash value is a Unicode slot where we store a smashed version of the glyph
with no height, depth, or width, which we need to scale the glyph correctly.
The num_variants attribute is the number of slots in next, which we shorten
to v for notational convenience.
1742 function mathfont:new_type_e(index, data_rm, data_it)
1743 self[index] = {}
1744 self[index].type = "e"

Adjust Fonts: Setup Implementation 67

1745 self[index].smash = self.encoding_slot
1746 local v = (\string# data_rm - 3) / 2
1747 self[index].num_variants = v

Check that the user hasn’t exhausted the Unicode table. (Unlikely, but you
never know.)
1748 if self.encoding_slot + v + 1 > 0x10FFFF then
1749 error(\M@bound@ssert)
1750 end

Now make lists that store encoding slots and scale factors. We have the fol-
lowing lists:

• next: list of encoding slots
• data_rm: scale factors for upright font shapes
• data_it: scale factors for italic font shapes

Start with making blank lists in the subtable in mathfont.
1751 self[index].next = {}
1752 self[index].data_rm = {}
1753 self[index].data_it = {}

We assemble these lists in a single loop, and they all have v elements. For
next, we append consecutive integers to the list. For the scale factors, we
expect data_rm and data_it to have 2v+3 entries, which we consider in pairs.
The ith pair (i.e. entries 2i − 1 and 2i of data_rm or data_it) encodes the
horizontal and vertical scale factors for the ith large variant, and we add those
scale factors as two-element sublists to the new lists on the ith iteration.
1754 for i = 1, v, 1 do
1755 self[index].next[i] = self.encoding_slot + i
1756 self[index].data_rm[i] = {data_rm[2*i-1] / 1000,
1757 data_rm[2*i] / 1000}
1758 self[index].data_it[i] = {data_it[2*i-1] / 1000,
1759 data_it[2*i] / 1000}
1760 end

The final entries of data_rm and data_it contain information about accent
placement and italic correction. We add those values to the subtable as well.
1761 for i = 1, 3, 1 do
1762 self[index].data_rm[2*v+i] = data_rm[2*v+i] / 1000
1763 self[index].data_it[2*v+i] = data_it[2*v+i] / 1000
1764 end

Finally, update the encoding_slot.
1765 self.encoding_slot = self.encoding_slot + v + 1
1766 end

68 Implementation Adjust Fonts: Setup

Interim processing. We let the user edit resizing and accent information for the
characters in mathfont. The main editing function is mathfont:add_to_charm,
which incorporates the user’s information into the tables already in mathfont.
It expects a single string of integers, floats, or asterisks separated by spaces or
commas, and it immediately passes the argument to parse_charm, which pro-
cesses it into tables that we incorporate into subtables of mathfont. We begin
with a helper function to parse a (numeric) string. If this function returns a
number, the number is properly scaled (divided by 1000).
1767 function mathfont.parse_num(s)
1768 if s == "*" then
1769 return s
1770 else
1771 local temp = tonumber(s)
1772 if temp then
1773 return temp / 1000
1774 else
1775 error(\M@number@ssert)
1776 end
1777 end
1778 end

Now parse_charm. We begin by setting up tables to store the parsed string
contents. We store the Unicode index value in index.
1779 function mathfont.parse_charm(charm_input)
1780 local index = 0
1781 local charm_string = charm_input
1782 local temp_string = ""

Some preprocessing before we parse the string. Specifically, we
1. Get rid of any duplicate spaces
2. Remove any leading or trailing space, if present
3. Remove any spaces around slashes or commas
4. Replace any remaining spaces with commas

After completion of the replacements, we should have a new string with same
numeric/override information as the original charm_input except without any
spaces and all (pairs of) entries separated by commas. Step 1: duplicate spaces.
1783 while string.find(charm_string, "\space\space") do
1784 charm_string = string.gsub(charm_string, "\space\space", " ")
1785 end

Step 2: leading/trailing spaces.
1786 if string.sub(charm_string, 1, 1) == " " then

Adjust Fonts: Setup Implementation 69

1787 charm_string = string.sub(charm_string, 2)
1788 end
1789 if string.sub(charm_string, -1) == " " then
1790 charm_string = string.sub(charm_string, 1, -2)
1791 end
Step 3: space around punctuation. We don’t replace ! or ? because the
space in those cases could be separating two charm entries.
1792 charm_string = string.gsub(charm_string, ", ", ",")
1793 charm_string = string.gsub(charm_string, " ,", ",")
1794 charm_string = string.gsub(charm_string, "/ ", "/")
1795 charm_string = string.gsub(charm_string, " /", "/")
Step 4: add commas.
1796 charm_string = string.gsub(charm_string, " ", ",")
Check that charm_string is not empty.
1797 if charm_string == "" then
1798 error(\M@empty@ssert)
1799 end
Check that charm_string contains at least one comma. If it does not, we raise
an error.
1800 if not string.find(charm_string, ",") then
1801 temp_string = charm_input
1802 error(\M@missing@ssert)
1803 end
We’re ready to parse the entries. We remove the first entry manually since it
is the index and has different formatting possibilities from the other entries.
1804 local sep = string.find(charm_string, ",")
1805 temp_string = string.sub(charm_string, 1, sep-1)
Now check that the index is a (valid) number. Handle the case of possible
asterisk at the end of temp_string.
1806 local exc
1807 if string.sub(temp_string, -1, -1) == "!" then
1808 index = tonumber(string.sub(temp_string, 1, -2))
1809 exc = 1
1810 elseif string.sub(temp_string, -1, -1) == "?" then
1811 index = tonumber(string.sub(temp_string, 1, -2))
1812 exc = 2
1813 else
1814 index = tonumber(temp_string)
1815 exc = 0
1816 end

70 Implementation Adjust Fonts: Setup

1817 if index then
1818 assert(index == index // 1 and
1819 index >= 0 and
1820 index <= 1114111, \M@index@ssert)
1821 else
1822 error(\M@index@ssert)
1823 end
1824 charm_string = string.sub(charm_string, sep+1)

Create the lists that we will use to store the information from charm_string.
1825 local split_string_rm = {}
1826 local split_string_it = {}

We loop through charm_string as long as it contains characters. At each iter-
ation, we store the location of the first comma in sep. We remove the portion
of charm_string preceding the first comma and store it in temp_string, and
we save the remaining portion of charm_string for processing on the next
iteration of the loop. We use i as a dummy variable to track loop iterations.
1827 local i = 1
1828 while charm_string do
1829 sep = string.find(charm_string, ",")
1830 if sep then
1831 temp_string = string.sub(charm_string, 1, sep-1)
1832 charm_string = string.sub(charm_string, sep+1)

If the current value of charm_string does not contain a comma, then it must
be the last portion, and we set charm_string to nil.
1833 else
1834 temp_string = charm_string
1835 charm_string = nil
1836 end

First check whether temp_string contains a / character. If yes, we have two
values to process, and if not, we have one.
1837 sep = string.find(temp_string, "/")
1838 if sep then

The information for upright font shapes comes from the first portion of
temp_string.
1839 split_string_rm[i] = mathfont.parse_num(
1840 string.sub(temp_string, 1, sep-1))

Information for italic shapes comes from the latter portion of temp_string.
1841 split_string_it[i] = mathfont.parse_num(
1842 string.sub(temp_string, sep+1))

Adjust Fonts: Setup Implementation 71

For the case without a /, the same information goes in both sets of lists.
1843 else
1844 local temp = mathfont.parse_num(temp_string)
1845 split_string_rm[i] = temp
1846 split_string_it[i] = temp
1847 end
Increment i, end the loop, and return the charm information.
1848 i = i + 1
1849 end
1850 return {index, exc, split_string_rm, split_string_it}
1851 end
We feed the user’s charm information directly to mathfont:add_to_charm,
which processes the information and stores it in mathfont. It first calls
parse_charm to parse the input and then modifies mathfont accordingly. Af-
ter being parsed, the user’s input lives in charm_rm and charm_it. The index
is the Unicode value of the character whose information we want to modify,
and the number_of_entries is the length of charm_metrics.
1852 function mathfont:add_to_charm(charm_string)
1853 local temp = self.parse_charm(charm_string)
1854 local index = temp[1]
1855 local force_type = temp[2]
1856 local data_rm = temp[3]
1857 local data_it = temp[4]
1858 local number_of_entries = \string# data_rm
If mathfont does not already have an entry for the Unicode character index,
we create an entry with type a or e depending on the value of force_type.
1859 if not self[index] then
1860 mathfont.info(string.format("Setting up charm entries for
1861 U+\@percentchar X \@percentchar s (index \@percentchar d)",
1862 index, utf8.char(index), index))
1863 if force_type == 1 then
1864 temp = {}
1865 for i = 1, 30, 1 do
1866 temp[i] = 1000
1867 end
1868 for i = 31, 33, 1 do
1869 temp[i] = 0
1870 end
1871 self:new_type_e(index, temp, temp)
1872 else
1873 self:new_type_a(index, {0, 0, 0, 0}, {0, 0, 0, 0})

72 Implementation Adjust Fonts: Setup

1874 end
1875 else

If mathfont does already have an entry for the character and force_type is
positive, check whether the type of the entry in mathfont matches the value
of force_type. If not, change the type by resetting the entry in mathfont.
First, the case where the character has type a, and we want to change it to
type e. We save the top and bottom accent values to use in setting up the new
charm information.
1876 if (self[index].type == "a") and (force_type == 1) then
1877 local temp_rm = {}
1878 local temp_it = {}
1879 for i = 1, 30, 1 do
1880 temp_rm[i] = 1000
1881 temp_it[i] = 1000
1882 end
1883 temp_rm[31] = self[index].data_rm[3]
1884 temp_rm[32] = self[index].data_rm[4]
1885 temp_rm[33] = 0
1886 temp_it[31] = self[index].data_it[3]
1887 temp_it[32] = self[index].data_it[4]
1888 temp_it[33] = 0
1889 self:new_type_e(index, temp_rm, temp_it)

The process to convert to type a is simpler but fairly similar.
1890 elseif (self[index].type == "e") and (force_type == 2) then
1891 self:new_type_a(index, {0, 0,
1892 self[index].data_rm[31],
1893 self[index].data_rm[32]},
1894 {0, 0,
1895 self[index].data_it[31],
1896 self[index].data_it[32]})
1897 end
1898 end

Handling the user’s input depends on the type of entry index. The basic pro-
cedure is to first check the number of inputs, and if the user provided enough
entries, we update each entries in the mathfont subtable. For every asterisk,
we leave the corresponding subtable entries unaltered. For type a, we need
four entries besides the index. The first two determine the left and right offset,
and the last two determine accent placement.
1899 if self[index].type == "a" then
1900 local entries_needed = 4

Adjust Fonts: Setup Implementation 73

Check number of entries. If it is too small, we issue an error, and if it is too
large, we print a warning.
1901 if number_of_entries < entries_needed then
1902 error(\M@entries@ssert)
1903 elseif number_of_entries > entries_needed then
1904 texio.write_nl(\M@entries@warning)
1905 end

Now update the table entries. The data outputs from parse_charm have been
properly scaled (divided by 1000), so we don’t have to worry about rescaling
in this function.
1906 for i = 1, 4, 1 do
1907 if data_rm[i] \noexpand~= "*" then
1908 self[index].data_rm[i] = data_rm[i]
1909 end
1910 if data_it[i] \noexpand~= "*" then
1911 self[index].data_it[i] = data_it[i]
1912 end
1913 end

Now do type e. The number of entries in the data lists must be at least 2 ∗
tot_variants + 3. We loop through the information and, for each ith pair
of charm values, set those numbers to be the horizontal and vertical stretch
information for the ith variant.
1914 elseif self[index].type == "e" then
1915 local tot_variants = self[index].num_variants
1916 local entries_needed = 2 * tot_variants + 3

Again check number of entries.
1917 if number_of_entries < entries_needed then
1918 error(\M@entries@ssert)
1919 elseif number_of_entries > entries_needed then
1920 texio.write_nl(\M@entries@warning)
1921 end

Now store the charm information. Again, we scaled the data_rm and data_it
values in parse_charm, so we don’t have to divide by 1000 here.
1922 for i = 1, tot_variants, 1 do
1923 if data_rm[2*i-1] \noexpand~= "*" then
1924 self[index].data_rm[i][1] = data_rm[2*i-1]
1925 end
1926 if data_rm[2*i] \noexpand~= "*" then
1927 self[index].data_rm[i][2] = data_rm[2*i]
1928 end

74 Implementation Adjust Fonts: Setup

1929 if data_it[2*i-1] \noexpand~= "*" then
1930 self[index].data_it[i][1] = data_it[2*i-1]
1931 end
1932 if data_it[2*i] \noexpand~= "*" then
1933 self[index].data_it[i][2] = data_it[2*i]
1934 end
1935 end

The final entries for type e are the accent and italic correction information.
1936 for i = tot_variants + 1, tot_variants + 3, 1 do
1937 if data_rm[i] \noexpand~= "*" then
1938 self[index].data_rm[i] = data_rm[i]
1939 end
1940 if data_it[i] \noexpand~= "*" then
1941 self[index].data_it[i] = data_it[i]
1942 end
1943 end
1944 end
1945 end

We end this section with three general-purpose Lua functions. The first func-
tion, utf_16BE, accepts a nonnegative integer and returns its representation in
UTF-16 big-endian format. Let x be a nonnegative integer at most 0x10FFFF.
Here are the steps to convert x to its big-endian representation:

1. If x ≤ 0xFFFF, keep x as is. Its representation is a single four-digit
hexadecimal number.

2. If x ≥ 0x10000, we represent x as two four-digit hexadecimal numbers.
First, subtract 0x10000 from x, and the result y is a number between 0
and 0xFFFFF.

3. Equivalently, we can think of y as a twenty-digit binary number. (Five
hexadecimal digits store the same information as twenty binary digits.)

4. Take the 10 left-most digits of y (integer divide by 210 = 1024), and add
them to 0xD800. The result z1 is the first hexadecimal number.

5. Take the 10 right-most digits of y (remainder after dividing by 210 =
1024), and add them to 0xDC00. The result z2 is the second hexadecimal
number.

6. The big-endian representation of x is the string z1z2.
The purpose of big-endian representation is to encode Unicode characters be-
yond U+FFFF while still using four-digit hexadecimal numbers.
1946 function mathfont.utf_16BE(integer)
1947 if integer > 0x10FFFF then

Adjust Fonts: Setup Implementation 75

1948 error(\M@bound@ssert)
1949 end
1950 local temp = string.format("\@percentchar X", integer)
1951 if \string# temp <= 4 then
1952 while \string# temp < 4 do
1953 temp = "0" .. temp
1954 end
1955 else
1956 temp = integer - 0x10000
1957 local left_bits = 0xD800 + temp // 1024
1958 local right_bits = 0xDC00 + temp \@percentchar 1024
1959 temp = string.format("\@percentchar X\@percentchar X",
1960 left_bits, right_bits)
1961 end
1962 return temp
1963 end

The glyph_info function does exactly what it sounds like. It accepts a charac-
ter table from a font and returns the width, height, depth, and italic correction
values.
1964 function mathfont.glyph_info(char)
1965 local glyph_width = char.width or 0
1966 local glyph_height = char.height or 0
1967 local glyph_depth = char.depth or 0
1968 local glyph_italic = char.italic or 0
1969 return glyph_width, glyph_height, glyph_depth, glyph_italic
1970 end

The smash_glyph function returns a character table that will produce a
smashed version of the Unicode character with value index. The charac-
ter has no width, height, or depth, and we typeset the glyph virtually using a
char command.
1971 function mathfont.smash_glyph(index)
1972 local smash_table = {}
1973 smash_table.width = 0
1974 smash_table.height = 0
1975 smash_table.depth = 0
1976 smash_table.commands = {{"char", index}}
1977 return smash_table
1978 end

An empty function that does nothing. Used later for creating callbacks.
1979 function mathfont.empty(arg)
1980 end

76 Implementation Adjust Fonts: Changes

10 Adjust Fonts: Changes
This section contains the Lua functions that actually modify the font dur-
ing loading. The three functions set_nomath_false, math_constants, and
apply_charm_info do most of the heavy lifting, and we set them as the de-
fault behavior for three callbacks. In total, mathfont defines seven different
callbacks and calls them inside the function adjust_font—see table 4 for a
list. Each callback accepts a fontdata object as an argument and returns noth-
ing. You can use these callbacks to change mathfont’s default modifications or
to modify a fontdata object before or after mathfont looks at it. Be aware that
if you add a function to any of the disable_nomath, add_math_constants, or
fix_character_metrics callbacks, LuaTEX will not call the default mathfont
function associated with the callback anymore. In other words, do not mess
with these three callbacks unless you are duplicating the functionality of the
corresponding “Default Behavior” function from table 4.

We begin with the functions that create new character subtables for inclu-
sion in a font object, and we think of these new subtables as modified versions
of characters already present in a given font. The functions for assembling
character tables take three arguments. The index argument is the Unicode
index of the modified character. The charm_data argument is the subtable in
mathfont of charm information that corresponds to index, and the fontdata
argument is a font object. For type a, we change the width of the bounding
box and horizontal glyph positioning, and for type e, we scale the glyph to cre-
ate large variants and change the italic correction. For both types, we modify
accent placement. We add five categories of information into our new char-
acter tables: glyph dimensions, Unicode encoding bits, (possible) virtual font
commands, accent placement dimensions, and math kerning.

The :make_a_table returns a character table for type a characters. We

Table 4: Callbacks Created by mathfont
Callback Name Default Behavior

"mathfont.inspect_font" None

"mathfont.pre_adjust" None
"mathfont.disable_nomath" mathfont.set_nomath_false
"mathfont.add_math_constants" mathfont.math_constants
"mathfont.fix_character_metrics" mathfont.apply_charm_info
"mathfont.post_adjust" None

"mathfont.finishing_touches" None

Adjust Fonts: Changes Implementation 77

build up the subtable in the variable a_table, and we eventually return
a_table at the end of the function. We let char be a shorthand for the
subtable at index in fontdata, and slant is the font’s slant parameter. In
upright fonts, slant is generally 0, and in italic fonts, slant is generally posi-
tive.
1981 function mathfont:make_a_table(index, charm_data, fontdata)
1982 local a_table = {}
1983 local char = fontdata.characters[index] or {}
1984 local ex = fontdata.parameters.x_height or 0
1985 local slant = (fontdata.parameters.slant or 0)/ 65536

Get the dimensions of the character. We determine the new bounding box
dimensions, horizontal glyph placement, and accent placement in terms of the
character’s original width (plus italic correction).
1986 local width, height, depth, italic = self.glyph_info(char)

Incorporate the italic correction into the character width.
1987 width = width + italic

We extract charm information from charm_data depending on whether the
font is slanted or not.
1988 local left_stretch
1989 local right_stretch
1990 local top_accent
1991 local bot_accent
1992 if slant == 0 then
1993 left_stretch = charm_data.data_rm[1]
1994 right_stretch = charm_data.data_rm[2]
1995 top_accent = charm_data.data_rm[3]
1996 bot_accent = charm_data.data_rm[4]
1997 else
1998 left_stretch = charm_data.data_it[1]
1999 right_stretch = charm_data.data_it[2]
2000 top_accent = charm_data.data_it[3]
2001 bot_accent = charm_data.data_it[4]
2002 end

The new width is 1+left_stretch+right_stretch times the original width.
The horizontal offset that appears in the commands is the left_stretch por-
tion of the new width.
2003 local offset = width * left_stretch
2004 a_table.width = width * (1 + left_stretch + right_stretch)
2005 a_table.height = height
2006 a_table.depth = depth

78 Implementation Adjust Fonts: Changes

2007 a_table.italic = 0

Unicode information attached to the character.
2008 a_table.unicode = index
2009 a_table.tounicode = self.utf_16BE(index)
2010 a_table.index = char.index

If left_stretch is nonzero, we have to turn the character into a virtual char-
acter that typesets the glyph through a char command—that is the only way
to add space on the left of the glyph. (A nonzero right_stretch is easier
because we only have to extend the bounding box.)
2011 if offset \noexpand~= 0 then
2012 if char.commands then
2013 error(\M@virtual@ssert)
2014 else
2015 a_table.commands = {{"right", offset}, {"char", index}}
2016 end
2017 end

We calculate accent placement in two steps. The first step is to calculate a
“base” accent position from character and font properties, and then we mod-
ify the base position according to charm information. If the font contains a
top_accent value for the character, we take that value as our base accent po-
sition.
2018 local top_base
2019 if char.top_accent then
2020 top_base = char.top_accent

If the font does not contain a top_accent value, which for text fonts is the
more likely possibility, we have to create the base accent position ourselves.
We use an approach similar to how TEX positions accents in text mode. If
the character is less than 1ex tall, the base accent position is halfway across
the character’s bounding box, i.e. any horizontal offset plus half the original
width and half the italic correction. If the character is taller than 1ex, we
move the base accent position right by the font’s slant value times the char-
acter’s height above 1ex. The base accent position in this approach does not
change when the user changes the left_stretch or right_stretch values in
the charm information.
2021 else
2022 top_base = offset + 0.5 * width
2023 if height > ex then
2024 top_base = top_base + slant * (height - ex)
2025 end
2026 end

Adjust Fonts: Changes Implementation 79

We take a similar approach for the bottom accent. For the base accent position,
we subtract the slant times 1ex.
2027 local bot_base
2028 if char.bot_accent then
2029 bot_base = char.bot_accent
2030 else
2031 bot_base = offset + 0.5 * width - slant * ex
2032 end

Now add the accent information to the font.
2033 a_table.top_accent = top_base + top_accent * width
2034 a_table.bot_accent = bot_base + bot_accent * width

TEX shifts superscripts (but not subscripts) right by the italic correction. We
added italic correction to the character’s width. Effectively, that shifts any su-
perscript right relative to the character’s original bounding box, so our changes
to the character result in superscripts that behave the way we expect. How-
ever, the larger bounding box also affects subscripts, which we don’t want, so
we implement a mathkern table that moves any subscripts left by the italic
correction. A mathkern table contains up to four subtables, one for each cor-
ner of the character. Within each subtable, we store pairs of height and kern
values, where height means to apply kern to exponents at that height. In this
case, we have a kern value of minus italic correction in the lower right corner.
2035 a_table.mathkern = {}
2036 a_table.mathkern.top_right = {{height = 0, kern = 0}}
2037 a_table.mathkern.bottom_right = {{height = 0, kern = -italic}}
2038 a_table.mathkern.top_left = {{height = 0, kern = 0}}
2039 a_table.mathkern.bottom_left = {{height = 0, kern = 0}}
2040 return a_table
2041 end

For type e characters, we add several virtual characters to the font, and we use
make_e_commands to produce their commands tables. The commands tables
from this function produces a scaled version of the glyph in slot index. The
pdf command sends code directly to the pdf backend that handles the trans-
formation. The q specification induces a linear transformation of the output,
which in this case is a dilation by h_stretch and v_stretch factors. The Q
command restores the original coordinate system.
2042 function mathfont.make_e_commands(index, h_stretch, v_stretch)
2043 local c_1 = {"pdf", "origin",
2044 string.format("q \@percentchar s 0 0 \@percentchar s 0 0 cm",
2045 h_stretch, v_stretch)}
2046 local c_2 = {"char", index}

80 Implementation Adjust Fonts: Changes

2047 local c_3 = {"pdf", "origin", "Q"}
2048 return {c_1, c_2, c_3}
2049 end

The function for type e characters returns a list of character subtables because
we need to create multiple characters at once. Specifically, the function returns
a new subtable for the original character plus one subtable for each larger
variant. The structure is similar to :make_type_a, except that we scale the
glyph instead of enlarging the bounding box.
2050 function mathfont:make_e_table(index, charm_data, fontdata)
2051 local e_table = {}
2052 local char = fontdata.characters[index] or {}
2053 local ex = fontdata.parameters.x_height or 0
2054 local slant = (fontdata.parameters.slant or 0) / 65536
2055 local width, height, depth, italic = self.glyph_info(char)

Extract the charm information other than scale factors. Here _sc is short for
scale.
2056 local v = charm_data.num_variants
2057 local smash = charm_data.smash
2058 local next = charm_data.next
2059 local top_accent_sc
2060 local bot_accent_sc
2061 local italic_sc
2062 if slant == 0 then
2063 top_accent_sc = charm_data.data_rm[2*v+1]
2064 bot_accent_sc = charm_data.data_rm[2*v+2]
2065 italic_sc = charm_data.data_rm[2*v+3]
2066 else
2067 top_accent_sc = charm_data.data_it[2*v+1]
2068 bot_accent_sc = charm_data.data_it[2*v+2]
2069 italic_sc = charm_data.data_it[2*v+3]
2070 end

Calculate accent placement for the original glyph, and rescale the italic cor-
rection. We calculate accent placement similarly to type a, and we change the
italic correction afterwards to ensure that accent placement is independent of
italic_scale. Unlike with type a, we do not enlarge the bounding box on
the left side of the character, so the base accent placement does not contain
offset.
2071 local top_base
2072 if char.top_accent then
2073 top_base = char.top_accent

Adjust Fonts: Changes Implementation 81

2074 else
2075 top_base = 0.5 * width
2076 if height > ex then
2077 top_base = top_base + slant * (height - ex)
2078 end
2079 end
2080 local bot_base = char.bot_accent or (0.5 * width - slant * ex)
2081 local top_accent = top_base + top_accent_sc * (width + italic)
2082 local bot_accent = bot_base + bot_accent_sc * (width + italic)
2083 italic = italic + italic_sc * (width + italic)

Store the Unicode encoding slot for reference later
2084 local tounicode = self.utf_16BE(index)

We create a number of entries in e_table equal to one plus the number of
variants we want, which is stored in charm_data.num_variants. We begin
with the first entry. This isn’t a full character subtable because for the small
version of the big operator, we won’t replace the subtable already in fontdata
but rather will add the information here into that subtable.
2085 e_table[1] = {}
2086 e_table[1].italic = italic
2087 e_table[1].unicode = index
2088 e_table[1].tounicode = self.utf_16BE(index)
2089 e_table[1].top_accent = top_accent
2090 e_table[1].bot_accent = bot_accent
2091 e_table[1].next = next[1]

Now loop through the large variants, and add each one to e_table. We begin
by extracting the scale factors for the particular large variant.
2092 local h_stretch
2093 local v_stretch
2094 for i = 2, v + 1, 1 do
2095 if slant == 0 then
2096 h_stretch = charm_data.data_rm[i-1][1]
2097 v_stretch = charm_data.data_rm[i-1][2]
2098 else
2099 h_stretch = charm_data.data_it[i-1][1]
2100 v_stretch = charm_data.data_it[i-1][2]
2101 end

Now add the entries for the subtable.
2102 e_table[i] = {}
2103 e_table[i].width = width * h_stretch
2104 e_table[i].height = height * v_stretch

82 Implementation Adjust Fonts: Changes

2105 e_table[i].depth = depth * v_stretch
2106 e_table[i].italic = italic * h_stretch

Add the Unicode information.
2107 e_table[i].unicode = index
2108 e_table[i].tounicode = tounicode

Accent placement.
2109 e_table[i].top_accent = top_accent * h_stretch
2110 e_table[i].bot_accent = bot_accent * h_stretch

Add the commands.
2111 e_table[i].commands =
2112 self.make_e_commands(smash, h_stretch, v_stretch)

If we aren’t dealing with the last entry in the table, we need to add the char-
acter’s next field. The next larger variant after the ith character will the the
i+ 1st character, and we can extract the index from the charm_information.
2113 if i <= v then
2114 e_table[i].next = charm_data.next[i]
2115 end
2116 end
2117 return e_table
2118 end

Before we get to the main font-changing functions, we code make_fake_angle,
which returns a character table for the fake angle brackets. The idea is to
transform a guillement such that the top 90% of the original bounding box
lines up with the full bounding box (height plus depth) of the left parenthesis
(U+28). We make the fake angle brackets as follows:

1. Take a (single or double) guillemet, and let h be its height. We assume
the guillemet has no depth.

2. Let hp and dp be the height and depth respectively of the left parenthesis.
3. Our transformation of the guillement will involve a translation and a di-

lation. The translation should lower the basepoint of the guillemet such
that if p is the proportion of the guillemet that is below the baseline after
translation, then (p− 0.1σ)h = dp, where σ is the scale factor, assuming
we apply the translation before the dilation. (The dilation fixes the cur-
rent position within the virtual character regardless of its relation to the
baseline.) This means ph = dp + 0.1hσ.

4. The scale factor for the dilation is

σ =
hp + dp
0.9h

,

Adjust Fonts: Changes Implementation 83

so 90% of the guillemet height becomes equal to the size of the paren-
thesis.

The function accepts the index of a guillemet as index and the index of the
smashed guillemet as smash. The slot argument is the encoding slot of the
angle bracket. First, extract relevant character and font dimensions.
2119 function mathfont:make_fake_angle(index, smash, slot, fontdata)
2120 local fab_table = {} % fab for fake angle bracket
2121 local chars = fontdata.characters
2122 local lp = chars[40] or {} % lp for left parenthesis
2123 local lp_width, lp_height, lp_depth, lp_italic =
2124 self.glyph_info(lp)
2125 local g = chars[index] or {} % g for guillemet
2126 local g_width, g_height, g_depth, g_italic = self.glyph_info(g)
2127 local ex = fontdata.parameters.x_height or 0
2128 local slant = (fontdata.parameters.slant or 0) / 65536

We compute the dimensions of our fake angle bracket.
2129 local factor
2130 if g_height \noexpand~= 0 then
2131 factor = (lp_height + lp_depth) / (0.9 * g_height)
2132 else
2133 factor = 1
2134 end
2135 local shift = lp_depth + 0.1 * factor * g_height

Now populate fab_table.
2136 fab_table.height = lp_height
2137 fab_table.depth = lp_depth
2138 fab_table.width = g_width
2139 fab_table.italic = g_italic

Unicode information.
2140 fab_table.unicode = slot
2141 fab_table.tounicode = self.utf_16BE(slot)

We calculate accent placement information the same way as we have been
doing for type a and type e characters.
2142 if g.top_accent then
2143 fab_table.top_accent = g.top_accent
2144 else
2145 if g_height > ex then
2146 fab_table.top_accent = 0.5 * g_width +
2147 slant * (g_height - ex)
2148 else

84 Implementation Adjust Fonts: Changes

2149 fab_table.top_accent = 0.5 * g_width
2150 end
2151 end
2152 fab_table.bot_accent = g.bot_accent or
2153 (0.5 * g_width - slant * ex)

Commands.
2154 fab_table.commands = {
2155 {"down", shift},
2156 {"pdf", "origin",
2157 string.format("q 1 0 0 \@percentchar s 0 0 cm", factor)},
2158 {"char", smash},
2159 {"pdf", "origin", "Q"},
2160 {"down", -shift}}
2161 return fab_table
2162 end

Similar function that returns the character subtable for a nabla (inverted in-
crement symbol/capital Delta). Again, index is the encoding slot for an in-
crement symbol, and smash is the encoding slot for a smashed version of an
increment.
2163 function mathfont:make_nabla(index, smash, slot, fontdata)
2164 local n_table = {} % n for nabla
2165 local i = fontdata.characters[index] % i for increment
2166 local i_width, i_height, i_depth, i_italic = self.glyph_info(i)

Now populate n_table.
2167 n_table.width = i_width
2168 n_table.height = i_height
2169 n_table.depth = i_depth
2170 n_table.italic = i_italic

Unicode information.
2171 n_table.unicode = slot
2172 n_table.tounicode = self.utf_16BE(slot)

Take accent placement values from the increment symbol if they exist.
2173 if i.top_accent then
2174 n_table.bot_accent = i_width - i.top_accent
2175 end
2176 if i.bot_accent then
2177 n_table.top_accent = i_width - i.bot_accent
2178 end

Commands. We reflect the increment glyph horizontally and vertically.
2179 n_table.commands = {

Adjust Fonts: Changes Implementation 85

2180 {"down", -i_height},
2181 {"right", i_width},
2182 {"pdf", "origin", "q -1 0 0 -1 0 0 cm"},
2183 {"char", smash},
2184 {"pdf", "origin", "Q"},
2185 {"right", -i_width},
2186 {"down", i_height}}
2187 return n_table
2188 end

We come to the functions that modify the font. We need to accomplish three
tasks, and we define separate functions for each one. First, we set the font’s
nomath entry to false. Second, we incorporate the modifications based on
charm information into the font, i.e. set the font’s character subtables using the
previous functions from this section. Third, we need to add a MathConstants
table. The first task is very easy.
2189 function mathfont.set_nomath_false(fontdata)
2190 fontdata.nomath = false
2191 fontdata.oldmath = false
2192 end

The second task is more involved. The basic idea is to loop through mathfont,
and whenever we find an entry that is a subtable, we treat it as charm informa-
tion that we use to modify the font object. We begin by storing the character
information from the font in chars for easier reference later.
2193 function mathfont.apply_charm_info(fontdata)
2194 local chars = fontdata.characters or {}

Before we loop through the charm data, we need to make a few changes to the
font, namely add fake angle brackets, add nabla, and trim the bounding box on
the surd. First, we add fake angle brackets. We use mathfont.extra_chars
to track where we put the extra (virtual) characters in the font.
2195 local temp = mathfont.extra_chars
2196 chars[temp] = mathfont.smash_glyph(0x2039) % smashed \lguil
2197 chars[temp+1] = mathfont.smash_glyph(0x203A) % smashed \rguil
2198 chars[temp+2] = mathfont.smash_glyph(0xAB) % smashed \llguil
2199 chars[temp+3] = mathfont.smash_glyph(0xBB) % smashed \rrguil

Now add the characters to the font.
2200 chars[mathfont.fakel] = mathfont:make_fake_angle(%\fakelangle
2201 0x2039, temp, 0x27E8, fontdata)
2202 chars[mathfont.faker] = mathfont:make_fake_angle(%\fakerangle
2203 0x203A, temp+1, 0x27E9, fontdata)
2204 chars[mathfont.fakell] = mathfont:make_fake_angle(%\fakellangle

86 Implementation Adjust Fonts: Changes

2205 0xAB, temp+2, 0x27EA, fontdata)
2206 chars[mathfont.fakerr] = mathfont:make_fake_angle(%\fakerrangle
2207 0xBB, temp+3, 0x27EB, fontdata)

If the function doesn’t have an increment character, copy a capital Delta if it
exists in the font.
2208 if chars[0x394] and (not chars[0x2206]) then
2209 chars[0x2206] = {}
2210 for k,v in pairs(chars[0x394]) do
2211 chars[0x2206][k] = v
2212 end
2213 chars[0x2206].commands = {{"char", 0x394}}
2214 end

Add the nabla (inverted increment/capital Delta) character to the font if it is
missing.
2215 if chars[0x2206] and (not chars[0x2207]) then
2216 chars[temp+8] = mathfont.smash_glyph(0x2206)
2217 chars[0x2207] = mathfont:make_nabla(
2218 0x2206, temp+8, 0x2207, fontdata)
2219 end

We trim the bounding box on the surd if the user requests it. Some text fonts
extend the bounding box of the surd past the edge of the glyph, and we trim the
edge of the box according to the values of \vsurdfactor and \hsurdfactor.
2220 if chars[0x221A] then
2221 local hsurd = tex.getcount("hsurdfactor") / 1000
2222 local vsurd = tex.getcount("vsurdfactor") / 1000
2223 chars[0x221A].width = hsurd * chars[0x221A].width
2224 chars[0x221A].height = vsurd * chars[0x221A].height
2225 end

Perform the loop. We care about entries info whose index is a number because
those entries are the charm information that determines how we modify the
font object. We ignore charm information for any characters not present in the
font.
2226 for index, info in pairs(mathfont) do
2227 if type(index) == "number" and chars[index] then

One each iteration of the loop, we start by checking the type of the current
entry because the handling of the font object varies based on the character
type. For characters of type a, we insert our character subtable into the font
object.
2228 if info.type == "a" then
2229 chars[index] = mathfont:make_a_table(index,info,fontdata)

Adjust Fonts: Changes Implementation 87

For type e we have to add entries to chars[index] and insert multiple char-
acter subtables into the font, namely one for the smashed version of the base
glyph and others corresponding to the large variants.
2230 elseif info.type == "e" then
2231 local variants_table =
2232 mathfont:make_e_table(index, info, fontdata)

First add entries to the subtable for the base glyph.
2233 for k,v in pairs(variants_table[1]) do
2234 chars[index][k] = v
2235 end

Smashed version of the glyph.
2236 chars[info.smash] = mathfont.smash_glyph(index)

Now add the large variants.
2237 for i = 1, info.num_variants, 1 do
2238 chars[info.next[i]] = variants_table[i+1]
2239 end
2240 end
2241 end
2242 end
2243 end

The populate_math_constants function is even longer because we need to
add a full MathConstants table to the font object, which has some fifty param-
eters that we need to set. (But the mechanics behind the function are simpler
than apply_charm_info.) We set the font parameters in terms of traditional
TEX \fontdimen parameters. Besides the eight essential parameters found in
all fonts, TEX traditionally uses some fifteen extra parameters to typeset math
formulas. To preserve whatever structure may already exist in the font object,
we do not override any MathConstants that the font already contains. For
brevity, we let MC be a shortcut for the MathConstants table.
2244 function mathfont.math_constants(fontdata)
2245 fontdata.MathConstants = fontdata.MathConstants or {}
2246 local MC = fontdata.MathConstants

First evaluate the dimensions from the font object that we will use in determin-
ing other math parameter values. The A_height is the height of the capital
“A” character, and the y_depth is the depth of the lower-case “y” character.
Both will be 0 if the font does not have the correct character.
2247 local size = fontdata.size or 0
2248 local ex = fontdata.parameters.x_height or 0
2249 local em = fontdata.parameters.quad or 0

88 Implementation Adjust Fonts: Changes

2250 local A_height = 0
2251 local y_depth = 0
2252 if fontdata.characters[65] then
2253 A_height = fontdata.characters[65].height or 0 % A
2254 end
2255 if fontdata.characters[121] then
2256 y_depth = fontdata.characters[121].depth or 0 % y
2257 end

We begin by setting the axis height and default rule thickness. We need to
start with these parameters because we will use them to calculate other con-
stants. We set both values to 0 initially and then change them.
2258 local axis = 0
2259 local rule_thickness = 0

Set the default rule thickness. If the font already has a value set for the pa-
rameter FractionRuleThickness, we take that as the default rule thickness,
and otherwise we set it to be 1/18 of the font size times the adjustment factor
from \rulethicknessfactor.
2260 if MC.FractionRuleThickness then
2261 rule_thickness = MC.FractionRuleThickness
2262 else
2263 local temp =
2264 tex.getcount("rulethicknessfactor") / 1000
2265 rule_thickness = (size / 18) * temp
2266 MC.FractionRuleThickness = rule_thickness
2267 end

If the font has an AxisHeight, we take that value as the axis. If the font does
not have AxisHeight already set, we set the axis to be the height of a minus
sign, which has position U+2212 (8722 in decimal). As a fallback, we set the
axis to 0.8ex if the font does not have a character in slot U+2212.
2268 if MC.AxisHeight then
2269 axis = MC.AxisHeight
2270 else
2271 if fontdata.characters[8722] then
2272 axis = fontdata.characters[8722].height - rule_thickness / 2
2273 else
2274 axis = 0.8 * ex
2275 end
2276 MC.AxisHeight = axis
2277 end

Adjust Fonts: Changes Implementation 89

Apart from the axis height and rule thickness, we can group the traditional
mathematics \fontdimen parameters into three categories: four for large op-
erators, five for fractions, and six for superscripts and subscripts. (OpenType
math does not use the fifth large-operator parameter ξ13 and the seventh script
parameter σ14.) We define variables with the same names as their traditional
references from Appendix G in the TEXBook. I have taken the design approach
of using twice the rule height as a standard minimum clearance, and I am as-
suming that script styles are roughly 70% as large as text and display styles.
We begin with the parameters for large operators.

The parameter ξ9 is the minimum clearance between the top of a large
operator and the limit above it, and we set it to be twice the rule thickness.
Before ensuring that the bottom of the upper limit is at least ξ9 away from
the operator character, TEX attempts to position the baseline of the limit at
ξ10 distance above the operator character, and we set ξ10 to be slightly larger
than ξ9. If the upper limit has no decender, TEX will raise its baseline by
ξ10, and if it has a descener, TEX will position the bottom of the descender
to be ξ9 above the operator, which in practice means it will be higher than
limits without descenders. This approach balances the desire for consistency
in whitespace with the desire for consistency in baseline height. Similarly, we
set the minimum clearance ξ11 for the lower limit to be equal to the attempted
clearance for the upper limit, and the attempted clearance ξ12 for the lower
limit will be the minimum clearance plus the average of the \scriptfont x-
height and \scriptfont A-height.
2278 local xi_9 = 2 * rule_thickness % top limit min clearance
2279 local xi_10 = xi_9 + 0.35 * y_depth % bottom limit try placement
2280 local xi_11 = xi_10 % top limit min clearance
2281 local xi_12 = xi_10 + 0.35 * (A_height + ex) % bottom attempt

Our general approach for \displaystyle fractions is to place the baseline of
the numerator numerator at a distance above the fraction rule of 1.5 times the
rule height plus descender depth plus a small extra space. The minimum clear-
ance will be the rule height, so we expect the numerator to strictly exceed the
minimum clearance in most situations. Doing so produces consistent baselines
of numerators and gives our value for σ8, the attempted height of the numera-
tor in \displaystyle fractions. For smaller styles, we use a single rule height
as clearance, so we add 0.5 ∗ rule_thickness+ y_depth scaled down by 0.7
to the rule thickness. The minimum clearance for numerator and denominator
are separate OpenType parameters, and we set them later. The extra 0.1 A-
height in the attempted clearance relative to the minimum clearance appears
because we measure attempted clearance from the axis, whereas we measure
minimum clearance from the top or bottom of the fraction rule.

90 Implementation Adjust Fonts: Changes

2282 local sigma_8 = axis + 1.5 * rule_thickness + y_depth +
2283 0.1 * A_height
2284 local sigma_9 = axis + 1.35 * rule_thickness + 0.7 * y_depth +
2285 0.07 * A_height
2286 local sigma_10 = sigma_9

Our approach in the denominators is the same except that we add half the
descender depth to the minimum clearance. This creates extra space below
the fraction rule so that the typographical color above the rule matches that
below the rule when the numerator contains descenders.
2287 local sigma_11 = -axis + 1.5 * rule_thickness +
2288 0.5 * y_depth + 1.1 * A_height
2289 local sigma_12 = -axis + 1.35 * rule_thickness +
2290 0.35 * y_depth + 0.77 * A_height

For superscripts we think in terms of the top of the superscript. We raise the
baseline of the superscript by the desired height of the superscript top minus
the \scriptfont A-height. Choosing 1.3 ∗ A_height for regular styles and
1.2 ∗ A_height for cramped styles was a design choice that worked well. The
attempted drop for subscripts is one-fifth the A-height or slightly more than
the y-depth, whichever is greater. This way the subscript baseline is slightly
lower than any descenders, and for fonts without descenders, we still clearly
lower the subscript. Setting σ18 and σ19 was another design choice that worked
well.
2291 local sigma_13 = 0.6 * A_height % attempted superscript height
2292 local sigma_15 = 0.5 * A_height % attempt for cramped scripts
2293 local sigma_16 = 1.1 * y_depth % attempted subscript lower
2294 if sigma_16 < 0.2 * A_height then
2295 sigma_16 = 0.2 * A_height
2296 end
2297 local sigma_17 = sigma_16 % sigma_16 when superscript
2298 local sigma_18 = 0.5 * A_height % superscript lower for boxed
2299 local sigma_19 = 0.1 * A_height % subscript lower for boxed

The MathConstants themselves come from the Unicode equivalents of the tra-
ditional TEX \fontdimen parameters where appropriate. Where not appropri-
ate, I made design choices as indicated. Setting the next three parameters was
purely a design choice.
2300 if not MC.DisplayOperatorMinHeight then
2301 MC.DisplayOperatorMinHeight = 1.8 * A_height
2302 end
2303 if not MC.FractionDelimiterDisplayStyleSize then
2304 MC.FractionDelimiterDisplayStyleSize = 2 * size

Adjust Fonts: Changes Implementation 91

2305 end
2306 if not MC.FractionDelimiterSize then
2307 MC.FractionDelimiterSize = 1.3 * size
2308 end
2309 if not MC.FractionDenominatorDisplayStyleShiftDown then
2310 MC.FractionDenominatorDisplayStyleShiftDown = sigma_11
2311 end
2312 if not MC.FractionDenominatorShiftDown then
2313 MC.FractionDenominatorShiftDown = sigma_12
2314 end

We set the minium clearance for the numerator to be twice the rule height in
\displaystyle and the rule height in other styles. Our approach in setting
the attempted height of the numerator (σ8 and σ9) was to add the minimum
clearance plus the descender depth plus a small extra space, so in general,
we do not expect the numerator to run into the minimum clearance. For the
denominator, we do the same thing except add half the descender depth to the
clearance, which balances the amount of color above and below the fraction
rule and is similar to what we did for the lower limits on big operators when
we set ξ11 larger than ξ9.
2315 if not MC.FractionDenominatorDisplayStyleGapMin then
2316 MC.FractionDenominatorDisplayStyleGapMin =
2317 rule_thickness + 0.5 * y_depth
2318 end % that MathConstants entry has a long name lol
2319 if not MC.FractionDenominatorGapMin then
2320 MC.FractionDenominatorGapMin =
2321 rule_thickness + 0.35 * y_depth
2322 end
2323 if not MC.FractionNumeratorDisplayStyleShiftUp then
2324 MC.FractionNumeratorDisplayStyleShiftUp = sigma_8
2325 end
2326 if not MC.FractionNumeratorShiftUp then
2327 MC.FractionNumeratorShiftUp = sigma_9
2328 end
2329 if not MC.FractionNumeratorDisplayStyleGapMin then
2330 MC.FractionNumeratorDisplayStyleGapMin = rule_thickness
2331 end
2332 if not MC.FractionNumeratorGapMin then
2333 MC.FractionNumeratorGapMin = rule_thickness
2334 end

The SkewedFractionHorizontalGap and SkewedFractionVerticalGap take
the values that LuaTEXwould set for a traditional TEX font.

92 Implementation Adjust Fonts: Changes

2335 if not MC.SkewedFractionHorizontalGap then
2336 MC.SkewedFractionHorizontalGap = 0.5 * em
2337 end
2338 if not MC.SkewedFractionVerticalGap then
2339 MC.SkewedFractionVerticalGap = ex
2340 end

The UpperLimit and LowerLimit dimensions correspond exactly to traditional
TEX math \fontdimen parameters.
2341 if not MC.UpperLimitBaselineRiseMin then
2342 MC.UpperLimitBaselineRiseMin = xi_11
2343 end
2344 if not MC.UpperLimitGapMin then
2345 MC.UpperLimitGapMin = xi_9
2346 end
2347 if not MC.LowerLimitBaselineDropMin then
2348 MC.LowerLimitBaselineDropMin = xi_12
2349 end
2350 if not MC.LowerLimitGapMin then
2351 MC.LowerLimitGapMin = xi_10
2352 end

Traditional TEX doesn’t have stack objects, but they are meant to be similar
to large operators, so we set the same parameters.
2353 if not MC.StretchStackGapBelowMin then
2354 MC.StretchStackGapBelowMin = xi_10
2355 end
2356 if not MC.StretchStackTopShiftUp then
2357 MC.StretchStackTopShiftUp = xi_11
2358 end
2359 if not MC.StretchStackGapAboveMin then
2360 MC.StretchStackGapAboveMin = xi_9
2361 end
2362 if not MC.StretchStackBottomShiftDown then
2363 MC.StretchStackBottomShiftDown = xi_12
2364 end

For the three Overbar parameters, we take the approach that the bar itself
should be as thick as the rule height. The gap will be twice the rule height,
and the extra clearance will be a single rule height.
2365 if not MC.OverbarExtraAscender then
2366 MC.OverbarExtraAscender = rule_thickness
2367 end
2368 if not MC.OverbarRuleThickness then

Adjust Fonts: Changes Implementation 93

2369 MC.OverbarRuleThickness = rule_thickness
2370 end
2371 if not MC.OverbarVerticalGap then
2372 MC.OverbarVerticalGap = 2 * rule_thickness
2373 end

For the radical sign, we take the same approach as with the Overbar parame-
ters. We insert one rule thickness of extra space above the radical symbol and
two rule thickness of extra space under it. For \textstyle and smaller, we
reduce the space to a single rule height.
2374 if not MC.RadicalExtraAscender then
2375 MC.RadicalExtraAscender = rule_thickness
2376 end
2377 if not MC.RadicalRuleThickness then
2378 MC.RadicalRuleThickness = rule_thickness
2379 end
2380 if not MC.RadicalDisplayStyleVerticalGap then
2381 MC.RadicalDisplayStyleVerticalGap = 2 * rule_thickness
2382 end
2383 if not MC.RadicalVerticalGap then
2384 MC.RadicalVerticalGap = rule_thickness
2385 end

The final three Radical parameters aren’t used if we handle degree placement
at the macro level rather than at the font level. We set them to the default
values that LuaTEX uses for traditional tfm fonts.
2386 if not MC.RadicalKernBeforeDegree then
2387 MC.RadicalKernBeforeDegree = (5/18) * em
2388 end
2389 if not MC.RadicalKernAfterDegree then
2390 MC.RadicalKernAfterDegree = (10/18) * em
2391 end
2392 if not MC.RadicalDegreeBottomRaisePercent then
2393 MC.RadicalDegreeBottomRaisePercent = 60
2394 end

The SpaceAfterScript is a design choice. Somewhat arbitrary.
2395 if not MC.SpaceAfterScript then
2396 MC.SpaceAfterScript = 0.1 * em
2397 end

The Stack parameters come from their traditional \fontdimen analogues.
2398 if not MC.StackBottomDisplayStyleShiftDown then
2399 MC.StackBottomDisplayStyleShiftDown = sigma_11

94 Implementation Adjust Fonts: Changes

2400 end
2401 if not MC.StackBottomShiftDown then
2402 MC.StackBottomShiftDown = sigma_12
2403 end
2404 if not MC.StackTopDisplayStyleShiftUp then
2405 MC.StackTopDisplayStyleShiftUp = sigma_8
2406 end
2407 if not MC.StackTopShiftUp then
2408 MC.StackTopShiftUp = sigma_10
2409 end

Traditionally TEX uses an internal method rather than a parameter to deter-
mine the minimum distance between two boxes in an \atop stack. We set the
minimum distance to be one rule thickness plus the combined minimum clear-
ance for numerators and denominators in fractions. For \displaystyle, that
gives us

rule_thickness+(2∗rule_thickness)+(2∗rule_thickness+0.5∗y_depth)

For smaller styles, we use single rule height values and scale down the y_depth
by 0.7.
2410 if not MC.StackDisplayStyleGapMin then
2411 MC.StackDisplayStyleGapMin =
2412 5 * rule_thickness + 0.5 * y_depth
2413 end
2414 if not MC.StackGapMin then
2415 MC.StackGapMin = 3 * rule_thickness + 0.35 * y_depth
2416 end

With three exceptions, superscript and subscript parameters come from tradi-
tional TEX dimensions.
2417 if not MC.SubscriptShiftDown then
2418 MC.SubscriptShiftDown = sigma_16
2419 end
2420 if not MC.SubscriptBaselineDropMin then
2421 MC.SubscriptBaselineDropMin = sigma_19
2422 end
2423 if not MC.SubscriptShiftDownWithSuperscript then
2424 MC.SubscriptShiftDownWithSuperscript = sigma_17
2425 end

The top of a subscript should be less than half the A-height. This is a some-
what arbitrary design choice.
2426 if not MC.SubscriptTopMax then

Adjust Fonts: Changes Implementation 95

2427 MC.SubscriptTopMax = 0.5 * A_height
2428 end

The minimum gap between superscripts and subscripts will be the height of
the rule. This is less space than TEX traditionally allocates.
2429 if not MC.SubSuperscriptGapMin then
2430 MC.SubSuperscriptGapMin = rule_thickness
2431 end

We set the minimum height for the bottom of a subscript to be the height
of a superscript in cramped styles minus the depth of a possible descender.
Theoretically this is the lowest that any portion of a superscript should ever
be if it contains only text.
2432 if not MC.SuperscriptBottomMin then
2433 MC.SuperscriptBottomMin = sigma_15 - 0.7 * y_depth
2434 end
2435 if not MC.SuperscriptBaselineDropMax then
2436 MC.SuperscriptBaselineDropMax = sigma_18
2437 end
2438 if not MC.SuperscriptShiftUp then
2439 MC.SuperscriptShiftUp = sigma_13
2440 end
2441 if not MC.SuperscriptShiftUpCramped then
2442 MC.SuperscriptShiftUpCramped = sigma_15
2443 end

If the superscript and subscript overlap, we choose the new position such that
the baselines of subscripts are roughly consistent across subformulas. In this
case, the bottom of the superscript box will rise at most to the point such that
a subscript containing only text at 70% of the next-larger style will align with
all similar subscripts. The top of the subscript will have approximate height
−σ16 + 0.7 ∗ A_height above the baseline, so to find our desired position for
the bottom of the superscript, we add the minimum clearance of a single rule
thickness. Putting this parameter in terms of the subscript sizing is necessary
because we don’t know how large the descender will be in a given subscript.
2444 if not MC.SuperscriptBottomMaxWithSubscript then
2445 MC.SuperscriptBottomMaxWithSubscript =
2446 -sigma_16 + 0.7 * A_height + rule_thickness
2447 end

As with the Overbar parameters, we set the extra clearance to be the rule
height and the gap to be twice the rule height.
2448 if not MC.UnderbarExtraDescender then
2449 MC.UnderbarExtraDescender = rule_thickness

96 Implementation Adjust Fonts: Changes

2450 end
2451 if not MC.UnderbarRuleThickness then
2452 MC.UnderbarRuleThickness = rule_thickness
2453 end
2454 if not MC.UnderbarVerticalGap then
2455 MC.UnderbarVerticalGap = 2 * rule_thickness
2456 end
No reason not to set MinConnectorOverlap to 0. It doesn’t matter for our
purposes because mathfont doesn’t use extensibles.
2457 if not MC.MinConnectorOverlap then
2458 MC.MinConnectorOverlap = 0
2459 end
2460 end
Time for callbacks! We create seven of them.
2461 luatexbase.create_callback("mathfont.inspect_font",
2462 "simple", mathfont.empty)
2463 luatexbase.create_callback("mathfont.pre_adjust",
2464 "simple", mathfont.empty)
2465 luatexbase.create_callback("mathfont.disable_nomath",
2466 "simple", mathfont.set_nomath_false)
2467 luatexbase.create_callback("mathfont.add_math_constants",
2468 "simple", mathfont.math_constants)
2469 luatexbase.create_callback("mathfont.fix_character_metrics",
2470 "simple", mathfont.apply_charm_info)
2471 luatexbase.create_callback("mathfont.post_adjust",
2472 "simple", mathfont.empty)
2473 luatexbase.create_callback("mathfont.finishing_touches",
2474 "simple", mathfont.empty)
The functions mathfont.info and mathfont.get_font_name are used for in-
formational messaging. The first prints a message in the log file, and the
second returns a font name.
2475 function mathfont.info(msg)
2476 texio.write_nl("log", "Package mathfont Info: " .. msg)
2477 end
2478 function mathfont.get_font_name(fontdata)
2479 return fontdata.psname or
2480 fontdata.fullname or
2481 fontdata.name or "<unknown font name>"
2482 end
The adjust_font function is what actually goes in luaotfload.patch_font.
This function calls the six callbacks at appropriate times and writes informa-

Adjust Fonts: Metrics Implementation 97

tional messages in the log file. We adjust the font object when nomath is
false and the font is loaded in base mode. I am assuming that the user will
usually load text-only fonts in node or harf mode, and then mathfont does not
need to (and probably should not) alter that particular font. Unfortunately,
there does not appear to be a better way to notate that we will use a font for
text versus math when declaring it with \DeclareFontSize. I would ideally
set script=math with the rest of the OpenType font features, but luaotfload
ignores script declarations that aren’t built into the font.
2483 function mathfont.adjust_font(fontdata)
2484 luatexbase.call_callback("mathfont.inspect_font", fontdata)
2485 local the_font = mathfont.get_font_name(fontdata)
2486 if fontdata.nomath and
2487 fontdata.properties and
2488 fontdata.properties.mode and
2489 fontdata.properties.mode == "base" then
2490 luatexbase.call_callback("mathfont.pre_adjust",
2491 fontdata)
2492 luatexbase.call_callback("mathfont.disable_nomath",
2493 fontdata)
2494 luatexbase.call_callback("mathfont.add_math_constants",
2495 fontdata)
2496 luatexbase.call_callback("mathfont.fix_character_metrics",
2497 fontdata)
2498 luatexbase.call_callback("mathfont.post_adjust",
2499 fontdata)
2500 end
2501 luatexbase.call_callback("mathfont.finishing_touches", fontdata)
2502 end

Finally, add the processing function to luaotfload’s patch_font callback.
2503 luatexbase.add_to_callback("luaotfload.patch_font",
2504 mathfont.adjust_font, "mathfont.adjust_font")

11 Adjust Fonts: Metrics
This section contains the default charm information for the characters that
mathfont adjusts upon loading a font. We start with uppercase Latin letters.
The first set of numbers applies to upright fonts, and the second set applies to
italic/slanted fonts.
2505 mathfont:new_type_a(0x41, {0,0,0,0}, {50,0,150,0}) %A
2506 mathfont:new_type_a(0x42, {0,0,0,0}, {0,0,0,0}) %B

98 Implementation Adjust Fonts: Metrics

2507 mathfont:new_type_a(0x43, {0,0,50,0}, {0,0,50,0}) %C
2508 mathfont:new_type_a(0x44, {0,0,0,0}, {50,0,0,0}) %D
2509 mathfont:new_type_a(0x45, {0,0,0,0}, {50,0,0,0}) %E
2510 mathfont:new_type_a(0x46, {0,0,0,0}, {50,0,0,0}) %F
2511 mathfont:new_type_a(0x47, {0,0,0,0}, {0,0,0,0}) %G
2512 mathfont:new_type_a(0x48, {0,0,0,0}, {50,0,0,0}) %H
2513 mathfont:new_type_a(0x49, {0,0,0,0}, {50,0,50,0}) %I
2514 mathfont:new_type_a(0x4A, {0,0,100,0}, {50,0,100,0}) %J
2515 mathfont:new_type_a(0x4B, {0,0,0,0}, {50,0,0,0}) %K
2516 mathfont:new_type_a(0x4C, {0,0,-200,0}, {50,0,-100,0}) %L
2517 mathfont:new_type_a(0x4D, {0,0,0,0}, {50,0,0,0}) %M
2518 mathfont:new_type_a(0x4E, {0,0,0,0}, {50,0,0,0}) %N
2519 mathfont:new_type_a(0x4F, {0,0,0,0}, {0,0,50,0}) %O
2520 mathfont:new_type_a(0x50, {0,0,0,0}, {50,0,0,0}) %P
2521 mathfont:new_type_a(0x51, {0,0,0,0}, {0,0,50,0}) %Q
2522 mathfont:new_type_a(0x52, {0,0,0,0}, {50,0,0,0}) %R
2523 mathfont:new_type_a(0x53, {0,0,0,0}, {0,0,0,0}) %S
2524 mathfont:new_type_a(0x54, {0,0,0,0}, {0,0,0,0}) %T
2525 mathfont:new_type_a(0x55, {0,0,0,0}, {0,0,0,0}) %U
2526 mathfont:new_type_a(0x56, {0,0,0,0}, {0,0,0,0}) %V
2527 mathfont:new_type_a(0x57, {0,0,0,0}, {0,0,0,0}) %W
2528 mathfont:new_type_a(0x58, {0,0,0,0}, {50,0,0,0}) %X
2529 mathfont:new_type_a(0x59, {0,0,0,0}, {0,0,0,0}) %Y
2530 mathfont:new_type_a(0x5A, {0,0,0,0}, {50,0,0,0}) %Z

Lowercase Latin letters.
2531 mathfont:new_type_a(0x61, {0,0,0,0}, {0,0,0,0}) %a
2532 mathfont:new_type_a(0x62, {0,0,0,0}, {0,0,0,0}) %b
2533 mathfont:new_type_a(0x63, {0,0,0,0}, {0,0,100,0}) %c
2534 mathfont:new_type_a(0x64, {0,0,0,0}, {0,0,0,0}) %d
2535 mathfont:new_type_a(0x65, {0,0,0,0}, {0,0,100,0}) %e
2536 mathfont:new_type_a(0x66, {0,400,300,0}, {150,0,50,0}) %f
2537 mathfont:new_type_a(0x67, {0,0,0,0}, {0,0,0,0}) %g
2538 mathfont:new_type_a(0x68, {0,0,0,0}, {0,0,0,0}) %h
2539 mathfont:new_type_a(0x69, {0,0,0,0}, {0,0,0,0}) %i
2540 mathfont:new_type_a(0x6A, {100,0,0,0}, {200,0,0,0}) %j
2541 mathfont:new_type_a(0x6B, {0,0,0,0}, {0,0,0,0}) %k
2542 mathfont:new_type_a(0x6C, {0,0,0,0}, {0,0,0,0}) %l
2543 mathfont:new_type_a(0x6D, {0,0,0,0}, {0,0,50,0}) %m
2544 mathfont:new_type_a(0x6E, {0,0,0,0}, {0,0,50,0}) %n
2545 mathfont:new_type_a(0x6F, {0,0,0,0}, {0,0,100,0}) %o
2546 mathfont:new_type_a(0x70, {0,0,0,0}, {0,0,100,0}) %p
2547 mathfont:new_type_a(0x71, {0,0,0,0}, {0,0,0,0}) %q

Adjust Fonts: Metrics Implementation 99

2548 mathfont:new_type_a(0x72, {0,0,0,0}, {0,0,50,0}) %r
2549 mathfont:new_type_a(0x73, {0,0,0,0}, {0,0,0,0}) %s
2550 mathfont:new_type_a(0x74, {0,0,0,0}, {0,0,0,0}) %t
2551 mathfont:new_type_a(0x75, {0,0,0,0}, {0,0,0,0}) %u
2552 mathfont:new_type_a(0x76, {0,0,0,0}, {0,0,50,0}) %v
2553 mathfont:new_type_a(0x77, {0,0,0,0}, {0,0,50,0}) %w
2554 mathfont:new_type_a(0x78, {0,0,0,0}, {0,0,50,0}) %x
2555 mathfont:new_type_a(0x79, {0,0,0,0}, {0,0,50,0}) %y
2556 mathfont:new_type_a(0x7A, {0,0,0,0}, {0,0,0,0}) %z
2557 mathfont:new_type_a(0x131, {0,0,0,0}, {0,0,50,0}) %\imath
2558 mathfont:new_type_a(0x237, {0,0,0,0}, {200,0,50,0}) %\jmath

Uppercase Greek characters.
2559 mathfont:new_type_a(0x391, {0,0,0,0}, {50,0,150,0}) %\Alpha
2560 mathfont:new_type_a(0x392, {0,0,0,0}, {50,0,0,0}) %\Beta
2561 mathfont:new_type_a(0x393, {0,0,0,0}, {50,0,0,0}) %\Gamma
2562 mathfont:new_type_a(0x394, {0,0,0,0}, {50,0,150,0}) %\Delta
2563 mathfont:new_type_a(0x395, {0,0,0,0}, {50,0,0,0}) %\Epsilon
2564 mathfont:new_type_a(0x396, {0,0,0,0}, {50,0,0,0}) %\Zeta
2565 mathfont:new_type_a(0x397, {0,0,0,0}, {50,0,0,0}) %\Eta
2566 mathfont:new_type_a(0x398, {0,0,0,0}, {0,0,50,0}) %\Theta
2567 mathfont:new_type_a(0x399, {0,0,0,0}, {50,0,0,0}) %\Iota
2568 mathfont:new_type_a(0x39A, {0,0,0,0}, {50,0,0,0}) %\Kappa
2569 mathfont:new_type_a(0x39B, {0,0,0,0}, {0,0,150,0}) %\Lambda
2570 mathfont:new_type_a(0x39C, {0,0,0,0}, {50,0,0,0}) %\Mu
2571 mathfont:new_type_a(0x39D, {0,0,0,0}, {50,0,0,0}) %\Nu
2572 mathfont:new_type_a(0x39E, {0,0,0,0}, {0,0,0,0}) %\Xi
2573 mathfont:new_type_a(0x39F, {0,0,0,0}, {0,0,50,0}) %\Omicron
2574 mathfont:new_type_a(0x3A0, {0,0,0,0}, {50,0,0,0}) %\Pi
2575 mathfont:new_type_a(0x3A1, {0,0,0,0}, {50,0,0,0}) %\Rho
2576 mathfont:new_type_a(0x3A3, {0,0,0,0}, {50,0,0,0}) %\Sigma
2577 mathfont:new_type_a(0x3A4, {0,0,0,0}, {0,0,0,0}) %\Tau
2578 mathfont:new_type_a(0x3A5, {0,0,0,0}, {0,0,0,0}) %\Upsilon
2579 mathfont:new_type_a(0x3A6, {0,0,0,0}, {0,0,50,0}) %\Phi
2580 mathfont:new_type_a(0x3A7, {0,0,0,0}, {50,0,0,0}) %\Chi
2581 mathfont:new_type_a(0x3A8, {0,0,0,0}, {0,0,0,0}) %\Psi
2582 mathfont:new_type_a(0x3A9, {0,0,0,0}, {0,0,50,0}) %\Omega
2583 mathfont:new_type_a(0x3F4, {0,0,0,0}, {0,0,50,0}) %\varTheta

Lowercase Greek characters.
2584 mathfont:new_type_a(0x3B1, {0,0,0,0}, {0,0,0,0}) %\alpha
2585 mathfont:new_type_a(0x3B2, {0,0,0,0}, {0,0,0,0}) %\beta
2586 mathfont:new_type_a(0x3B3, {0,0,0,0}, {0,0,0,0}) %\gamma

100 Implementation Adjust Fonts: Metrics

2587 mathfont:new_type_a(0x3B4, {0,0,0,0}, {0,0,0,0}) %\delta
2588 mathfont:new_type_a(0x3B5, {0,0,50,0}, {0,0,50,0}) %\epsilon
2589 mathfont:new_type_a(0x3B6, {0,0,50,0}, {0,0,0,0}) %\zeta
2590 mathfont:new_type_a(0x3B7, {0,0,50,0}, {0,0,0,0}) %\eta
2591 mathfont:new_type_a(0x3B8, {0,0,0,0}, {0,0,100,0}) %\theta
2592 mathfont:new_type_a(0x3B9, {0,0,0,0}, {0,0,50,0}) %\iota
2593 mathfont:new_type_a(0x3BA, {0,0,0,0}, {0,0,0,0}) %\kappa
2594 mathfont:new_type_a(0x3BB, {0,0,-150,0}, {0,0,-100,0}) %\lambda
2595 mathfont:new_type_a(0x3BC, {0,0,0,0}, {0,0,100,0}) %\mu
2596 mathfont:new_type_a(0x3BD, {0,0,0,0}, {0,0,50,0}) %\nu
2597 mathfont:new_type_a(0x3BE, {0,0,0,0}, {0,0,50,0}) %\xi
2598 mathfont:new_type_a(0x3BF, {0,0,0,0}, {0,0,50,0}) %\omicron
2599 mathfont:new_type_a(0x3C0, {0,0,0,0}, {0,0,0,0}) %\pi
2600 mathfont:new_type_a(0x3C1, {0,0,0,0}, {0,0,50,0}) %\rho
2601 mathfont:new_type_a(0x3C3, {0,0,0,0}, {0,0,0,0}) %\sigma
2602 mathfont:new_type_a(0x3C4, {0,0,0,0}, {0,0,50,0}) %\tau
2603 mathfont:new_type_a(0x3C5, {0,0,0,0}, {0,0,0,0}) %\upsilon
2604 mathfont:new_type_a(0x3C6, {0,0,0,0}, {0,0,0,0}) %\phi
2605 mathfont:new_type_a(0x3C7, {0,0,0,0}, {50,0,50,0}) %\chi
2606 mathfont:new_type_a(0x3C8, {0,0,0,0}, {0,0,0,0}) %\psi
2607 mathfont:new_type_a(0x3C9, {0,0,0,0}, {0,0,50,0}) %\omega
2608 mathfont:new_type_a(0x3D0, {0,0,0,0}, {0,0,0,0}) %\varbeta
2609 mathfont:new_type_a(0x3F5, {0,0,0,0}, {0,0,50,0}) %\varepsilon
2610 mathfont:new_type_a(0x3D1, {0,0,150,0}, {0,0,100,0}) %\vartheta
2611 mathfont:new_type_a(0x3F1, {0,0,0,0}, {0,0,50,0}) %\varrho
2612 mathfont:new_type_a(0x3C2, {0,0,100,0}, {0,0,50,0}) %\varsigma
2613 mathfont:new_type_a(0x3D5, {0,0,0,0}, {0,0,100,0}) %\varphi
We add the charm information for delimiters and other resizable characters.
We divide the characters into four categories depending on how we want to
magnify the base glyph to create large variants: delimiters, big operators, ver-
tical characters, and the integral sign. We automate the process by putting
charm information for each category of character into a separate table and
feeding the whole thing to a wrapper around :new_type_e.
2614 local delim_glyphs = {40, % (
2615 41, %)
2616 47, % /
2617 91, % [
2618 92, % backslash
2619 93, %]
2620 123, % {
2621 125, % }
2622 8249, % \lguil

Adjust Fonts: Metrics Implementation 101

2623 8250, % \rguil
2624 171, % \llguil
2625 187, % \rrguil
2626 mathfont.fakel, % \fakelangle
2627 mathfont.faker, % \fakerangle
2628 mathfont.fakell, % \fakellangle
2629 mathfont.fakerr} % \fakerrangle
2630 local big_op_glyphs = {33, % !
2631 35, % #
2632 36, % $
2633 37, % %
2634 38, % &
2635 43, % +
2636 63, % ?
2637 64, % @
2638 167, % \S
2639 215, % \times
2640 247, % \div
2641 8719, % \prod
2642 8721, % \sum
2643 8720, % \coprod
2644 8897, % \bigvee
2645 8896, % \bigwedge
2646 8899, % \bigcup
2647 8898, % \bigcap
2648 10753, % \bigoplus
2649 10754, % \bigotimes
2650 10752, % \bigodot
2651 10757, % \bigsqcap
2652 10758} % \bigsqcup
2653 local vert_glyphs = {124, 8730} % | and \surd
2654 local int_glyphs = {8747, % \intop
2655 8748, % \iint
2656 8749, % \iiint
2657 8750, % \oint
2658 8751, % \oiint
2659 8752} % \oiiint

Each category of type e character will have its own table of charm information
with different magnification values. each table is initially empty.
2660 local delim_scale = {}
2661 local big_op_scale = {}
2662 local vert_scale = {}

102 Implementation Adjust Fonts: Metrics

2663 local int_scale = {}

Populate each table with magnification information. For every type e character
we will create fifteen larger variants in the font. Delimiters stretch mostly
vertically and some horzontally. Vertical characters stretch vertically only, so
their horizontal scale factors are all constant. Big operators stretch the same
in vertical and horizoontal directions.
2664 for i = 1, 15, 1 do
2665 delim_scale[2*i-1] = 1000 + 100*i % delimiters - horizontal
2666 delim_scale[2*i] = 1000 + 500*i % delimiters - vertical
2667 vert_scale[2*i-1] = 1000
2668 vert_scale[2*i] = 1000 + 500*i % vertically scaled chars
2669 big_op_scale[2*i-1] = 1000 + 100*i % big operators - horizontal
2670 big_op_scale[2*i] = 1000 + 100*i % big operators - vertical

The integral sign is different. Visually, we would like an integral symbol that
is larger than the large operators, which means that the integral sign should
have no variants between the font’s value of \Umathoperatorsize and the
desired larger size. Accordingly, I decided it would be easiest to have large
variants of the integral sign jump by large enough scale factors that the small-
est variant larger than the regular size is already significantly larger than the
\Umathoperatorsize setting in populate_math_constants. Effectively this
means that the user should take the size of the integral operator as fixed and
should set \Umathoperatorsize to make all other big operators the desired
size.
2671 int_scale[2*i-1] = 1000 + 500*i % integral sign - horizontal
2672 int_scale[2*i] = 1000 + 1500*i % integral sign - vertical
2673 end

We do not modify accent placement or italic corrections.
2674 delim_scale[31] = 0
2675 delim_scale[32] = 0
2676 delim_scale[33] = 0
2677 big_op_scale[31] = 0
2678 big_op_scale[32] = 0
2679 big_op_scale[33] = 0
2680 vert_scale[31] = 0
2681 vert_scale[32] = 0
2682 vert_scale[33] = 0
2683 int_scale[31] = 0
2684 int_scale[32] = 0
2685 int_scale[33] = 0

Unicode Hex Values Implementation 103

The wrapper for :new_type_e. We feed it a list of characters to create charm
information for and a table of scaling information.
2686 function mathfont:add_extensible_variants(char_list, scale_list)
2687 local variants = (\string# scale_list - 3) / 2
2688 for i = 1, \string# char_list, 1 do
2689 self:new_type_e(char_list[i], scale_list, scale_list)
2690 end
2691 end

Add the charm information for the type e characters.
2692 mathfont:add_extensible_variants(delim_glyphs, delim_scale)
2693 mathfont:add_extensible_variants(big_op_glyphs, big_op_scale)
2694 mathfont:add_extensible_variants(vert_glyphs, vert_scale)
2695 mathfont:add_extensible_variants(int_glyphs, int_scale)

Finally, end the call to \directlua and balance the preceeding conditional.
2696 }
2697 \fi % matches previous \ifM@adjust@font

12 Unicode Hex Values
For this section, we don’t want any \endlinechars present when TEX scans
things because we want to eliminate any extra spaces, so before anything else,
we set \endlinechar to −1.
2698 \count@\endlinechar
2699 \endlinechar\m@ne

We have to save \mathchar@type to use after \begin{document} because
LATEX feeds it to \@onlypreamble.
2700 \let\@@mathchar@type\mathchar@type

We define \M@sym@, which is a wrapper around \Umathchardef or \Umathcode
and is mathfont’s version of \DeclareMathSymbol. Before version 3.0, mathfont
used \DeclareMathSymbol, but we create our own version to support Unicode
input. The command first checks whether #1 is a control sequence. If yes, we
define it using \Umathchardef and again using \Umathcode. Otherwise, we
define it once with \Umathcode.
2701 \def\M@sym@#1#2#3#4{
2702 \ifcat\relax\noexpand#1

Check if we’re redefining a previously declared math symbol. We put mathchar
in \if@ so we don’t have to check for \mathchar and \Umathchar separately.
We use \string so that the letters in mathchar have catcode 12 when we check

104 Implementation Unicode Hex Values

for their presence in \meaning#1 with \in@. If #1 is undefined, \in@ will set
\ifin@ to false.
2703 \expandafter\in@\expanded
2704 {{\expandafter\@gobble\string\mathchar}{\meaning#1}}
2705 \ifin@

Now redeclare the symbol.
2706 \Umathchardef#1=+\@@mathchar@type#2
2707 +\csname sym#3\endcsname+#4\relax

The next two lines implement Unicode input.
2708 \Umathcode #4=+\@@mathchar@type#2
2709 +\csname sym#3\endcsname+#4\relax

If #1 does not code for a math symbol, we check whether it is already defined.
If no, we define it, and if yes, we issue an error. Again, we implement Unicode
input.
2710 \else
2711 \ifx#1\@undefined
2712 \Umathchardef#1=+\@@mathchar@type#2
2713 +\csname sym#3\endcsname+#4\relax
2714 \Umathcode #4=+\@@mathchar@type#2
2715 +\csname sym#3\endcsname+#4\relax
2716 \else
2717 \@latex@error{Command "\string#1" already defined}\@eha
2718 \fi
2719 \fi

Easy to deal with the case where #1 is a single character.
2720 \else
2721 \Umathcode`#1=+\@@mathchar@type#2+\csname sym#3\endcsname
2722 +#4\relax
2723 \fi}

Similar deal for accents; \M@acc@ is our version of \DeclareMathAccent. Newer
versions of the LATEX kernel define math accents as robust commands, so we
have to incorporate a check for robustness as well. We let \@tempswa be true
or false according to whether we can (re)define the control sequence #1 as a
math accent.
2724 \def\M@acc@#1#2#3#4{
2725 \begingroup
2726 \@tempswatrue
2727 \ifdefined#1
2728 \expandafter\in@\expanded{
2729 {\expandafter\@gobble\string\mathaccent}

Unicode Hex Values Implementation 105

2730 {\meaning#1}}
2731 \ifin@
2732 \else
2733 \begingroup
2734 \escapechar\m@ne
2735 \expandafter
2736 \endgroup
2737 \expandafter\in@\expanded{
2738 {\string\mathaccent}
2739 {\expandafter\meaning\csname\string#1\space\endcsname}}
2740 \ifin@
2741 \else
2742 \@tempswafalse
2743 \fi
2744 \fi
2745 \fi
2746 \expandafter
2747 \endgroup

Now (re)define the command or issue an error.
2748 \if@tempswa
2749 \protected\edef#1{\Umathaccent+\@@mathchar@type#2
2750 +\csname sym#3\endcsname+#4\relax}
2751 \else
2752 \@latex@error{Command "\string#1" already defined}\@eha
2753 \fi}

Set upper-case Latin characters. We use an \edef for \M@upper@id because
every expansion now will save LATEX twenty-six expansions later when it evalu-
ates each \DeclareMathSymbol. If the user has enabled Lua font adjustments,
we set the mathcodes to use encoding slots in the Math Alphanumeric Symbols
block.
2754 \def\M@upper@set{\M@upper@set
2755 \edef\M@upper@id{M\@tempc-\M@uppershape}
2756 \M@sym@{A}{\mathalpha}{\M@upper@id}{`A}
2757 \M@sym@{B}{\mathalpha}{\M@upper@id}{`B}
2758 \M@sym@{C}{\mathalpha}{\M@upper@id}{`C}
2759 \M@sym@{D}{\mathalpha}{\M@upper@id}{`D}
2760 \M@sym@{E}{\mathalpha}{\M@upper@id}{`E}
2761 \M@sym@{F}{\mathalpha}{\M@upper@id}{`F}
2762 \M@sym@{G}{\mathalpha}{\M@upper@id}{`G}
2763 \M@sym@{H}{\mathalpha}{\M@upper@id}{`H}
2764 \M@sym@{I}{\mathalpha}{\M@upper@id}{`I}

106 Implementation Unicode Hex Values

2765 \M@sym@{J}{\mathalpha}{\M@upper@id}{`J}
2766 \M@sym@{K}{\mathalpha}{\M@upper@id}{`K}
2767 \M@sym@{L}{\mathalpha}{\M@upper@id}{`L}
2768 \M@sym@{M}{\mathalpha}{\M@upper@id}{`M}
2769 \M@sym@{N}{\mathalpha}{\M@upper@id}{`N}
2770 \M@sym@{O}{\mathalpha}{\M@upper@id}{`O}
2771 \M@sym@{P}{\mathalpha}{\M@upper@id}{`P}
2772 \M@sym@{Q}{\mathalpha}{\M@upper@id}{`Q}
2773 \M@sym@{R}{\mathalpha}{\M@upper@id}{`R}
2774 \M@sym@{S}{\mathalpha}{\M@upper@id}{`S}
2775 \M@sym@{T}{\mathalpha}{\M@upper@id}{`T}
2776 \M@sym@{U}{\mathalpha}{\M@upper@id}{`U}
2777 \M@sym@{V}{\mathalpha}{\M@upper@id}{`V}
2778 \M@sym@{W}{\mathalpha}{\M@upper@id}{`W}
2779 \M@sym@{X}{\mathalpha}{\M@upper@id}{`X}
2780 \M@sym@{Y}{\mathalpha}{\M@upper@id}{`Y}
2781 \M@sym@{Z}{\mathalpha}{\M@upper@id}{`Z}}

Set lower-case Latin characters.
2782 \def\M@lower@set{\M@lower@set
2783 \edef\M@lower@id{M\@tempc-\M@lowershape}
2784 \M@sym@{a}{\mathalpha}{\M@lower@id}{`a}
2785 \M@sym@{b}{\mathalpha}{\M@lower@id}{`b}
2786 \M@sym@{c}{\mathalpha}{\M@lower@id}{`c}
2787 \M@sym@{d}{\mathalpha}{\M@lower@id}{`d}
2788 \M@sym@{e}{\mathalpha}{\M@lower@id}{`e}
2789 \M@sym@{f}{\mathalpha}{\M@lower@id}{`f}
2790 \M@sym@{g}{\mathalpha}{\M@lower@id}{`g}
2791 \M@sym@{h}{\mathalpha}{\M@lower@id}{`h}
2792 \M@sym@{i}{\mathalpha}{\M@lower@id}{`i}
2793 \M@sym@{j}{\mathalpha}{\M@lower@id}{`j}
2794 \M@sym@{k}{\mathalpha}{\M@lower@id}{`k}
2795 \M@sym@{l}{\mathalpha}{\M@lower@id}{`l}
2796 \M@sym@{m}{\mathalpha}{\M@lower@id}{`m}
2797 \M@sym@{n}{\mathalpha}{\M@lower@id}{`n}
2798 \M@sym@{o}{\mathalpha}{\M@lower@id}{`o}
2799 \M@sym@{p}{\mathalpha}{\M@lower@id}{`p}
2800 \M@sym@{q}{\mathalpha}{\M@lower@id}{`q}
2801 \M@sym@{r}{\mathalpha}{\M@lower@id}{`r}
2802 \M@sym@{s}{\mathalpha}{\M@lower@id}{`s}
2803 \M@sym@{t}{\mathalpha}{\M@lower@id}{`t}
2804 \M@sym@{u}{\mathalpha}{\M@lower@id}{`u}
2805 \M@sym@{v}{\mathalpha}{\M@lower@id}{`v}

Unicode Hex Values Implementation 107

2806 \M@sym@{w}{\mathalpha}{\M@lower@id}{`w}
2807 \M@sym@{x}{\mathalpha}{\M@lower@id}{`x}
2808 \M@sym@{y}{\mathalpha}{\M@lower@id}{`y}
2809 \M@sym@{z}{\mathalpha}{\M@lower@id}{`z}
2810 \M@sym@{\imath}{\mathalpha}{\M@lower@id}{"131}
2811 \M@sym@{\jmath}{\mathalpha}{\M@lower@id}{"237}
2812 \let\hbar\@undefined
2813 \M@sym@{\hbar}{\mathord}{\M@lower@id}{"127}}

Set diacritics.
2814 \def\M@diacritics@set{\M@diacritics@set
2815 \edef\M@diacritics@id{M\@tempc-\M@diacriticsshape}
2816 \M@acc@{\acute} {\mathalpha}{\M@diacritics@id}{"B4}
2817 \M@acc@{\aacute} {\mathalpha}{\M@diacritics@id}{"2DD}
2818 \M@acc@{\dot} {\mathalpha}{\M@diacritics@id}{"2D9}
2819 \M@acc@{\ddot} {\mathalpha}{\M@diacritics@id}{"A8}
2820 \M@acc@{\grave} {\mathalpha}{\M@diacritics@id}{"60}
2821 \M@acc@{\breve} {\mathalpha}{\M@diacritics@id}{"2D8}
2822 \M@acc@{\hat} {\mathalpha}{\M@diacritics@id}{"2C6}
2823 \M@acc@{\check} {\mathalpha}{\M@diacritics@id}{"2C7}
2824 \M@acc@{\bar} {\mathalpha}{\M@diacritics@id}{"2C9}
2825 \M@acc@{\mathring}{\mathalpha}{\M@diacritics@id}{"2DA}
2826 \M@acc@{\tilde} {\mathalpha}{\M@diacritics@id}{"2DC}}

Set capital Greek characters.
2827 \def\M@greekupper@set{\M@greekupper@set
2828 \edef\M@greekupper@id{M\@tempc-\M@greekuppershape}
2829 \M@sym@{\Alpha} {\mathalpha}{\M@greekupper@id}{"391}
2830 \M@sym@{\Beta} {\mathalpha}{\M@greekupper@id}{"392}
2831 \M@sym@{\Gamma} {\mathalpha}{\M@greekupper@id}{"393}
2832 \M@sym@{\Delta} {\mathalpha}{\M@greekupper@id}{"394}
2833 \M@sym@{\Epsilon} {\mathalpha}{\M@greekupper@id}{"395}
2834 \M@sym@{\Zeta} {\mathalpha}{\M@greekupper@id}{"396}
2835 \M@sym@{\Eta} {\mathalpha}{\M@greekupper@id}{"397}
2836 \M@sym@{\Theta} {\mathalpha}{\M@greekupper@id}{"398}
2837 \M@sym@{\Iota} {\mathalpha}{\M@greekupper@id}{"399}
2838 \M@sym@{\Kappa} {\mathalpha}{\M@greekupper@id}{"39A}
2839 \M@sym@{\Lambda} {\mathalpha}{\M@greekupper@id}{"39B}
2840 \M@sym@{\Mu} {\mathalpha}{\M@greekupper@id}{"39C}
2841 \M@sym@{\Nu} {\mathalpha}{\M@greekupper@id}{"39D}
2842 \M@sym@{\Xi} {\mathalpha}{\M@greekupper@id}{"39E}
2843 \M@sym@{\Omicron} {\mathalpha}{\M@greekupper@id}{"39F}
2844 \M@sym@{\Pi} {\mathalpha}{\M@greekupper@id}{"3A0}

108 Implementation Unicode Hex Values

2845 \M@sym@{\Rho} {\mathalpha}{\M@greekupper@id}{"3A1}
2846 \M@sym@{\Sigma} {\mathalpha}{\M@greekupper@id}{"3A3}
2847 \M@sym@{\Tau} {\mathalpha}{\M@greekupper@id}{"3A4}
2848 \M@sym@{\Upsilon} {\mathalpha}{\M@greekupper@id}{"3A5}
2849 \M@sym@{\Phi} {\mathalpha}{\M@greekupper@id}{"3A6}
2850 \M@sym@{\Chi} {\mathalpha}{\M@greekupper@id}{"3A7}
2851 \M@sym@{\Psi} {\mathalpha}{\M@greekupper@id}{"3A8}
2852 \M@sym@{\Omega} {\mathalpha}{\M@greekupper@id}{"3A9}
2853 \M@sym@{\varTheta}{\mathalpha}{\M@greekupper@id}{"3F4}

Declare \increment and \nabla if they haven’t already been declared in the
symbols or extsymbols fonts.
2854 \ifM@adjust@font
2855 \ifM@symbols\else
2856 \M@sym@{\increment}
2857 {\mathord}{\M@greekupper@id}{"2206}
2858 \M@sym@{\nabla}
2859 {\mathord}{\M@greekupper@id}{"2207}
2860 \fi
2861 \else
2862 \ifM@symbols\else
2863 \M@sym@{\increment}
2864 {\mathord}{\M@greekupper@id}{"2206}
2865 \fi
2866 \ifM@extsymbols\else
2867 \M@sym@{\nabla}
2868 {\mathord}{\M@greekupper@id}{"2207}
2869 \fi
2870 \fi}

Set minuscule Greek characters.
2871 \def\M@greeklower@set{\M@greeklower@set
2872 \edef\M@greeklower@id{M\@tempc-\M@greeklowershape}
2873 \M@sym@{\alpha} {\mathalpha}{\M@greeklower@id}{"3B1}
2874 \M@sym@{\beta} {\mathalpha}{\M@greeklower@id}{"3B2}
2875 \M@sym@{\gamma} {\mathalpha}{\M@greeklower@id}{"3B3}
2876 \M@sym@{\delta} {\mathalpha}{\M@greeklower@id}{"3B4}
2877 \M@sym@{\epsilon} {\mathalpha}{\M@greeklower@id}{"3B5}
2878 \M@sym@{\zeta} {\mathalpha}{\M@greeklower@id}{"3B6}
2879 \M@sym@{\eta} {\mathalpha}{\M@greeklower@id}{"3B7}
2880 \M@sym@{\theta} {\mathalpha}{\M@greeklower@id}{"3B8}
2881 \M@sym@{\iota} {\mathalpha}{\M@greeklower@id}{"3B9}
2882 \M@sym@{\kappa} {\mathalpha}{\M@greeklower@id}{"3BA}

Unicode Hex Values Implementation 109

2883 \M@sym@{\lambda} {\mathalpha}{\M@greeklower@id}{"3BB}
2884 \M@sym@{\mu} {\mathalpha}{\M@greeklower@id}{"3BC}
2885 \M@sym@{\nu} {\mathalpha}{\M@greeklower@id}{"3BD}
2886 \M@sym@{\xi} {\mathalpha}{\M@greeklower@id}{"3BE}
2887 \M@sym@{\omicron} {\mathalpha}{\M@greeklower@id}{"3BF}
2888 \M@sym@{\pi} {\mathalpha}{\M@greeklower@id}{"3C0}
2889 \M@sym@{\rho} {\mathalpha}{\M@greeklower@id}{"3C1}
2890 \M@sym@{\sigma} {\mathalpha}{\M@greeklower@id}{"3C3}
2891 \M@sym@{\tau} {\mathalpha}{\M@greeklower@id}{"3C4}
2892 \M@sym@{\upsilon} {\mathalpha}{\M@greeklower@id}{"3C5}
2893 \M@sym@{\phi} {\mathalpha}{\M@greeklower@id}{"3C6}
2894 \M@sym@{\chi} {\mathalpha}{\M@greeklower@id}{"3C7}
2895 \M@sym@{\psi} {\mathalpha}{\M@greeklower@id}{"3C8}
2896 \M@sym@{\omega} {\mathalpha}{\M@greeklower@id}{"3C9}
2897 \M@sym@{\varbeta} {\mathalpha}{\M@greeklower@id}{"3D0}
2898 \M@sym@{\varepsilon}{\mathalpha}{\M@greeklower@id}{"3F5}
2899 \M@sym@{\varkappa} {\mathalpha}{\M@greeklower@id}{"3F0}
2900 \M@sym@{\vartheta} {\mathalpha}{\M@greeklower@id}{"3D1}
2901 \M@sym@{\varrho} {\mathalpha}{\M@greeklower@id}{"3F1}
2902 \M@sym@{\varsigma} {\mathalpha}{\M@greeklower@id}{"3C2}
2903 \M@sym@{\varphi} {\mathalpha}{\M@greeklower@id}{"3D5}}

Set capital ancient Greek characters.
2904 \def\M@agreekupper@set{\M@agreekupper@set
2905 \edef\M@agreekupper@id{M\@tempc-\M@agreekuppershape}
2906 \M@sym@{\Heta} {\mathalpha}{\M@agreekupper@id}{"370}
2907 \M@sym@{\Sampi} {\mathalpha}{\M@agreekupper@id}{"3E0}
2908 \M@sym@{\Digamma} {\mathalpha}{\M@agreekupper@id}{"3DC}
2909 \M@sym@{\Koppa} {\mathalpha}{\M@agreekupper@id}{"3D8}
2910 \M@sym@{\Stigma} {\mathalpha}{\M@agreekupper@id}{"3DA}
2911 \M@sym@{\Sho} {\mathalpha}{\M@agreekupper@id}{"3F7}
2912 \M@sym@{\San} {\mathalpha}{\M@agreekupper@id}{"3FA}
2913 \M@sym@{\varSampi} {\mathalpha}{\M@agreekupper@id}{"372}
2914 \M@sym@{\varDigamma}{\mathalpha}{\M@agreekupper@id}{"376}
2915 \M@sym@{\varKoppa} {\mathalpha}{\M@agreekupper@id}{"3DE}}

Set minuscule ancient Greek characters.
2916 \def\M@agreeklower@set{\M@agreeklower@set
2917 \edef\M@agreeklower@id{M\@tempc-\M@agreeklowershape}
2918 \M@sym@{\heta} {\mathalpha}{\M@agreeklower@id}{"371}
2919 \M@sym@{\sampi} {\mathalpha}{\M@agreeklower@id}{"3E1}
2920 \M@sym@{\digamma} {\mathalpha}{\M@agreeklower@id}{"3DD}
2921 \M@sym@{\koppa} {\mathalpha}{\M@agreeklower@id}{"3D9}

110 Implementation Unicode Hex Values

2922 \M@sym@{\stigma} {\mathalpha}{\M@agreeklower@id}{"3DB}
2923 \M@sym@{\sho} {\mathalpha}{\M@agreeklower@id}{"3F8}
2924 \M@sym@{\san} {\mathalpha}{\M@agreeklower@id}{"3FB}
2925 \M@sym@{\varsampi} {\mathalpha}{\M@agreeklower@id}{"373}
2926 \M@sym@{\vardigamma}{\mathalpha}{\M@agreeklower@id}{"377}
2927 \M@sym@{\varkoppa} {\mathalpha}{\M@agreeklower@id}{"3DF}}

Set capital Cyrillic characters.
2928 \def\M@cyrillicupper@set{\M@cyrillicupper@s
2929 \edef\M@cyrillicupper@id{M\@tempc-\M@cyrillicuppershape}
2930 \M@sym@{\cyrA} {\mathalpha}{\M@cyrillicupper@id}{"410}
2931 \M@sym@{\cyrBe} {\mathalpha}{\M@cyrillicupper@id}{"411}
2932 \M@sym@{\cyrVe} {\mathalpha}{\M@cyrillicupper@id}{"412}
2933 \M@sym@{\cyrGhe} {\mathalpha}{\M@cyrillicupper@id}{"413}
2934 \M@sym@{\cyrDe} {\mathalpha}{\M@cyrillicupper@id}{"414}
2935 \M@sym@{\cyrIe} {\mathalpha}{\M@cyrillicupper@id}{"415}
2936 \M@sym@{\cyrZhe} {\mathalpha}{\M@cyrillicupper@id}{"416}
2937 \M@sym@{\cyrZe} {\mathalpha}{\M@cyrillicupper@id}{"417}
2938 \M@sym@{\cyrI} {\mathalpha}{\M@cyrillicupper@id}{"418}
2939 \M@sym@{\cyrKa} {\mathalpha}{\M@cyrillicupper@id}{"41A}
2940 \M@sym@{\cyrEl} {\mathalpha}{\M@cyrillicupper@id}{"41B}
2941 \M@sym@{\cyrEm} {\mathalpha}{\M@cyrillicupper@id}{"41C}
2942 \M@sym@{\cyrEn} {\mathalpha}{\M@cyrillicupper@id}{"41D}
2943 \M@sym@{\cyrO} {\mathalpha}{\M@cyrillicupper@id}{"41E}
2944 \M@sym@{\cyrPe} {\mathalpha}{\M@cyrillicupper@id}{"41F}
2945 \M@sym@{\cyrEr} {\mathalpha}{\M@cyrillicupper@id}{"420}
2946 \M@sym@{\cyrEs} {\mathalpha}{\M@cyrillicupper@id}{"421}
2947 \M@sym@{\cyrTe} {\mathalpha}{\M@cyrillicupper@id}{"422}
2948 \M@sym@{\cyrU} {\mathalpha}{\M@cyrillicupper@id}{"423}
2949 \M@sym@{\cyrEf} {\mathalpha}{\M@cyrillicupper@id}{"424}
2950 \M@sym@{\cyrHa} {\mathalpha}{\M@cyrillicupper@id}{"425}
2951 \M@sym@{\cyrTse} {\mathalpha}{\M@cyrillicupper@id}{"426}
2952 \M@sym@{\cyrChe} {\mathalpha}{\M@cyrillicupper@id}{"427}
2953 \M@sym@{\cyrSha} {\mathalpha}{\M@cyrillicupper@id}{"428}
2954 \M@sym@{\cyrShcha}{\mathalpha}{\M@cyrillicupper@id}{"429}
2955 \M@sym@{\cyrHard} {\mathalpha}{\M@cyrillicupper@id}{"42A}
2956 \M@sym@{\cyrYeru} {\mathalpha}{\M@cyrillicupper@id}{"42B}
2957 \M@sym@{\cyrSoft} {\mathalpha}{\M@cyrillicupper@id}{"42C}
2958 \M@sym@{\cyrE} {\mathalpha}{\M@cyrillicupper@id}{"42D}
2959 \M@sym@{\cyrYu} {\mathalpha}{\M@cyrillicupper@id}{"42E}
2960 \M@sym@{\cyrYa} {\mathalpha}{\M@cyrillicupper@id}{"42F}
2961 \M@sym@{\cyrvarI} {\mathalpha}{\M@cyrillicupper@id}{"419}}

Set minuscule Cyrillic characters.

Unicode Hex Values Implementation 111

2962 \def\M@cyrilliclower@set{\M@cyrilliclower@s
2963 \edef\M@cyrilliclower@id{M\@tempc-\M@cyrilliclowershape}
2964 \M@sym@{\cyra} {\mathalpha}{\M@cyrilliclower@id}{"430}
2965 \M@sym@{\cyrbe} {\mathalpha}{\M@cyrilliclower@id}{"431}
2966 \M@sym@{\cyrve} {\mathalpha}{\M@cyrilliclower@id}{"432}
2967 \M@sym@{\cyrghe} {\mathalpha}{\M@cyrilliclower@id}{"433}
2968 \M@sym@{\cyrde} {\mathalpha}{\M@cyrilliclower@id}{"434}
2969 \M@sym@{\cyrie} {\mathalpha}{\M@cyrilliclower@id}{"435}
2970 \M@sym@{\cyrzhe} {\mathalpha}{\M@cyrilliclower@id}{"436}
2971 \M@sym@{\cyrze} {\mathalpha}{\M@cyrilliclower@id}{"437}
2972 \M@sym@{\cyri} {\mathalpha}{\M@cyrilliclower@id}{"438}
2973 \M@sym@{\cyrka} {\mathalpha}{\M@cyrilliclower@id}{"43A}
2974 \M@sym@{\cyrel} {\mathalpha}{\M@cyrilliclower@id}{"43B}
2975 \M@sym@{\cyrem} {\mathalpha}{\M@cyrilliclower@id}{"43C}
2976 \M@sym@{\cyren} {\mathalpha}{\M@cyrilliclower@id}{"43D}
2977 \M@sym@{\cyro} {\mathalpha}{\M@cyrilliclower@id}{"43E}
2978 \M@sym@{\cyrpe} {\mathalpha}{\M@cyrilliclower@id}{"43F}
2979 \M@sym@{\cyrer} {\mathalpha}{\M@cyrilliclower@id}{"440}
2980 \M@sym@{\cyres} {\mathalpha}{\M@cyrilliclower@id}{"441}
2981 \M@sym@{\cyrte} {\mathalpha}{\M@cyrilliclower@id}{"442}
2982 \M@sym@{\cyru} {\mathalpha}{\M@cyrilliclower@id}{"443}
2983 \M@sym@{\cyref} {\mathalpha}{\M@cyrilliclower@id}{"444}
2984 \M@sym@{\cyrha} {\mathalpha}{\M@cyrilliclower@id}{"445}
2985 \M@sym@{\cyrtse} {\mathalpha}{\M@cyrilliclower@id}{"446}
2986 \M@sym@{\cyrche} {\mathalpha}{\M@cyrilliclower@id}{"447}
2987 \M@sym@{\cyrsha} {\mathalpha}{\M@cyrilliclower@id}{"448}
2988 \M@sym@{\cyrshcha}{\mathalpha}{\M@cyrilliclower@id}{"449}
2989 \M@sym@{\cyrhard} {\mathalpha}{\M@cyrilliclower@id}{"44A}
2990 \M@sym@{\cyryeru} {\mathalpha}{\M@cyrilliclower@id}{"44B}
2991 \M@sym@{\cyrsoft} {\mathalpha}{\M@cyrilliclower@id}{"44C}
2992 \M@sym@{\cyre} {\mathalpha}{\M@cyrilliclower@id}{"44D}
2993 \M@sym@{\cyryu} {\mathalpha}{\M@cyrilliclower@id}{"44E}
2994 \M@sym@{\cyrya} {\mathalpha}{\M@cyrilliclower@id}{"44F}
2995 \M@sym@{\cyrvari} {\mathalpha}{\M@cyrilliclower@id}{"439}}

Set Hebrew characters.
2996 \def\M@hebrew@set{\M@hebrew@set
2997 \edef\M@hebrew@id{M\@tempc-\M@hebrewshape}
2998 \M@sym@{\aleph} {\mathalpha}{\M@hebrew@id}{"5D0}
2999 \M@sym@{\beth} {\mathalpha}{\M@hebrew@id}{"5D1}
3000 \M@sym@{\gimel} {\mathalpha}{\M@hebrew@id}{"5D2}
3001 \M@sym@{\daleth} {\mathalpha}{\M@hebrew@id}{"5D3}
3002 \M@sym@{\he} {\mathalpha}{\M@hebrew@id}{"5D4}

112 Implementation Unicode Hex Values

3003 \M@sym@{\vav} {\mathalpha}{\M@hebrew@id}{"5D5}
3004 \M@sym@{\zayin} {\mathalpha}{\M@hebrew@id}{"5D6}
3005 \M@sym@{\het} {\mathalpha}{\M@hebrew@id}{"5D7}
3006 \M@sym@{\tet} {\mathalpha}{\M@hebrew@id}{"5D8}
3007 \M@sym@{\yod} {\mathalpha}{\M@hebrew@id}{"5D9}
3008 \M@sym@{\kaf} {\mathalpha}{\M@hebrew@id}{"5DB}
3009 \M@sym@{\lamed} {\mathalpha}{\M@hebrew@id}{"5DC}
3010 \M@sym@{\mem} {\mathalpha}{\M@hebrew@id}{"5DE}
3011 \M@sym@{\nun} {\mathalpha}{\M@hebrew@id}{"5E0}
3012 \M@sym@{\samekh} {\mathalpha}{\M@hebrew@id}{"5E1}
3013 \M@sym@{\ayin} {\mathalpha}{\M@hebrew@id}{"5E2}
3014 \M@sym@{\pe} {\mathalpha}{\M@hebrew@id}{"5E4}
3015 \M@sym@{\tsadi} {\mathalpha}{\M@hebrew@id}{"5E6}
3016 \M@sym@{\qof} {\mathalpha}{\M@hebrew@id}{"5E7}
3017 \M@sym@{\resh} {\mathalpha}{\M@hebrew@id}{"5E8}
3018 \M@sym@{\shin} {\mathalpha}{\M@hebrew@id}{"5E9}
3019 \M@sym@{\tav} {\mathalpha}{\M@hebrew@id}{"5EA}
3020 \M@sym@{\varkaf} {\mathalpha}{\M@hebrew@id}{"5DA}
3021 \M@sym@{\varmem} {\mathalpha}{\M@hebrew@id}{"5DD}
3022 \M@sym@{\varnun} {\mathalpha}{\M@hebrew@id}{"5DF}
3023 \M@sym@{\varpe} {\mathalpha}{\M@hebrew@id}{"5E3}
3024 \M@sym@{\vartsadi}{\mathalpha}{\M@hebrew@id}{"5E5}}

Set digits.
3025 \def\M@digits@set{\M@digits@set
3026 \edef\M@digits@id{M\@tempc-\M@digitsshape}
3027 \M@sym@{0}{\mathalpha}{\M@digits@id}{`0}
3028 \M@sym@{1}{\mathalpha}{\M@digits@id}{`1}
3029 \M@sym@{2}{\mathalpha}{\M@digits@id}{`2}
3030 \M@sym@{3}{\mathalpha}{\M@digits@id}{`3}
3031 \M@sym@{4}{\mathalpha}{\M@digits@id}{`4}
3032 \M@sym@{5}{\mathalpha}{\M@digits@id}{`5}
3033 \M@sym@{6}{\mathalpha}{\M@digits@id}{`6}
3034 \M@sym@{7}{\mathalpha}{\M@digits@id}{`7}
3035 \M@sym@{8}{\mathalpha}{\M@digits@id}{`8}
3036 \M@sym@{9}{\mathalpha}{\M@digits@id}{`9}}

Set new operator font. We change the \fam to the user’s requested symbol
font for math operators.
3037 \def\M@operator@set{\M@operator@set
3038 \edef\operator@font{\mathgroup\operator@font
3039 \csname symM\@tempc-\M@operatorshape\endcsname}}

Set delimiters.

Unicode Hex Values Implementation 113

3040 \ifM@adjust@font
3041 \def\M@delimiters@set{\M@delimiters@set
3042 \edef\M@delimiters@id{M\@tempc-\M@delimitersshape}
3043 \edef\M@delimiters@num{
3044 \csname sym\M@delimiters@id\endcsname}
3045 \M@sym@{(} {\mathopen} {\M@delimiters@id}{"28}
3046 \M@sym@{)} {\mathclose}{\M@delimiters@id}{"29}
3047 \M@sym@{[} {\mathopen} {\M@delimiters@id}{"5B}
3048 \M@sym@{]} {\mathclose}{\M@delimiters@id}{"5D}
3049 \M@sym@{\leftbrace} {\mathopen} {\M@delimiters@id}{"7B}
3050 \M@sym@{\rightbrace}{\mathclose}{\M@delimiters@id}{"7D}

Set \Udelcodes for delimiters that come from individual characters.
3051 \Udelcode"28+\M@delimiters@num+"28\relax % (
3052 \Udelcode"29+\M@delimiters@num+"29\relax %)
3053 \Udelcode"2F+\M@delimiters@num+"2F\relax % /
3054 \Udelcode"5B+\M@delimiters@num+"5B\relax % [
3055 \Udelcode"5D+\M@delimiters@num+"5D\relax %]
3056 \Udelcode"7C+\M@delimiters@num+"7C\relax % |
3057 \ifM@symbols\else
3058 \M@sym@{|}{\mathord}{\M@delimiters@id}{"7C}
3059 \fi
3060 \let\vert=|

For the delimiters that come from control sequences, we use \edef and
\Udelimiter.
3061 \protected\def\backslash{
3062 \ifmmode\mathbackslash\else\textbackslash\fi}
3063 \protected\edef\mathbackslash{
3064 \Udelimiter+2+\M@delimiters@num+92\relax}
3065 \protected\edef\lbrace{
3066 \Udelimiter+4+\M@delimiters@num+123\relax}
3067 \protected\edef\rbrace{
3068 \Udelimiter+5+\M@delimiters@num+125\relax}
3069 \protected\edef\lguil{
3070 \Udelimiter+4+\M@delimiters@num+8249\relax}
3071 \protected\edef\rguil{
3072 \Udelimiter+5+\M@delimiters@num+8250\relax}
3073 \protected\edef\llguil{
3074 \Udelimiter+4+\M@delimiters@num+171\relax}
3075 \protected\edef\rrguil{
3076 \Udelimiter+5+\M@delimiters@num+187\relax}
3077 \protected\edef\fakelangle{

114 Implementation Unicode Hex Values

3078 \Udelimiter+4+\M@delimiters@num
3079 +\directlua{tex.print(mathfont.fakel)}\relax}
3080 \protected\edef\fakerangle{
3081 \Udelimiter+5+\M@delimiters@num
3082 +\directlua{tex.print(mathfont.faker)}\relax}
3083 \protected\edef\fakellangle{
3084 \Udelimiter+4+\M@delimiters@num
3085 +\directlua{tex.print(mathfont.fakell)}\relax}
3086 \protected\edef\fakerrangle{
3087 \Udelimiter+5+\M@delimiters@num
3088 +\directlua{tex.print(mathfont.fakerr)}\relax}}
3089 \else
3090 \def\M@delimiters@set{\M@delimiters@set
3091 \edef\M@delimiters@id{M\@tempc-\M@delimitersshape}
3092 \M@sym@{(} {\mathopen} {\M@delimiters@id}{"28}
3093 \M@sym@{)} {\mathclose}{\M@delimiters@id}{"29}
3094 \M@sym@{[} {\mathopen} {\M@delimiters@id}{"5B}
3095 \M@sym@{]} {\mathclose}{\M@delimiters@id}{"5D}
3096 \M@sym@{\lguil} {\mathopen} {\M@delimiters@id}{"2039}
3097 \M@sym@{\rguil} {\mathclose}{\M@delimiters@id}{"203A}
3098 \M@sym@{\llguil} {\mathopen} {\M@delimiters@id}{"AB}
3099 \M@sym@{\rrguil} {\mathclose}{\M@delimiters@id}{"BB}
3100 \M@sym@{\leftbrace} {\mathopen} {\M@delimiters@id}{"7B}
3101 \M@sym@{\rightbrace}{\mathclose}{\M@delimiters@id}{"7D}}
3102 \fi

Radicals. When we define \surd to typeset U+221A, \M@sym@ sets the
\Umathcode of √ to be a surd symbol. However, if we modified the font,
we know the surd character in the requested font can successfully make a
square root expression, so we override the definition from \M@sym@ to turn √
to an active character in math mode.
3103 \ifM@adjust@font
3104 \def\M@radical@set{\M@radical@set
3105 \edef\M@radical@id{M\@tempc-\M@radicalshape}
3106 \let\surd\@undefined\surd
3107 \M@sym@{\surd}{\mathord}{\M@radical@id}{"221A}

Now set the \mathcode of √ to 8000. This is probably me being paranoid, but
I wanted to stick to ascii characters in the sty file. We use \directlua to print
the surd character instead. This also has the advantage of printing an active
character, so we don’t have to scan any tokens.
3108 \expandafter\protected\expandafter\def\directlua{
3109 tex.cprint(13, utf8.char(0x221A))}

Unicode Hex Values Implementation 115

3110 {\ifmmode\expandafter\sqrt\else\Uchar"221A\relax\fi}
3111 \mathcode"221A="8000\relax
3112 \edef\@sqrts@gn##1{\Uradical+\number\@sqrts@gn
3113 \csname sym\M@radical@id\endcsname+"221A\relax{##1}}

We redefine \r@@t, which typesets the degree symbol on an nth root. We set
the placement so that right side of the box containing the degree lies 60% of
the horizontal distance across the surd symbol, and the baseline of the degree
symbol is 60% of the vertical distance up the surd.
3114 \def\r@@t##1##2{\r@@t
3115 \setbox\z@\hbox{$\m@th##1\sqrtsign{##2}$}
3116 \setbox\surdbox\hbox{$\m@th##1\@sqrts@gn{
3117 \hbox{\vphantom{$\m@th##1##2$}}}$}
3118 \dimen@\ht\surdbox
3119 \advance\dimen@\dp\surdbox
3120 \dimen@=0.6\dimen@
3121 \advance\dimen@-\dp\surdbox
3122 \ifdim\wd\rootbox<0.6\wd\surdbox
3123 \kern0.6\wd\surdbox
3124 \else
3125 \kern\wd\rootbox
3126 \fi
3127 \raise\dimen@\hbox{\llap{\copy\rootbox}}
3128 \kern-0.6\wd\surdbox
3129 \box\z@}
3130 \protected\def\sqrtsign##1{\sqrtsign
3131 \@sqrts@gn{\mkern\radicandoffset##1}}}
3132 \else
3133 \def\M@radical@set{\M@radical@set
3134 \edef\M@radical@id{M\@tempc-\M@radicalshape}
3135 \let\surd\@undefined\surd
3136 \M@sym@{\surd}{\mathord}{\M@radical@id}{"221A}}
3137 \fi

Big operators.
3138 \def\M@bigops@set{\M@bigops@set
3139 \edef\M@bigops@id{M\@tempc-\M@bigopsshape}
3140 \let\sum\@undefined
3141 \let\prod\@undefined
3142 \M@sym@{\sum} {\mathop}{\M@bigops@id}{"2211}
3143 \M@sym@{\prod} {\mathop}{\M@bigops@id}{"220F}
3144 \M@sym@{\intop}{\mathop}{\M@bigops@id}{"222B}}

Extended big operators.

116 Implementation Unicode Hex Values

3145 \def\M@extbigops@set{\M@extbigops@set
3146 \edef\M@extbigops@id{M\@tempc-\M@extbigopsshape}
3147 \let\coprod\@undefined
3148 \let\bigvee\@undefined
3149 \let\bigwedge\@undefined
3150 \let\bigcup\@undefined
3151 \let\bigcap\@undefined
3152 \let\bigoplus\@undefined
3153 \let\bigotimes\@undefined
3154 \let\bigodot\@undefined
3155 \let\bigsqcup\@undefined
3156 \M@sym@{\coprod} {\mathop}{\M@extbigops@id}{"2210}
3157 \M@sym@{\bigvee} {\mathop}{\M@extbigops@id}{"22C1}
3158 \M@sym@{\bigwedge} {\mathop}{\M@extbigops@id}{"22C0}
3159 \M@sym@{\bigcup} {\mathop}{\M@extbigops@id}{"22C3}
3160 \M@sym@{\bigcap} {\mathop}{\M@extbigops@id}{"22C2}
3161 \M@sym@{\iintop} {\mathop}{\M@extbigops@id}{"222C}
3162 \M@sym@{\iiintop} {\mathop}{\M@extbigops@id}{"222D}
3163 \M@sym@{\ointop} {\mathop}{\M@extbigops@id}{"222E}
3164 \M@sym@{\oiintop} {\mathop}{\M@extbigops@id}{"222F}
3165 \M@sym@{\oiiintop} {\mathop}{\M@extbigops@id}{"2230}
3166 \M@sym@{\bigoplus} {\mathop}{\M@extbigops@id}{"2A01}
3167 \M@sym@{\bigotimes}{\mathop}{\M@extbigops@id}{"2A02}
3168 \M@sym@{\bigodot} {\mathop}{\M@extbigops@id}{"2A00}
3169 \M@sym@{\bigsqcap} {\mathop}{\M@extbigops@id}{"2A05}
3170 \M@sym@{\bigsqcup} {\mathop}{\M@extbigops@id}{"2A06}
3171 \protected\def\iint{\iintop\nolimits}
3172 \protected\def\iiint{\iiintop\nolimits}
3173 \protected\def\oint{\ointop\nolimits}
3174 \protected\def\oiint{\oiintop\nolimits}
3175 \protected\def\oiiint{\oiiintop\nolimits}}

Set symbols.
3176 \def\M@symbols@set{\M@symbols@set
3177 \edef\M@symbols@id{M\@tempc-\M@symbolsshape}
3178 \let\colon\@undefined
3179 \let\mathellipsis\@undefined

Before we start declaring symbols, specifically minus or equals signs, we have
to address a minor clash with amsmath. That package defines \relbar and
\Relbar as essentially a minus and equals sign respectively. However, those
two control sequences are for making arrows, so they should come from the
arrows font, not the symbols font. If the user already called \mathfont with

Unicode Hex Values Implementation 117

the arrows keyword, we do nothing because \M@arrows@set defines \relbar
and \Relbar correctly. If not, we make these two control sequences be the
current minus and equals sign (before the font changes in \M@symbols@set)
because that’s as good a choice as any, and we prevent amsmath from chang-
ing them to the symbols font. Users or package authors who want to modify
\relbar or \Relbar should change \@relbar or \@Relbar respectively.
3180 \ifM@arrows\else
3181 \Umathcharnumdef\@relbar=\Umathcodenum`\-
3182 \Umathcharnumdef\@Relbar=\Umathcodenum`\=
3183 \protected\def\relbar{\mathrel
3184 {\mathpalette\mathsm@sh\@relbar}}
3185 \protected\def\Relbar{\@Relbar}
We redefine stuff if amsmath gets loaded after mathfont.
3186 \@ifpackageloaded{amsmath}
3187 {\relax}{
3188 \let\@@relbar\relbar
3189 \let\@@Relbar\Relbar
3190 \AtBeginDocument{\ifM@arrows\else
3191 \@ifpackageloaded{amsmath}{
3192 \let\relbar\@@relbar
3193 \let\Relbar\@@Relbar}
3194 {\relax}
3195 \fi}}
3196 \fi
If the user enabled Lua-based font asjustments, we declare a few more big
operators for fun. For brevity, we put the adjust@font conditional here rather
than redefining \M@symbols@set. Apparently, newtx defines \bigtimes, so in
case that package gets loaded ahead of mathfont, we should make sure to clear
that definition. It’s important to declare the big operators before the normal
versions of these characters so that \M@sym@ defines the correct \Umathcode
for them.
3197 \ifM@adjust@font
3198 \let\bigtimes\@undefined
3199 \M@sym@{\bigat} {\mathop}{\M@symbols@id}{"40}
3200 \M@sym@{\bighash} {\mathop}{\M@symbols@id}{"23}
3201 \M@sym@{\bigdollar} {\mathop}{\M@symbols@id}{"24}
3202 \M@sym@{\bigpercent}{\mathop}{\M@symbols@id}{"25}
3203 \M@sym@{\bigand} {\mathop}{\M@symbols@id}{"26}
3204 \M@sym@{\bigplus} {\mathop}{\M@symbols@id}{"2B}
3205 \M@sym@{\bigp} {\mathop}{\M@symbols@id}{"21}
3206 \M@sym@{\bigq} {\mathop}{\M@symbols@id}{"3F}

118 Implementation Unicode Hex Values

3207 \M@sym@{\bigS} {\mathop}{\M@symbols@id}{"A7}
3208 \M@sym@{\bigtimes} {\mathop}{\M@symbols@id}{"D7}
3209 \M@sym@{\bigdiv} {\mathop}{\M@symbols@id}{"F7}

Define \nabla here if we’re adjusting the font. If we are not doing that, this
declaration goes in extsymbols.
3210 \M@sym@{\nabla} {\mathord}{\M@symbols@id}{"2207}
3211 \fi

The rest of the symbols.
3212 \M@sym@{.} {\mathord} {\M@symbols@id}{"2E}
3213 \M@sym@{@} {\mathord} {\M@symbols@id}{"40}
3214 \M@sym@{'} {\mathord} {\M@symbols@id}{"2032}
3215 \M@sym@{\prime} {\mathord} {\M@symbols@id}{"2032}
3216 \M@sym@{"} {\mathord} {\M@symbols@id}{"2033}
3217 \M@sym@{\mathhash} {\mathord} {\M@symbols@id}{"23}
3218 \M@sym@{\mathdollar} {\mathord} {\M@symbols@id}{"24}
3219 \M@sym@{\mathpercent} {\mathord} {\M@symbols@id}{"25}
3220 \M@sym@{\mathand} {\mathord} {\M@symbols@id}{"26}
3221 \M@sym@{\mathparagraph}{\mathord} {\M@symbols@id}{"B6}
3222 \M@sym@{\mathsection} {\mathord} {\M@symbols@id}{"A7}
3223 \let\mathsterling\@undefined
3224 \M@sym@{\mathsterling} {\mathord} {\M@symbols@id}{"A3}
3225 \M@sym@{\neg} {\mathord} {\M@symbols@id}{"AC}
3226 \M@sym@{\mid} {\mathrel} {\M@symbols@id}{"7C}
3227 \M@sym@{|} {\mathord} {\M@symbols@id}{"7C}
3228 \M@sym@{\infty} {\mathord} {\M@symbols@id}{"221E}
3229 \M@sym@{\partial} {\mathord} {\M@symbols@id}{"2202}
3230 \M@sym@{\degree} {\mathord} {\M@symbols@id}{"B0}
3231 \M@sym@{\increment} {\mathord} {\M@symbols@id}{"2206}
3232 \M@sym@{+} {\mathbin} {\M@symbols@id}{"2B}
3233 \M@sym@{-} {\mathbin} {\M@symbols@id}{"2212}
3234 \M@sym@{*} {\mathbin} {\M@symbols@id}{"2A}
3235 \M@sym@{\times} {\mathbin} {\M@symbols@id}{"D7}
3236 \M@sym@{/} {\mathord} {\M@symbols@id}{"2F}
3237 \M@sym@{\fractionslash}{\mathord} {\M@symbols@id}{"2215}
3238 \M@sym@{\div} {\mathbin} {\M@symbols@id}{"F7}
3239 \M@sym@{\pm} {\mathbin} {\M@symbols@id}{"B1}
3240 \M@sym@{\bullet} {\mathbin} {\M@symbols@id}{"2022}
3241 \M@sym@{\dagger} {\mathbin} {\M@symbols@id}{"2020}
3242 \M@sym@{\ddagger} {\mathbin} {\M@symbols@id}{"2021}
3243 \M@sym@{\cdot} {\mathbin} {\M@symbols@id}{"2219}
3244 \M@sym@{\setminus} {\mathbin} {\M@symbols@id}{"5C}

Unicode Hex Values Implementation 119

3245 \M@sym@{=} {\mathrel} {\M@symbols@id}{"3D}
3246 \M@sym@{<} {\mathrel} {\M@symbols@id}{"3C}
3247 \M@sym@{>} {\mathrel} {\M@symbols@id}{"3E}
3248 \M@sym@{\leq} {\mathrel} {\M@symbols@id}{"2264}
3249 \M@sym@{\geq} {\mathrel} {\M@symbols@id}{"2265}
3250 \M@sym@{\sim} {\mathrel} {\M@symbols@id}{"7E}
3251 \M@sym@{\approx} {\mathrel} {\M@symbols@id}{"2248}
3252 \M@sym@{\equiv} {\mathrel} {\M@symbols@id}{"2261}
3253 \M@sym@{\parallel} {\mathrel} {\M@symbols@id}{"2016}
3254 \M@sym@{\colon} {\mathpunct}{\M@symbols@id}{"3A}
3255 \M@sym@{:} {\mathrel} {\M@symbols@id}{"3A}
3256 \M@sym@{?} {\mathclose}{\M@symbols@id}{"3F}
3257 \M@sym@{!} {\mathclose}{\M@symbols@id}{"21}
3258 \M@sym@{\comma} {\mathord} {\M@symbols@id}{"2C}
3259 \M@sym@{,} {\mathpunct}{\M@symbols@id}{"2C}
3260 \M@sym@{;} {\mathpunct}{\M@symbols@id}{"3B}
3261 \M@sym@{\mathellipsis} {\mathinner}{\M@symbols@id}{"2026}

Now a bit of housekeeping. We redefine \#, \%, and \& as \protected macros
that expand to previously declared \mathhash, etc. commands in math mode
and retain their standard \char definitions otherwise. Other commands that
function in both math and horizontal modes such as \S or \dag also use this
technique. Then we define macros \cong and \simeq if the user hasn’t called
\mathfont with extsymbols.
3262 \protected\def\#{\ifmmode\mathhash\else\char"23\relax\fi}
3263 \protected\def\%{\ifmmode\mathpercent\else\char"25\relax\fi}
3264 \protected\def\&{\ifmmode\mathand\else\char"26\relax\fi}
3265 \ifM@extsymbols\else
3266 \protected\def\simeq{
3267 \mathrel{\mathpalette\stack@flatrel{{-}{\sim}}}}
3268 \protected\def\cong{
3269 \mathrel{\mathpalette\stack@flatrel{{=}{\sim}}}}
3270 \fi
3271 \protected\def\models{\mathrel{|}\joinrel\mathrel{=}}\models

New definition for \not. We define it to accept a #1 argument, which we store
in an \hbox in the appropriate style. Then we typeset a / halfway across the
distance of the \hbox and the \hbox itself. This approach manually positions
the / halfway across the #1 subformula instead of using a character that ap-
pears to the right of a slim bounding box as in traditional TEX. In case any
users want to access the old \not definition, we save it as \negslash.
3272 \let\negslash\not\negslash
3273 \protected\def\not##1{\mathrel{\mathchoice

120 Implementation Unicode Hex Values

3274 {\setbox\@tempboxa\hbox{$\displaystyle##1\m@th$}
3275 \hbox{\hb@xt@\wd\@tempboxa{\hss$\displaystyle/\m@th$\hss}
3276 \llap{\box\@tempboxa}}}
3277 {\setbox\@tempboxa\hbox{$\textstyle##1\m@th$}
3278 \hbox{\hb@xt@\wd\@tempboxa{\hss$\textstyle/\m@th$\hss}
3279 \llap{\box\@tempboxa}}}
3280 {\setbox\@tempboxa\hbox{$\scriptstyle##1\m@th$}
3281 \hbox{\hb@xt@\wd\@tempboxa{\hss$\scriptstyle/\m@th$\hss}
3282 \llap{\box\@tempboxa}}}
3283 {\setbox\@tempboxa\hbox{$\scriptscriptstyle##1\m@th$}
3284 \hbox{\hb@xt@\wd\@tempboxa{\hss{$\scriptscriptstyle/
3285 \m@th$\hss}
3286 \llap{\box\@tempboxa}}}}}}}

Set extended symbols.
3287 \def\M@extsymbols@set{\M@extsymbols@set
3288 \edef\M@extsymbols@id{M\@tempc-\M@extsymbolsshape}
3289 \let\angle\@undefined
3290 \let\simeq\@undefined
3291 \let\sqsubset\@undefined
3292 \let\sqsupset\@undefined
3293 \let\bowtie\@undefined
3294 \let\doteq\@undefined
3295 \let\neq\@undefined
3296 \M@sym@{\wp} {\mathord}{\M@extsymbols@id}{"2118}
3297 \M@sym@{\ell} {\mathord}{\M@extsymbols@id}{"2113}
3298 \M@sym@{\forall} {\mathord}{\M@extsymbols@id}{"2200}
3299 \M@sym@{\exists} {\mathord}{\M@extsymbols@id}{"2203}
3300 \M@sym@{\emptyset} {\mathord}{\M@extsymbols@id}{"2205}
3301 \M@sym@{\in} {\mathord}{\M@extsymbols@id}{"2208}
3302 \M@sym@{\ni} {\mathord}{\M@extsymbols@id}{"220B}
3303 \M@sym@{\mp} {\mathord}{\M@extsymbols@id}{"2213}
3304 \M@sym@{\angle} {\mathord}{\M@extsymbols@id}{"2220}
3305 \M@sym@{\top} {\mathord}{\M@extsymbols@id}{"22A4}
3306 \M@sym@{\bot} {\mathord}{\M@extsymbols@id}{"22A5}
3307 \M@sym@{\vdash} {\mathord}{\M@extsymbols@id}{"22A2}
3308 \M@sym@{\dashv} {\mathord}{\M@extsymbols@id}{"22A3}
3309 \M@sym@{\flat} {\mathord}{\M@extsymbols@id}{"266D}
3310 \M@sym@{\natural} {\mathord}{\M@extsymbols@id}{"266E}
3311 \M@sym@{\sharp} {\mathord}{\M@extsymbols@id}{"266F}
3312 \M@sym@{\fflat} {\mathord}{\M@extsymbols@id}{"1D12B}
3313 \M@sym@{\ssharp} {\mathord}{\M@extsymbols@id}{"1D12A}
3314 \M@sym@{\bclubsuit} {\mathord}{\M@extsymbols@id}{"2663}

Unicode Hex Values Implementation 121

3315 \M@sym@{\bdiamondsuit} {\mathord}{\M@extsymbols@id}{"2666}
3316 \M@sym@{\bheartsuit} {\mathord}{\M@extsymbols@id}{"2665}
3317 \M@sym@{\bspadesuit} {\mathord}{\M@extsymbols@id}{"2660}
3318 \M@sym@{\wclubsuit} {\mathord}{\M@extsymbols@id}{"2667}
3319 \M@sym@{\wdiamondsuit} {\mathord}{\M@extsymbols@id}{"2662}
3320 \M@sym@{\wheartsuit} {\mathord}{\M@extsymbols@id}{"2661}
3321 \M@sym@{\wspadesuit} {\mathord}{\M@extsymbols@id}{"2664}
3322 \let\spadesuit\bspadesuit
3323 \let\heartsuit\wheartsuit
3324 \let\diamondsuit\wdiamondsuit
3325 \let\clubsuit\bclubsuit
3326 \M@sym@{\wedge} {\mathbin}{\M@extsymbols@id}{"2227}
3327 \M@sym@{\vee} {\mathbin}{\M@extsymbols@id}{"2228}
3328 \M@sym@{\cap} {\mathord}{\M@extsymbols@id}{"2229}
3329 \M@sym@{\cup} {\mathbin}{\M@extsymbols@id}{"222A}
3330 \M@sym@{\sqcap} {\mathbin}{\M@extsymbols@id}{"2293}
3331 \M@sym@{\sqcup} {\mathbin}{\M@extsymbols@id}{"2294}
3332 \M@sym@{\amalg} {\mathbin}{\M@extsymbols@id}{"2A3F}
3333 \M@sym@{\wr} {\mathbin}{\M@extsymbols@id}{"2240}
3334 \M@sym@{\ast} {\mathbin}{\M@extsymbols@id}{"2217}
3335 \M@sym@{\star} {\mathbin}{\M@extsymbols@id}{"22C6}
3336 \M@sym@{\diamond} {\mathbin}{\M@extsymbols@id}{"22C4}
3337 \M@sym@{\varcdot} {\mathbin}{\M@extsymbols@id}{"22C5}
3338 \M@sym@{\varsetminus} {\mathbin}{\M@extsymbols@id}{"2216}
3339 \M@sym@{\oplus} {\mathbin}{\M@extsymbols@id}{"2295}
3340 \M@sym@{\otimes} {\mathbin}{\M@extsymbols@id}{"2297}
3341 \M@sym@{\ominus} {\mathbin}{\M@extsymbols@id}{"2296}
3342 \M@sym@{\odiv} {\mathbin}{\M@extsymbols@id}{"2A38}
3343 \M@sym@{\oslash} {\mathbin}{\M@extsymbols@id}{"2298}
3344 \M@sym@{\odot} {\mathbin}{\M@extsymbols@id}{"2299}
3345 \M@sym@{\sqplus} {\mathbin}{\M@extsymbols@id}{"229E}
3346 \M@sym@{\sqtimes} {\mathbin}{\M@extsymbols@id}{"22A0}
3347 \M@sym@{\sqminus} {\mathbin}{\M@extsymbols@id}{"229F}
3348 \M@sym@{\sqdot} {\mathbin}{\M@extsymbols@id}{"22A1}
3349 \M@sym@{\in} {\mathrel}{\M@extsymbols@id}{"2208}
3350 \M@sym@{\ni} {\mathrel}{\M@extsymbols@id}{"220B}
3351 \M@sym@{\subset} {\mathrel}{\M@extsymbols@id}{"2282}
3352 \M@sym@{\supset} {\mathrel}{\M@extsymbols@id}{"2283}
3353 \M@sym@{\subseteq} {\mathrel}{\M@extsymbols@id}{"2286}
3354 \M@sym@{\supseteq} {\mathrel}{\M@extsymbols@id}{"2287}
3355 \M@sym@{\sqsubset} {\mathrel}{\M@extsymbols@id}{"228F}
3356 \M@sym@{\sqsupset} {\mathrel}{\M@extsymbols@id}{"2290}

122 Implementation Unicode Hex Values

3357 \M@sym@{\sqsubseteq} {\mathrel}{\M@extsymbols@id}{"2291}
3358 \M@sym@{\sqsupseteq} {\mathrel}{\M@extsymbols@id}{"2292}
3359 \M@sym@{\triangleleft} {\mathrel}{\M@extsymbols@id}{"22B2}
3360 \M@sym@{\triangleright} {\mathrel}{\M@extsymbols@id}{"22B3}
3361 \M@sym@{\trianglelefteq} {\mathrel}{\M@extsymbols@id}{"22B4}
3362 \M@sym@{\trianglerighteq} {\mathrel}{\M@extsymbols@id}{"22B5}
3363 \M@sym@{\propto} {\mathrel}{\M@extsymbols@id}{"221D}
3364 \M@sym@{\bowtie} {\mathrel}{\M@extsymbols@id}{"22C8}
3365 \M@sym@{\hourglass} {\mathrel}{\M@extsymbols@id}{"29D6}
3366 \M@sym@{\therefore} {\mathrel}{\M@extsymbols@id}{"2234}
3367 \M@sym@{\because} {\mathrel}{\M@extsymbols@id}{"2235}
3368 \M@sym@{\ratio} {\mathrel}{\M@extsymbols@id}{"2236}
3369 \M@sym@{\proportion} {\mathrel}{\M@extsymbols@id}{"2237}
3370 \M@sym@{\ll} {\mathrel}{\M@extsymbols@id}{"226A}
3371 \M@sym@{\gg} {\mathrel}{\M@extsymbols@id}{"226B}
3372 \M@sym@{\lll} {\mathrel}{\M@extsymbols@id}{"22D8}
3373 \M@sym@{\ggg} {\mathrel}{\M@extsymbols@id}{"22D9}
3374 \M@sym@{\leqq} {\mathrel}{\M@extsymbols@id}{"2266}
3375 \M@sym@{\geqq} {\mathrel}{\M@extsymbols@id}{"2267}
3376 \M@sym@{\lapprox} {\mathrel}{\M@extsymbols@id}{"2A85}
3377 \M@sym@{\gapprox} {\mathrel}{\M@extsymbols@id}{"2A86}
3378 \M@sym@{\simeq} {\mathrel}{\M@extsymbols@id}{"2243}
3379 \M@sym@{\eqsim} {\mathrel}{\M@extsymbols@id}{"2242}
3380 \M@sym@{\simeqq} {\mathrel}{\M@extsymbols@id}{"2245}
3381 \let\cong\simeqq
3382 \M@sym@{\approxeq} {\mathrel}{\M@extsymbols@id}{"224A}
3383 \M@sym@{\sssim} {\mathrel}{\M@extsymbols@id}{"224B}
3384 \M@sym@{\seq} {\mathrel}{\M@extsymbols@id}{"224C}
3385 \M@sym@{\doteq} {\mathrel}{\M@extsymbols@id}{"2250}
3386 \M@sym@{\coloneq} {\mathrel}{\M@extsymbols@id}{"2254}
3387 \M@sym@{\eqcolon} {\mathrel}{\M@extsymbols@id}{"2255}
3388 \M@sym@{\ringeq} {\mathrel}{\M@extsymbols@id}{"2257}
3389 \M@sym@{\arceq} {\mathrel}{\M@extsymbols@id}{"2258}
3390 \M@sym@{\wedgeeq} {\mathrel}{\M@extsymbols@id}{"2259}
3391 \M@sym@{\veeeq} {\mathrel}{\M@extsymbols@id}{"225A}
3392 \M@sym@{\stareq} {\mathrel}{\M@extsymbols@id}{"225B}
3393 \M@sym@{\triangleeq} {\mathrel}{\M@extsymbols@id}{"225C}
3394 \M@sym@{\defeq} {\mathrel}{\M@extsymbols@id}{"225D}
3395 \M@sym@{\qeq} {\mathrel}{\M@extsymbols@id}{"225F}
3396 \M@sym@{\lsim} {\mathrel}{\M@extsymbols@id}{"2272}
3397 \M@sym@{\gsim} {\mathrel}{\M@extsymbols@id}{"2273}
3398 \M@sym@{\prec} {\mathrel}{\M@extsymbols@id}{"227A}

Unicode Hex Values Implementation 123

3399 \M@sym@{\succ} {\mathrel}{\M@extsymbols@id}{"227B}
3400 \M@sym@{\preceq} {\mathrel}{\M@extsymbols@id}{"227C}
3401 \M@sym@{\succeq} {\mathrel}{\M@extsymbols@id}{"227D}
3402 \M@sym@{\preceqq} {\mathrel}{\M@extsymbols@id}{"2AB3}
3403 \M@sym@{\succeqq} {\mathrel}{\M@extsymbols@id}{"2AB4}
3404 \M@sym@{\precsim} {\mathrel}{\M@extsymbols@id}{"227E}
3405 \M@sym@{\succsim} {\mathrel}{\M@extsymbols@id}{"227F}
3406 \M@sym@{\precapprox} {\mathrel}{\M@extsymbols@id}{"2AB7}
3407 \M@sym@{\succapprox} {\mathrel}{\M@extsymbols@id}{"2AB8}
3408 \M@sym@{\precprec} {\mathrel}{\M@extsymbols@id}{"2ABB}
3409 \M@sym@{\succsucc} {\mathrel}{\M@extsymbols@id}{"2ABC}
3410 \M@sym@{\asymp} {\mathrel}{\M@extsymbols@id}{"224D}
3411 \M@sym@{\nin} {\mathrel}{\M@extsymbols@id}{"2209}
3412 \M@sym@{\nni} {\mathrel}{\M@extsymbols@id}{"220C}
3413 \M@sym@{\nsubset} {\mathrel}{\M@extsymbols@id}{"2284}
3414 \M@sym@{\nsupset} {\mathrel}{\M@extsymbols@id}{"2285}
3415 \M@sym@{\nsubseteq} {\mathrel}{\M@extsymbols@id}{"2288}
3416 \M@sym@{\nsupseteq} {\mathrel}{\M@extsymbols@id}{"2289}
3417 \M@sym@{\subsetneq} {\mathrel}{\M@extsymbols@id}{"228A}
3418 \M@sym@{\supsetneq} {\mathrel}{\M@extsymbols@id}{"228B}
3419 \M@sym@{\nsqsubseteq} {\mathrel}{\M@extsymbols@id}{"22E2}
3420 \M@sym@{\nsqsupseteq} {\mathrel}{\M@extsymbols@id}{"22E3}
3421 \M@sym@{\sqsubsetneq} {\mathrel}{\M@extsymbols@id}{"22E4}
3422 \M@sym@{\sqsupsetneq} {\mathrel}{\M@extsymbols@id}{"22E5}
3423 \M@sym@{\neq} {\mathrel}{\M@extsymbols@id}{"2260}
3424 \M@sym@{\nl} {\mathrel}{\M@extsymbols@id}{"226E}
3425 \M@sym@{\nleq} {\mathrel}{\M@extsymbols@id}{"2270}
3426 \M@sym@{\ngeq} {\mathrel}{\M@extsymbols@id}{"2271}
3427 \M@sym@{\lneq} {\mathrel}{\M@extsymbols@id}{"2A87}
3428 \M@sym@{\gneq} {\mathrel}{\M@extsymbols@id}{"2A88}
3429 \M@sym@{\lneqq} {\mathrel}{\M@extsymbols@id}{"2268}
3430 \M@sym@{\gneqq} {\mathrel}{\M@extsymbols@id}{"2269}
3431 \M@sym@{\ntriangleleft} {\mathrel}{\M@extsymbols@id}{"22EA}
3432 \M@sym@{\ntriangleright} {\mathrel}{\M@extsymbols@id}{"22EB}
3433 \M@sym@{\ntrianglelefteq} {\mathrel}{\M@extsymbols@id}{"22EC}
3434 \M@sym@{\ntrianglerighteq}{\mathrel}{\M@extsymbols@id}{"22ED}
3435 \M@sym@{\nsim} {\mathrel}{\M@extsymbols@id}{"2241}
3436 \M@sym@{\napprox} {\mathrel}{\M@extsymbols@id}{"2249}
3437 \M@sym@{\nsimeq} {\mathrel}{\M@extsymbols@id}{"2244}
3438 \M@sym@{\nsimeqq} {\mathrel}{\M@extsymbols@id}{"2247}
3439 \M@sym@{\simneqq} {\mathrel}{\M@extsymbols@id}{"2246}
3440 \M@sym@{\nlsim} {\mathrel}{\M@extsymbols@id}{"2274}

124 Implementation Unicode Hex Values

3441 \M@sym@{\ngsim} {\mathrel}{\M@extsymbols@id}{"2275}
3442 \M@sym@{\lnsim} {\mathrel}{\M@extsymbols@id}{"22E6}
3443 \M@sym@{\gnsim} {\mathrel}{\M@extsymbols@id}{"22E7}
3444 \M@sym@{\lnapprox} {\mathrel}{\M@extsymbols@id}{"2A89}
3445 \M@sym@{\gnapprox} {\mathrel}{\M@extsymbols@id}{"2A8A}
3446 \M@sym@{\nprec} {\mathrel}{\M@extsymbols@id}{"2280}
3447 \M@sym@{\nsucc} {\mathrel}{\M@extsymbols@id}{"2281}
3448 \M@sym@{\npreceq} {\mathrel}{\M@extsymbols@id}{"22E0}
3449 \M@sym@{\nsucceq} {\mathrel}{\M@extsymbols@id}{"22E1}
3450 \M@sym@{\precneq} {\mathrel}{\M@extsymbols@id}{"2AB1}
3451 \M@sym@{\succneq} {\mathrel}{\M@extsymbols@id}{"2AB2}
3452 \M@sym@{\precneqq} {\mathrel}{\M@extsymbols@id}{"2AB5}
3453 \M@sym@{\succneqq} {\mathrel}{\M@extsymbols@id}{"2AB6}
3454 \M@sym@{\precnsim} {\mathrel}{\M@extsymbols@id}{"22E8}
3455 \M@sym@{\succnsim} {\mathrel}{\M@extsymbols@id}{"22E9}
3456 \M@sym@{\precnapprox} {\mathrel}{\M@extsymbols@id}{"2AB9}
3457 \M@sym@{\succnapprox} {\mathrel}{\M@extsymbols@id}{"2ABA}
3458 \M@sym@{\nequiv} {\mathrel}{\M@extsymbols@id}{"2262}

The math-operator package renames \Re and \Im to \varRe and \varIm. To
make mathfont compatible with that package, we test whether these macros
contain mathchar in their definitions before redefining. First \Re.
3459 \expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}
3460 {\meaning\Re}}
3461 \ifin@
3462 \M@sym@{\Re}{\mathord}{\M@extsymbols@id}{"211C}
3463 \else
3464 \expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}
3465 {\meaning\varRe}}
3466 \ifin@
3467 \M@sym@{\varRe}{\mathord}{\M@extsymbols@id}{"211C}
3468 \fi
3469 \fi

And \Im.
3470 \expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}
3471 {\meaning\Im}}
3472 \ifin@
3473 \M@sym@{\Im}{\mathord}{\M@extsymbols@id}{"2111}
3474 \else
3475 \expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}
3476 {\meaning\varIm}}
3477 \ifin@

Unicode Hex Values Implementation 125

3478 \M@sym@{\varIm}{\mathord}{\M@extsymbols@id}{"2111}
3479 \fi
3480 \fi

We handle \ng specially. The LATEX kernel defines \ng as a text symbol, so we
define \mathng like for \$, etc.
3481 \let\textng\ng
3482 \M@sym@{\mathng}{\mathrel}{\M@extsymbols@id}{"226F}
3483 \protected\def\ng{\ifmmode\mathng\else\textng\fi}

If we’re not adjusting the font, we declare \nabla here.
3484 \ifM@adjust@font\else
3485 \M@sym@{\nabla}{\mathord}{\M@extsymbols@id}{"2207}
3486 \fi}

Set arrows.
3487 \def\M@arrows@set{\M@arrows@set
3488 \edef\M@arrows@id{M\@tempc-\M@arrowsshape}
3489 \let\uparrow\@undefined
3490 \let\Uparrow\@undefined
3491 \let\downarrow\@undefined
3492 \let\Downarrow\@undefined
3493 \let\updownarrow\@undefined
3494 \let\Updownarrow\@undefined
3495 \let\longrightarrow\@undefined
3496 \let\longleftarrow\@undefined
3497 \let\longleftrightarrow\@undefined
3498 \let\hookrightarrow\@undefined
3499 \let\hookleftarrow\@undefined
3500 \let\Longrightarrow\@undefined
3501 \let\Longleftarrow\@undefined
3502 \let\Longleftrightarrow\@undefined
3503 \let\rightleftharpoons\@undefined
3504 \M@sym@{\rightarrow} {\mathrel}{\M@arrows@id}{"2192}
3505 \let\to\rightarrow
3506 \M@sym@{\nrightarrow} {\mathrel}{\M@arrows@id}{"219B}
3507 \M@sym@{\Rightarrow} {\mathrel}{\M@arrows@id}{"21D2}
3508 \M@sym@{\nRightarrow} {\mathrel}{\M@arrows@id}{"21CF}
3509 \M@sym@{\Rrightarrow} {\mathrel}{\M@arrows@id}{"21DB}
3510 \M@sym@{\longrightarrow} {\mathrel}{\M@arrows@id}{"27F6}
3511 \M@sym@{\Longrightarrow} {\mathrel}{\M@arrows@id}{"27F9}
3512 \M@sym@{\rightbararrow} {\mathrel}{\M@arrows@id}{"21A6}
3513 \let\mapsto\rightbararrow
3514 \M@sym@{\Rightbararrow} {\mathrel}{\M@arrows@id}{"2907}

126 Implementation Unicode Hex Values

3515 \M@sym@{\longrightbararrow} {\mathrel}{\M@arrows@id}{"27FC}
3516 \let\longmapsto\longrightbararrow
3517 \M@sym@{\Longrightbararrow} {\mathrel}{\M@arrows@id}{"27FE}
3518 \M@sym@{\hookrightarrow} {\mathrel}{\M@arrows@id}{"21AA}
3519 \M@sym@{\rightdasharrow} {\mathrel}{\M@arrows@id}{"21E2}
3520 \M@sym@{\rightharpoonup} {\mathrel}{\M@arrows@id}{"21C0}
3521 \M@sym@{\rightharpoondown} {\mathrel}{\M@arrows@id}{"21C1}
3522 \M@sym@{\rightarrowtail} {\mathrel}{\M@arrows@id}{"21A3}
3523 \M@sym@{\rightoplusarrow} {\mathrel}{\M@arrows@id}{"27F4}
3524 \M@sym@{\rightwavearrow} {\mathrel}{\M@arrows@id}{"219D}
3525 \M@sym@{\rightsquigarrow} {\mathrel}{\M@arrows@id}{"21DD}
3526 \M@sym@{\longrightsquigarrow} {\mathrel}{\M@arrows@id}{"27FF}
3527 \M@sym@{\looparrowright} {\mathrel}{\M@arrows@id}{"21AC}
3528 \M@sym@{\curvearrowright} {\mathrel}{\M@arrows@id}{"293B}
3529 \M@sym@{\circlearrowright} {\mathrel}{\M@arrows@id}{"21BB}
3530 \M@sym@{\twoheadrightarrow} {\mathrel}{\M@arrows@id}{"21A0}
3531 \M@sym@{\rightarrowtobar} {\mathrel}{\M@arrows@id}{"21E5}
3532 \M@sym@{\rightwhitearrow} {\mathrel}{\M@arrows@id}{"21E8}
3533 \M@sym@{\rightrightarrows} {\mathrel}{\M@arrows@id}{"21C9}
3534 \M@sym@{\rightrightrightarrows}{\mathrel}{\M@arrows@id}{"21F6}
3535 \M@sym@{\leftarrow} {\mathrel}{\M@arrows@id}{"2190}
3536 \let\from\leftarrow
3537 \M@sym@{\nleftarrow} {\mathrel}{\M@arrows@id}{"219A}
3538 \M@sym@{\Leftarrow} {\mathrel}{\M@arrows@id}{"21D0}
3539 \M@sym@{\nLeftarrow} {\mathrel}{\M@arrows@id}{"21CD}
3540 \M@sym@{\Lleftarrow} {\mathrel}{\M@arrows@id}{"21DA}
3541 \M@sym@{\longleftarrow} {\mathrel}{\M@arrows@id}{"27F5}
3542 \M@sym@{\Longleftarrow} {\mathrel}{\M@arrows@id}{"27F8}
3543 \M@sym@{\leftbararrow} {\mathrel}{\M@arrows@id}{"21A4}
3544 \let\mapsfrom\leftbararrow
3545 \M@sym@{\Leftbararrow} {\mathrel}{\M@arrows@id}{"2906}
3546 \M@sym@{\longleftbararrow} {\mathrel}{\M@arrows@id}{"27FB}
3547 \let\longmapsfrom\longleftbararrow
3548 \M@sym@{\Longleftbararrow} {\mathrel}{\M@arrows@id}{"27FD}
3549 \M@sym@{\hookleftarrow} {\mathrel}{\M@arrows@id}{"21A9}
3550 \M@sym@{\leftdasharrow} {\mathrel}{\M@arrows@id}{"21E0}
3551 \M@sym@{\leftharpoonup} {\mathrel}{\M@arrows@id}{"21BC}
3552 \M@sym@{\leftharpoondown} {\mathrel}{\M@arrows@id}{"21BD}
3553 \M@sym@{\leftarrowtail} {\mathrel}{\M@arrows@id}{"21A2}
3554 \M@sym@{\leftoplusarrow} {\mathrel}{\M@arrows@id}{"2B32}
3555 \M@sym@{\leftwavearrow} {\mathrel}{\M@arrows@id}{"219C}
3556 \M@sym@{\leftsquigarrow} {\mathrel}{\M@arrows@id}{"21DC}

Unicode Hex Values Implementation 127

3557 \M@sym@{\longleftsquigarrow} {\mathrel}{\M@arrows@id}{"2B33}
3558 \M@sym@{\looparrowleft} {\mathrel}{\M@arrows@id}{"21AB}
3559 \M@sym@{\curvearrowleft} {\mathrel}{\M@arrows@id}{"293A}
3560 \M@sym@{\circlearrowleft} {\mathrel}{\M@arrows@id}{"21BA}
3561 \M@sym@{\twoheadleftarrow} {\mathrel}{\M@arrows@id}{"219E}
3562 \M@sym@{\leftarrowtobar} {\mathrel}{\M@arrows@id}{"21E4}
3563 \M@sym@{\leftwhitearrow} {\mathrel}{\M@arrows@id}{"21E6}
3564 \M@sym@{\leftleftarrows} {\mathrel}{\M@arrows@id}{"21C7}
3565 \M@sym@{\leftleftleftarrows} {\mathrel}{\M@arrows@id}{"2B31}
3566 \M@sym@{\leftrightarrow} {\mathrel}{\M@arrows@id}{"2194}
3567 \M@sym@{\Leftrightarrow} {\mathrel}{\M@arrows@id}{"21D4}
3568 \M@sym@{\nLeftrightarrow} {\mathrel}{\M@arrows@id}{"21CE}
3569 \M@sym@{\longleftrightarrow} {\mathrel}{\M@arrows@id}{"27F7}
3570 \M@sym@{\Longleftrightarrow} {\mathrel}{\M@arrows@id}{"27FA}
3571 \M@sym@{\leftrightwavearrow} {\mathrel}{\M@arrows@id}{"21AD}
3572 \M@sym@{\leftrightarrows} {\mathrel}{\M@arrows@id}{"21C6}
3573 \M@sym@{\leftrightharpoons} {\mathrel}{\M@arrows@id}{"21CB}
3574 \M@sym@{\leftrightarrowstobar} {\mathrel}{\M@arrows@id}{"21B9}
3575 \M@sym@{\rightleftarrows} {\mathrel}{\M@arrows@id}{"21C4}
3576 \M@sym@{\rightleftharpoons} {\mathrel}{\M@arrows@id}{"21CC}
3577 \M@sym@{\uparrow} {\mathrel}{\M@arrows@id}{"2191}
3578 \M@sym@{\Uparrow} {\mathrel}{\M@arrows@id}{"21D1}
3579 \M@sym@{\Uuparrow} {\mathrel}{\M@arrows@id}{"290A}
3580 \M@sym@{\upbararrow} {\mathrel}{\M@arrows@id}{"21A5}
3581 \M@sym@{\updasharrow} {\mathrel}{\M@arrows@id}{"21E1}
3582 \M@sym@{\upharpoonleft} {\mathrel}{\M@arrows@id}{"21BF}
3583 \M@sym@{\upharpoonright} {\mathrel}{\M@arrows@id}{"21BE}
3584 \M@sym@{\twoheaduparrow} {\mathrel}{\M@arrows@id}{"219F}
3585 \M@sym@{\uparrowtobar} {\mathrel}{\M@arrows@id}{"2912}
3586 \M@sym@{\upwhitearrow} {\mathrel}{\M@arrows@id}{"21E7}
3587 \M@sym@{\upwhitebararrow} {\mathrel}{\M@arrows@id}{"21EA}
3588 \M@sym@{\upuparrows} {\mathrel}{\M@arrows@id}{"21C8}
3589 \M@sym@{\downarrow} {\mathrel}{\M@arrows@id}{"2193}
3590 \M@sym@{\Downarrow} {\mathrel}{\M@arrows@id}{"21D3}
3591 \M@sym@{\Ddownarrow} {\mathrel}{\M@arrows@id}{"290B}
3592 \M@sym@{\downbararrow} {\mathrel}{\M@arrows@id}{"21A7}
3593 \M@sym@{\downdasharrow} {\mathrel}{\M@arrows@id}{"21E3}
3594 \M@sym@{\zigzagarrow} {\mathrel}{\M@arrows@id}{"21AF}
3595 \let\lightningboltarrow\zigzagarrow
3596 \M@sym@{\downharpoonleft} {\mathrel}{\M@arrows@id}{"21C3}
3597 \M@sym@{\downharpoonright} {\mathrel}{\M@arrows@id}{"21C2}
3598 \M@sym@{\twoheaddownarrow} {\mathrel}{\M@arrows@id}{"21A1}

128 Implementation Unicode Hex Values

3599 \M@sym@{\downarrowtobar} {\mathrel}{\M@arrows@id}{"2913}
3600 \M@sym@{\downwhitearrow} {\mathrel}{\M@arrows@id}{"21E9}
3601 \M@sym@{\downdownarrows} {\mathrel}{\M@arrows@id}{"21CA}
3602 \M@sym@{\updownarrow} {\mathrel}{\M@arrows@id}{"2195}
3603 \M@sym@{\Updownarrow} {\mathrel}{\M@arrows@id}{"21D5}
3604 \M@sym@{\updownarrows} {\mathrel}{\M@arrows@id}{"21C5}
3605 \M@sym@{\downuparrows} {\mathrel}{\M@arrows@id}{"21F5}
3606 \M@sym@{\updownharpoons} {\mathrel}{\M@arrows@id}{"296E}
3607 \M@sym@{\downupharpoons} {\mathrel}{\M@arrows@id}{"296F}
3608 \M@sym@{\nearrow} {\mathrel}{\M@arrows@id}{"2197}
3609 \M@sym@{\Nearrow} {\mathrel}{\M@arrows@id}{"21D7}
3610 \M@sym@{\nwarrow} {\mathrel}{\M@arrows@id}{"2196}
3611 \M@sym@{\Nwarrow} {\mathrel}{\M@arrows@id}{"21D6}
3612 \M@sym@{\searrow} {\mathrel}{\M@arrows@id}{"2198}
3613 \M@sym@{\Searrow} {\mathrel}{\M@arrows@id}{"21D8}
3614 \M@sym@{\swarrow} {\mathrel}{\M@arrows@id}{"2199}
3615 \M@sym@{\Swarrow} {\mathrel}{\M@arrows@id}{"21D9}
3616 \M@sym@{\nwsearrow} {\mathrel}{\M@arrows@id}{"2921}
3617 \M@sym@{\neswarrow} {\mathrel}{\M@arrows@id}{"2922}
3618 \M@sym@{\lcirclearrow} {\mathrel}{\M@arrows@id}{"27F2}
3619 \M@sym@{\rcirclearrow} {\mathrel}{\M@arrows@id}{"27F3}

The commands \relbar and \Relbar produce a smashed minus and an equals
sign respectively. They are helper control sequences that LATEX uses to create
other arrows. We have a small issue with amsmath because in X ETEX and
LuaTEX, amsmath defines \relbar and \Relbar in terms of the \Umathcodes
of the minus and equals signs respectively. That is a good approach in general,
but it doesn’t work when a package like mathfont allows users to pick different
fonts for symbols and arrows. We really want \relbar and \Relbar to come
from the arrows font, so our approach is to define the control sequences now
and then redefine \AtBeginDocument if needed.
3620 \let\@relbar\@undefined
3621 \let\@Relbar\@undefined
3622 \M@sym@{\@relbar}{\mathbin}{\M@arrows@id}{"2212}
3623 \M@sym@{\@Relbar}{\mathrel}{\M@arrows@id}{"3D}
3624 \protected\def\relbar{\mathrel{\mathpalette\mathsm@sh\@relbar}}
3625 \protected\def\Relbar{\@Relbar}

We redefine stuff if amsmath gets loaded after mathfont.
3626 \@ifpackageloaded{amsmath}
3627 {\relax}{
3628 \let\@@relbar\relbar
3629 \let\@@Relbar\Relbar

Unicode Hex Values Implementation 129

3630 \AtBeginDocument{\@ifpackageloaded{amsmath}{
3631 \let\relbar\@@relbar
3632 \let\Relbar\@@Relbar}
3633 {\relax}}}}

Set blackboard bold letters and numbers. The alphanumeric keywords work a
bit differently from the other font-setting commands. We define \mathbb
here, which takes a single argument and is essentially a wrapper around
\M@bb@mathcodes. That command changes the \Umathcodes of letters to the
Unicode hex values of corresponding blackboard-bold characters, and through-
out, \M@bb@num stores the family number of the sumbol font for the bb char-
acter class. In the definition of \mathbb, we use \begingroup and \endgroup
to avoid creating unexpected atoms. The other alphanumeric keywords work
similarly.
3634 \def\M@bb@set{\M@bb@set
3635 \protected\def\mathbb##1{\relax\mathbb
3636 \ifmmode\else
3637 \M@HModeError\mathbb
3638 $
3639 \fi
3640 \begingroup
3641 \M@bb@mathcodes
3642 ##1
3643 \endgroup}
3644 \edef\M@bb@num{\number\M@bb@num
3645 \csname symM\@tempc-\M@bbshape\endcsname}
3646 \protected\edef\M@bb@mathcodes{\M@bb@mathcodes
3647 \Umathcode`A=0+\M@bb@num"1D538\relax
3648 \Umathcode`B=0+\M@bb@num"1D539\relax
3649 \Umathcode`C=0+\M@bb@num"2102\relax
3650 \Umathcode`D=0+\M@bb@num"1D53B\relax
3651 \Umathcode`E=0+\M@bb@num"1D53C\relax
3652 \Umathcode`F=0+\M@bb@num"1D53D\relax
3653 \Umathcode`G=0+\M@bb@num"1D53E\relax
3654 \Umathcode`H=0+\M@bb@num"210D\relax
3655 \Umathcode`I=0+\M@bb@num"1D540\relax
3656 \Umathcode`J=0+\M@bb@num"1D541\relax
3657 \Umathcode`K=0+\M@bb@num"1D542\relax
3658 \Umathcode`L=0+\M@bb@num"1D543\relax
3659 \Umathcode`M=0+\M@bb@num"1D544\relax
3660 \Umathcode`N=0+\M@bb@num"2115\relax
3661 \Umathcode`O=0+\M@bb@num"1D546\relax

130 Implementation Unicode Hex Values

3662 \Umathcode`P=0+\M@bb@num"2119\relax
3663 \Umathcode`Q=0+\M@bb@num"211A\relax
3664 \Umathcode`R=0+\M@bb@num"211D\relax
3665 \Umathcode`S=0+\M@bb@num"1D54A\relax
3666 \Umathcode`T=0+\M@bb@num"1D54B\relax
3667 \Umathcode`U=0+\M@bb@num"1D54C\relax
3668 \Umathcode`V=0+\M@bb@num"1D54D\relax
3669 \Umathcode`W=0+\M@bb@num"1D54E\relax
3670 \Umathcode`X=0+\M@bb@num"1D54F\relax
3671 \Umathcode`Y=0+\M@bb@num"1D550\relax
3672 \Umathcode`Z=0+\M@bb@num"2124\relax
3673 \Umathcode`a=0+\M@bb@num"1D552\relax
3674 \Umathcode`b=0+\M@bb@num"1D553\relax
3675 \Umathcode`c=0+\M@bb@num"1D554\relax
3676 \Umathcode`d=0+\M@bb@num"1D555\relax
3677 \Umathcode`e=0+\M@bb@num"1D556\relax
3678 \Umathcode`f=0+\M@bb@num"1D557\relax
3679 \Umathcode`g=0+\M@bb@num"1D558\relax
3680 \Umathcode`h=0+\M@bb@num"1D559\relax
3681 \Umathcode`i=0+\M@bb@num"1D55A\relax
3682 \Umathcode`j=0+\M@bb@num"1D55B\relax
3683 \Umathcode`k=0+\M@bb@num"1D55C\relax
3684 \Umathcode`l=0+\M@bb@num"1D55D\relax
3685 \Umathcode`m=0+\M@bb@num"1D55E\relax
3686 \Umathcode`n=0+\M@bb@num"1D55F\relax
3687 \Umathcode`o=0+\M@bb@num"1D560\relax
3688 \Umathcode`p=0+\M@bb@num"1D561\relax
3689 \Umathcode`q=0+\M@bb@num"1D562\relax
3690 \Umathcode`r=0+\M@bb@num"1D563\relax
3691 \Umathcode`s=0+\M@bb@num"1D564\relax
3692 \Umathcode`t=0+\M@bb@num"1D565\relax
3693 \Umathcode`u=0+\M@bb@num"1D566\relax
3694 \Umathcode`v=0+\M@bb@num"1D567\relax
3695 \Umathcode`w=0+\M@bb@num"1D568\relax
3696 \Umathcode`x=0+\M@bb@num"1D569\relax
3697 \Umathcode`y=0+\M@bb@num"1D56A\relax
3698 \Umathcode`z=0+\M@bb@num"1D56B\relax
3699 \Umathcode`0=0+\M@bb@num"1D7D8\relax
3700 \Umathcode`1=0+\M@bb@num"1D7D9\relax
3701 \Umathcode`2=0+\M@bb@num"1D7DA\relax
3702 \Umathcode`3=0+\M@bb@num"1D7DB\relax
3703 \Umathcode`4=0+\M@bb@num"1D7DC\relax

Unicode Hex Values Implementation 131

3704 \Umathcode`5=0+\M@bb@num"1D7DD\relax
3705 \Umathcode`6=0+\M@bb@num"1D7DE\relax
3706 \Umathcode`7=0+\M@bb@num"1D7DF\relax
3707 \Umathcode`8=0+\M@bb@num"1D7E0\relax
3708 \Umathcode`9=0+\M@bb@num"1D7E1\relax}}

Set caligraphic letters.
3709 \def\M@cal@set{\M@cal@set
3710 \protected\def\mathcal##1{\relax\mathcal
3711 \ifmmode\else
3712 \M@HModeError\mathcal
3713 $
3714 \fi
3715 \begingroup
3716 \M@cal@mathcodes
3717 ##1
3718 \endgroup}
3719 \edef\M@cal@num{\number\M@cal@num
3720 \csname symM\@tempc-\M@calshape\endcsname}
3721 \protected\edef\M@cal@mathcodes{\M@cal@mathcodes
3722 \Umathcode`A=0+\M@cal@num"1D49C\relax
3723 \Umathcode`B=0+\M@cal@num"212C\relax
3724 \Umathcode`C=0+\M@cal@num"1D49E\relax
3725 \Umathcode`D=0+\M@cal@num"1D49F\relax
3726 \Umathcode`E=0+\M@cal@num"2130\relax
3727 \Umathcode`F=0+\M@cal@num"2131\relax
3728 \Umathcode`G=0+\M@cal@num"1D4A2\relax
3729 \Umathcode`H=0+\M@cal@num"210B\relax
3730 \Umathcode`I=0+\M@cal@num"2110\relax
3731 \Umathcode`J=0+\M@cal@num"1D4A5\relax
3732 \Umathcode`K=0+\M@cal@num"1D4A6\relax
3733 \Umathcode`L=0+\M@cal@num"2112\relax
3734 \Umathcode`M=0+\M@cal@num"2133\relax
3735 \Umathcode`N=0+\M@cal@num"1D4A9\relax
3736 \Umathcode`O=0+\M@cal@num"1D4AA\relax
3737 \Umathcode`P=0+\M@cal@num"1D4AB\relax
3738 \Umathcode`Q=0+\M@cal@num"1D4AC\relax
3739 \Umathcode`R=0+\M@cal@num"211B\relax
3740 \Umathcode`S=0+\M@cal@num"1D4AE\relax
3741 \Umathcode`T=0+\M@cal@num"1D4AF\relax
3742 \Umathcode`U=0+\M@cal@num"1D4B0\relax
3743 \Umathcode`V=0+\M@cal@num"1D4B1\relax
3744 \Umathcode`W=0+\M@cal@num"1D4B2\relax

132 Implementation Unicode Hex Values

3745 \Umathcode`X=0+\M@cal@num"1D4B3\relax
3746 \Umathcode`Y=0+\M@cal@num"1D4B4\relax
3747 \Umathcode`Z=0+\M@cal@num"1D4B5\relax
3748 \Umathcode`a=0+\M@cal@num"1D4B6\relax
3749 \Umathcode`b=0+\M@cal@num"1D4B7\relax
3750 \Umathcode`c=0+\M@cal@num"1D4B8\relax
3751 \Umathcode`d=0+\M@cal@num"1D4B9\relax
3752 \Umathcode`e=0+\M@cal@num"212F\relax
3753 \Umathcode`f=0+\M@cal@num"1D4BB\relax
3754 \Umathcode`g=0+\M@cal@num"210A\relax
3755 \Umathcode`h=0+\M@cal@num"1D4BD\relax
3756 \Umathcode`i=0+\M@cal@num"1D4BE\relax
3757 \Umathcode`j=0+\M@cal@num"1D4BF\relax
3758 \Umathcode`k=0+\M@cal@num"1D4C0\relax
3759 \Umathcode`l=0+\M@cal@num"1D4C1\relax
3760 \Umathcode`m=0+\M@cal@num"1D4C2\relax
3761 \Umathcode`n=0+\M@cal@num"1D4C3\relax
3762 \Umathcode`o=0+\M@cal@num"2134\relax
3763 \Umathcode`p=0+\M@cal@num"1D4C5\relax
3764 \Umathcode`q=0+\M@cal@num"1D4C6\relax
3765 \Umathcode`r=0+\M@cal@num"1D4C7\relax
3766 \Umathcode`s=0+\M@cal@num"1D4C8\relax
3767 \Umathcode`t=0+\M@cal@num"1D4C9\relax
3768 \Umathcode`u=0+\M@cal@num"1D4CA\relax
3769 \Umathcode`v=0+\M@cal@num"1D4CB\relax
3770 \Umathcode`w=0+\M@cal@num"1D4CC\relax
3771 \Umathcode`x=0+\M@cal@num"1D4CD\relax
3772 \Umathcode`y=0+\M@cal@num"1D4CE\relax
3773 \Umathcode`z=0+\M@cal@num"1D4CF\relax}}

Set fraktur letters.
3774 \def\M@frak@set{\M@frak@set
3775 \protected\def\mathfrak##1{\relax\mathfrak
3776 \ifmmode\else
3777 \M@HModeError\mathfrak
3778 $
3779 \fi
3780 \begingroup
3781 \M@frak@mathcodes
3782 ##1
3783 \endgroup}
3784 \edef\M@frak@num{\number\M@frak@num
3785 \csname symM\@tempc-\M@frakshape\endcsname}

Unicode Hex Values Implementation 133

3786 \protected\edef\M@frak@mathcodes{\M@frak@mathcodes
3787 \Umathcode`A=0+\M@frak@num"1D504\relax
3788 \Umathcode`B=0+\M@frak@num"1D505\relax
3789 \Umathcode`C=0+\M@frak@num"212D\relax
3790 \Umathcode`D=0+\M@frak@num"1D507\relax
3791 \Umathcode`E=0+\M@frak@num"1D508\relax
3792 \Umathcode`F=0+\M@frak@num"1D509\relax
3793 \Umathcode`G=0+\M@frak@num"1D50A\relax
3794 \Umathcode`H=0+\M@frak@num"210C\relax
3795 \Umathcode`I=0+\M@frak@num"2111\relax
3796 \Umathcode`J=0+\M@frak@num"1D50D\relax
3797 \Umathcode`K=0+\M@frak@num"1D50E\relax
3798 \Umathcode`L=0+\M@frak@num"1D50F\relax
3799 \Umathcode`M=0+\M@frak@num"1D510\relax
3800 \Umathcode`N=0+\M@frak@num"1D511\relax
3801 \Umathcode`O=0+\M@frak@num"1D512\relax
3802 \Umathcode`P=0+\M@frak@num"1D513\relax
3803 \Umathcode`Q=0+\M@frak@num"1D514\relax
3804 \Umathcode`R=0+\M@frak@num"211C\relax
3805 \Umathcode`S=0+\M@frak@num"1D516\relax
3806 \Umathcode`T=0+\M@frak@num"1D517\relax
3807 \Umathcode`U=0+\M@frak@num"1D518\relax
3808 \Umathcode`V=0+\M@frak@num"1D519\relax
3809 \Umathcode`W=0+\M@frak@num"1D51A\relax
3810 \Umathcode`X=0+\M@frak@num"1D51B\relax
3811 \Umathcode`Y=0+\M@frak@num"1D51C\relax
3812 \Umathcode`Z=0+\M@frak@num"2128\relax
3813 \Umathcode`a=0+\M@frak@num"1D51E\relax
3814 \Umathcode`b=0+\M@frak@num"1D51F\relax
3815 \Umathcode`c=0+\M@frak@num"1D520\relax
3816 \Umathcode`d=0+\M@frak@num"1D521\relax
3817 \Umathcode`e=0+\M@frak@num"1D522\relax
3818 \Umathcode`f=0+\M@frak@num"1D523\relax
3819 \Umathcode`g=0+\M@frak@num"1D524\relax
3820 \Umathcode`h=0+\M@frak@num"1D525\relax
3821 \Umathcode`i=0+\M@frak@num"1D526\relax
3822 \Umathcode`j=0+\M@frak@num"1D527\relax
3823 \Umathcode`k=0+\M@frak@num"1D528\relax
3824 \Umathcode`l=0+\M@frak@num"1D529\relax
3825 \Umathcode`m=0+\M@frak@num"1D52A\relax
3826 \Umathcode`n=0+\M@frak@num"1D52B\relax
3827 \Umathcode`o=0+\M@frak@num"1D52C\relax

134 Implementation Unicode Hex Values

3828 \Umathcode`p=0+\M@frak@num"1D52D\relax
3829 \Umathcode`q=0+\M@frak@num"1D52E\relax
3830 \Umathcode`r=0+\M@frak@num"1D52F\relax
3831 \Umathcode`s=0+\M@frak@num"1D530\relax
3832 \Umathcode`t=0+\M@frak@num"1D531\relax
3833 \Umathcode`u=0+\M@frak@num"1D532\relax
3834 \Umathcode`v=0+\M@frak@num"1D533\relax
3835 \Umathcode`w=0+\M@frak@num"1D534\relax
3836 \Umathcode`x=0+\M@frak@num"1D535\relax
3837 \Umathcode`y=0+\M@frak@num"1D536\relax
3838 \Umathcode`z=0+\M@frak@num"1D537\relax}}

Set bold caligraphic letters.
3839 \def\M@bcal@set{\M@bcal@set
3840 \protected\def\mathbcal##1{\relax\mathbcal
3841 \ifmmode\else
3842 \M@HModeError\mathbcal
3843 $
3844 \fi
3845 \begingroup
3846 \M@bcal@mathcodes
3847 ##1
3848 \endgroup}
3849 \edef\M@bcal@num{\number\M@bcal@num
3850 \csname symM\@tempc-\M@bcalshape\endcsname}
3851 \protected\edef\M@bcal@mathcodes{\M@bcal@mathcodes
3852 \Umathcode`A=0+\M@bcal@num"1D4D0\relax
3853 \Umathcode`B=0+\M@bcal@num"1D4D1\relax
3854 \Umathcode`C=0+\M@bcal@num"1D4D2\relax
3855 \Umathcode`D=0+\M@bcal@num"1D4D3\relax
3856 \Umathcode`E=0+\M@bcal@num"1D4D4\relax
3857 \Umathcode`F=0+\M@bcal@num"1D4D5\relax
3858 \Umathcode`G=0+\M@bcal@num"1D4D6\relax
3859 \Umathcode`H=0+\M@bcal@num"1D4D7\relax
3860 \Umathcode`I=0+\M@bcal@num"1D4D8\relax
3861 \Umathcode`J=0+\M@bcal@num"1D4D9\relax
3862 \Umathcode`K=0+\M@bcal@num"1D4DA\relax
3863 \Umathcode`L=0+\M@bcal@num"1D4DB\relax
3864 \Umathcode`M=0+\M@bcal@num"1D4DC\relax
3865 \Umathcode`N=0+\M@bcal@num"1D4DD\relax
3866 \Umathcode`O=0+\M@bcal@num"1D4DE\relax
3867 \Umathcode`P=0+\M@bcal@num"1D4DF\relax
3868 \Umathcode`Q=0+\M@bcal@num"1D4E0\relax

Unicode Hex Values Implementation 135

3869 \Umathcode`R=0+\M@bcal@num"1D4E1\relax
3870 \Umathcode`S=0+\M@bcal@num"1D4E2\relax
3871 \Umathcode`T=0+\M@bcal@num"1D4E3\relax
3872 \Umathcode`U=0+\M@bcal@num"1D4E4\relax
3873 \Umathcode`V=0+\M@bcal@num"1D4E5\relax
3874 \Umathcode`W=0+\M@bcal@num"1D4E6\relax
3875 \Umathcode`X=0+\M@bcal@num"1D4E7\relax
3876 \Umathcode`Y=0+\M@bcal@num"1D4E8\relax
3877 \Umathcode`Z=0+\M@bcal@num"1D4E9\relax
3878 \Umathcode`a=0+\M@bcal@num"1D4EA\relax
3879 \Umathcode`b=0+\M@bcal@num"1D4EB\relax
3880 \Umathcode`c=0+\M@bcal@num"1D4EC\relax
3881 \Umathcode`d=0+\M@bcal@num"1D4ED\relax
3882 \Umathcode`e=0+\M@bcal@num"1D4EE\relax
3883 \Umathcode`f=0+\M@bcal@num"1D4EF\relax
3884 \Umathcode`g=0+\M@bcal@num"1D4F0\relax
3885 \Umathcode`h=0+\M@bcal@num"1D4F1\relax
3886 \Umathcode`i=0+\M@bcal@num"1D4F2\relax
3887 \Umathcode`j=0+\M@bcal@num"1D4F3\relax
3888 \Umathcode`k=0+\M@bcal@num"1D4F4\relax
3889 \Umathcode`l=0+\M@bcal@num"1D4F5\relax
3890 \Umathcode`m=0+\M@bcal@num"1D4F6\relax
3891 \Umathcode`n=0+\M@bcal@num"1D4F7\relax
3892 \Umathcode`o=0+\M@bcal@num"1D4F8\relax
3893 \Umathcode`p=0+\M@bcal@num"1D4F9\relax
3894 \Umathcode`q=0+\M@bcal@num"1D4FA\relax
3895 \Umathcode`r=0+\M@bcal@num"1D4FB\relax
3896 \Umathcode`s=0+\M@bcal@num"1D4FC\relax
3897 \Umathcode`t=0+\M@bcal@num"1D4FD\relax
3898 \Umathcode`u=0+\M@bcal@num"1D4FE\relax
3899 \Umathcode`v=0+\M@bcal@num"1D4FF\relax
3900 \Umathcode`w=0+\M@bcal@num"1D500\relax
3901 \Umathcode`x=0+\M@bcal@num"1D501\relax
3902 \Umathcode`y=0+\M@bcal@num"1D502\relax
3903 \Umathcode`z=0+\M@bcal@num"1D503\relax}}

Set bold fraktur letters.
3904 \def\M@bfrak@set{\M@bfrak@set
3905 \protected\def\mathbfrak##1{\relax\mathbfrak
3906 \ifmmode\else
3907 \M@HModeError\mathbfrak
3908 $
3909 \fi

136 Implementation Unicode Hex Values

3910 \begingroup
3911 \M@bfrak@mathcodes
3912 ##1
3913 \endgroup}
3914 \edef\M@bfrak@num{\number\M@bfrak@num
3915 \csname symM\@tempc-\M@bfrakshape\endcsname}
3916 \protected\edef\M@bfrak@mathcodes{\M@bfrak@mathcodes
3917 \Umathcode`A=0+\M@bfrak@num"1D56C\relax
3918 \Umathcode`B=0+\M@bfrak@num"1D56D\relax
3919 \Umathcode`C=0+\M@bfrak@num"1D56E\relax
3920 \Umathcode`D=0+\M@bfrak@num"1D56F\relax
3921 \Umathcode`E=0+\M@bfrak@num"1D570\relax
3922 \Umathcode`F=0+\M@bfrak@num"1D571\relax
3923 \Umathcode`G=0+\M@bfrak@num"1D572\relax
3924 \Umathcode`H=0+\M@bfrak@num"1D573\relax
3925 \Umathcode`I=0+\M@bfrak@num"1D574\relax
3926 \Umathcode`J=0+\M@bfrak@num"1D575\relax
3927 \Umathcode`K=0+\M@bfrak@num"1D576\relax
3928 \Umathcode`L=0+\M@bfrak@num"1D577\relax
3929 \Umathcode`M=0+\M@bfrak@num"1D578\relax
3930 \Umathcode`N=0+\M@bfrak@num"1D579\relax
3931 \Umathcode`O=0+\M@bfrak@num"1D57A\relax
3932 \Umathcode`P=0+\M@bfrak@num"1D57B\relax
3933 \Umathcode`Q=0+\M@bfrak@num"1D57C\relax
3934 \Umathcode`R=0+\M@bfrak@num"1D57D\relax
3935 \Umathcode`S=0+\M@bfrak@num"1D57E\relax
3936 \Umathcode`T=0+\M@bfrak@num"1D57F\relax
3937 \Umathcode`U=0+\M@bfrak@num"1D580\relax
3938 \Umathcode`V=0+\M@bfrak@num"1D581\relax
3939 \Umathcode`W=0+\M@bfrak@num"1D582\relax
3940 \Umathcode`X=0+\M@bfrak@num"1D583\relax
3941 \Umathcode`Y=0+\M@bfrak@num"1D584\relax
3942 \Umathcode`Z=0+\M@bfrak@num"1D585\relax
3943 \Umathcode`a=0+\M@bfrak@num"1D586\relax
3944 \Umathcode`b=0+\M@bfrak@num"1D587\relax
3945 \Umathcode`c=0+\M@bfrak@num"1D588\relax
3946 \Umathcode`d=0+\M@bfrak@num"1D589\relax
3947 \Umathcode`e=0+\M@bfrak@num"1D58A\relax
3948 \Umathcode`f=0+\M@bfrak@num"1D58B\relax
3949 \Umathcode`g=0+\M@bfrak@num"1D58C\relax
3950 \Umathcode`h=0+\M@bfrak@num"1D58D\relax
3951 \Umathcode`i=0+\M@bfrak@num"1D58E\relax

Unicode Hex Values Implementation 137

3952 \Umathcode`j=0+\M@bfrak@num"1D58F\relax
3953 \Umathcode`k=0+\M@bfrak@num"1D590\relax
3954 \Umathcode`l=0+\M@bfrak@num"1D591\relax
3955 \Umathcode`m=0+\M@bfrak@num"1D592\relax
3956 \Umathcode`n=0+\M@bfrak@num"1D593\relax
3957 \Umathcode`o=0+\M@bfrak@num"1D594\relax
3958 \Umathcode`p=0+\M@bfrak@num"1D595\relax
3959 \Umathcode`q=0+\M@bfrak@num"1D596\relax
3960 \Umathcode`r=0+\M@bfrak@num"1D597\relax
3961 \Umathcode`s=0+\M@bfrak@num"1D598\relax
3962 \Umathcode`t=0+\M@bfrak@num"1D599\relax
3963 \Umathcode`u=0+\M@bfrak@num"1D59A\relax
3964 \Umathcode`v=0+\M@bfrak@num"1D59B\relax
3965 \Umathcode`w=0+\M@bfrak@num"1D59C\relax
3966 \Umathcode`x=0+\M@bfrak@num"1D59D\relax
3967 \Umathcode`y=0+\M@bfrak@num"1D59E\relax
3968 \Umathcode`z=0+\M@bfrak@num"1D59F\relax}}

Reset \endlinechar.
3969 \endlinechar\count@

And that’s everything!

138 Implementation Version History

Version History
New features and updates with each version. Listed in no particular order.

1.1b . July 2018
—initial release

1.2 August 2018
—minor bug fix for \mathfrak
—eliminated redundant batchfile

1.3 January 2019
—added symbols keyword
—created mathfont_example.pdf
—corrected the description of the
mathastext package
—font-change \message added to
\mathfont

1.4 . April 2019
—\setfont command added
—\mathfont optional argument
can parse spaces
—no-operators now default
package optional argument
—added \comma command
—new fancy fatal error message
—improved messaging for
\mathfont
—internal command \mathpound
changed to \mathhash
—added a missing #1 after
\char`\" in the example code
redefining " in the user guide

1.5 . April 2019
—separated \increment and
\Delta
—version history added
—initial off-the-shelf use insert
added

1.6 December 2019
—separated implementation and
user documentation
—created mathfont_heading.tex
—created
mathfont_doc_patch.tex for use
with the index
—changed mathfont_greek.pdf
to mathfont_symbol_list.pdf
—eliminated
mathfont_example.pdf
—eliminated operators package
option
—eliminated packages package
option
—font name can be package option
—added Hebrew and Cyrillic
characters
—separated ancient Greek from
modern Greek characters
—created new keywords:
extsymbols, delimiters, arrows,
diacritics, bigops, extbigops
—improved messaging
—improved internal code for local
font-change commands
—improved space parsing for the
optional argument of \mathfont
—bug fix for \#, etc. commands
—bad input for \mathbb, etc. now
gives a warning
—improved error checking for
\newmathrm, etc. commands
—\mathfont now ignores bad
options (on top of issuing an error)
—iternal commands now begin
with \M@…

Version History Implementation 139

—added Easter Egg!
—improved indexing
—mathfont.dtx renamed as
mathfont_code.dtx
—\newmathbold renamed as
\newmathbf
—default local font changes now
use \updefault, etc.
—added fatal error for missing
fontspec
—fatal errors result in \endinput
rather than \@@end

2.0 December 2021

Big Change: Font adjustments
for LuaTEX: new glyph boundaries
for Latin letters in math mode,
resizable delimiters, big operators,
MathConstants table based on font
metrics.
—added \charmline and
\charmfile
—added \mathconstantsfont
—certain dimensions in equations
are now adjustable when
typesetting with LuaTEX
—added adjust and no-adjust
package options
—automatic generation of ind file
—fixed symbols for
\leftharpoonup,
\leftharpoondown, and fraktur R
—cleaned up internal code and
documentation
—font names for \mathfont stored
to avoid multiple symbol font
declarations with the same font
—more information about nfss
family names stored and provided

—added option empty
—raised upper bound on
\DeclareSymbolFont to 256
—reintroduced
mathfont_example.tex with
different contents
—changed several
symbol-commands to \protected
rather than robust macros
—many user-level commands are
now \protected
—\updefault changed to
\shapedefault
—eliminated \catcode change for
space characters when scanning
optional argument of \mathfont
—improved messaging for
\mathfont
—removed dependence on fontspec
and added internal font-loader
—switched \epsilon and
\varepsilon
—switched \phi and \varphi
—changed / to produce a solidus
in math mode and added
\fractionslash
—removed
\restoremathinternals from the
user guide
—\setfont now sets \mathrm,
etc.
—added \newmathsc, other math
alphabet commands for small caps

2.1 November 2022
—\mathbb, etc. commands change
\Umathcodes of letters instead of
\M@〈bb,etc.〉@〈letter〉 commands
—removed warnings about non-
letter contents of \mathbb, etc.

140 Implementation Version History

—fonts loaded twice, once with
default settings (for text) and once
in base mode (for math)
—mathconstantsfont accepts
“upright” or “italic” as optional
argument

2.2 December 2022
—changed the easter egg text
—updated patch for
\DeclareSymbolFont to work
with changes to the kernel (fixed
the \M@p@tch@decl@re error
message)
—calling Plain TEX on
mathfont_code.dtx produces sty
file and no pdf file

2.2a December 2022
—bug fix for
\mathconstantsfont
—bug fix for \M@check@int
—added doc2 option to ltxdoc in
mathfont_code.dtx

2.2b August 2023
—minor changes to code and
documentation
—\ng now works in math (as not
greater than symbol) and text (as
pronounciation symbol)

2.3 September 2023
—solidus and \fractionslash are
\mathord instead of \mathbin
—removed \mathfont{fontspec}
functionality
—redesigned font-loader
—added package options default-
loader and fontspec-loader

2.4 . April 2025
—\colon is \mathpunct instead
of \mathord
—moved \relbar and \Relbar to
arrows
—reformatted
mathfont_code.pdf
—made compatible with \mathbb,
etc. commands from other
packages
—renamed set_nomath_true to
set_nomath_false
—improved messaging
\AtBeginDocument
—removed deprecated package
options, \newmathbold,
\restoremathinternals
—more Easter egg messages

2.4a . June 2025
—bug fix involving nil value and
the_font
—changed underscores in file
names to hyphens

3.0 January 2026
—\mathfont and \setfont no
longer restricted to preamble
—effects of \mathfont are local
instead of global
—\mathfont now overrides
previous calls to \mathfont
—added \mathfontshapes
—added \mainfont
—changed \setfont to
\documentfont (but kept old
name for backwards compatibility)
—changed
\setmathfontcommands to
\mathfontcommands and added
documentation in the user guide

Version History Implementation 141

—added support for arbitrary
nfss series/shape codes in
\mathfont
—separated macros for default
shapes from macros for shapes
used in \mathfont
—formalized language of keywords
and shape identifiers
—font-loader is better about using
argument with spaces removed for
checking nfss font family
—font-loader now uses
\@tempshape and \@tempseries
when parsing argument
—moved assignment of \M@count
values into \M@newfont
—changed \CharmLine to
\charmline (but kept old name
for backwards compatibility)
—changed \CharmFile to
\charmfile (but kept old name
for backwards compatibility)
—added \charminfo
—added \charmtype
—renamed counts for
\SurdHorizontalFactor, etc. to
be at user level
—formalized language of user-
friendly versions of LuaTEX-only
commands in the user guide
—corrected axis height
—font adjustments now happen
only if mode=base
—no more virtual Latin letters in
extra encoding slots (package now
modifies Latin letters in their
regular encoding slots for
base-mode fonts)
—added bold and bolditalic
shape identifiers

—no more type u (became type a)
—added separate charm
information for upright and italic
fonts (specified using / character)
—reworked default charm values
—possible to force type a and type
e characters using ? and ! in
\charmline
—added extra field in type e for
italic correction
—clarified role of bot_accent,
which does nothing, in the user
guide
—cleaned up Lua code
—added finishing_touches
callback
—bug fix involving the handling of
italic correction in Lua font
adjustments
—bug fix involving characters in
operator font not displaying
—corrected UTF-16BE
information added to character
subtables in the font
—new definition for \not
—added \negslash
—added script=math to
OpenType features for fonts if
intended for math (so math fonts
load with built-in math features)
—added support for Unicode input
—switched \epsilon and
\varepsilon (so \epsilon is
Unicode epsilon and \varepsilon
is Unicode lunate epsilon)
—surd is now an active character
in math mode (\mathcode"8000)
—cleaned up error messages
—improved messaging
\AtBeginDocument

142 Implementation Version History

—better error checking in
\M@check@int

Index Implementation 143

Index
Entries refer to lines in the code. Bold means a definition.

Symbols
\# . 3262
\% 1613, 3263
\& . 3264
* 319, 334, 338, 342
\- . 3181
\/ 320, 335, 339, 343
\< . 623
\= 321, 348–350, 1531, 3182
\@@Relbar . . 3189, 3193, 3629, 3632
\@@relbar . . 3188, 3192, 3628, 3631
\@Relbar 3182, 3185, 3621, 3623, 3625
\@documentfont 1086, 1087
\@mainfont 967, 968, 1088
\@mathconstantsfont . . 1104, 1105
\@mathfontshapes 1151, 1153, 1190
\@percentchar 1727,

1861, 1950, 1958, 1959, 2044, 2157
\@relbar 3181, 3184, 3620, 3622, 3624
\@sqrts@gn 3112, 3116, 3131
\~ . 1530

\ 142, 185

A
\aacute 2817
\acute 2816
\addtocharm@ 1614, 1619, 1664
\agreeklowerdefault 535
\agreekupperdefault 534
\aleph 2998
\Alpha 2559, 2829
\amalg 3332
\angle 3289, 3304
\approx 3251
\approxeq 3382
\arceq 3389
\arrowsdefault 547

\asymp 3410
\ayin 3013

B
\bar . 2824
\bbdefault 548
\bcaldefault 551
\bclubsuit 3314, 3325
\bdiamondsuit 3315
\because 3367
\Beta 2560, 2830
\beta 2585, 2874
\beth 2999
\bfrakdefault 552
\bheartsuit 3316
\bigand 3203
\bigat 3199
\bigcap 2647, 3151, 3160
\bigcup 2646, 3150, 3159
\bigdiv 3209
\bigdollar 3201
\bighash 3200
\bigodot 2650, 3154, 3168
\bigoplus 2648, 3152, 3166
\bigopsdefault 543
\bigotimes 2649, 3153, 3167
\bigp 3205
\bigpercent 3202
\bigplus 3204
\bigq 3206
\bigS 3207
\bigsqcap 2651, 3169
\bigsqcup 2652, 3155, 3170
\bigtimes 3198, 3208
\bigvee 2644, 3148, 3157
\bigwedge 2645, 3149, 3158
\bot . 3306
\bowtie 3293, 3364
\breve 2821

144 Implementation Index

\bspadesuit 3317, 3322
\bullet 3240

C
\caldefault 549
\cdot 3243
\CharmFile . . 91, 1355, 1372, 1684
\charmfile

89, 728, 1355, 1370, 1665, 1684
\CharmInfo . . 92, 1355, 1687, 1704
\charminfo

. . 110, 1360, 1360, 1685, 1691
\charminfo@ 1615, 1622, 1685
\CharmLine . . 90, 1355, 1371, 1683
\charmline 88, 1345,

1354, 1369, 1664, 1674, 1683
\CharmType . . 93, 1355, 1706, 1715
\charmtype

. . 114, 1364, 1364, 1686, 1713
\charmtype@ 1616, 1655, 1686
\check 2823
\Chi 2580, 2850
\chi 2605, 2894
\circlearrowleft 3560
\circlearrowright 3529
\clubsuit 3325
\colon 3178, 3254
\coloneq 3386
\comma 3258
\cong 3268, 3381
\coprod 2643, 3147, 3156
\curvearrowleft 3559
\curvearrowright 3528
\cyrilliclowerdefault 537
\cyrillicupperdefault 536

D
\dagger 3241
\daleth 3001
\dashv 3308
\ddagger 3242
\ddot 2819
\Ddownarrow 3591

\DeclareFontFamily 808, 814
\DeclareFontShape 748
\DeclareMathAlphabet 1227
\defeq 3394
\degree 3230
\delimitersdefault 541
\Delta 2562, 2832
\delta 2587, 2876
\diacriticsdefault 531
\diamond 3336
\diamondsuit 3324
\Digamma 2908
\digamma 2920
\digitsdefault 539
\div 2640, 3238
\documentfont

118, 1086, 1100, 1101, 1519, 1525
\dot . 2818
\doteq 3294, 3385
\Downarrow 3492, 3590
\downarrow 3491, 3589
\downarrowtobar 3599
\downbararrow 3592
\downdasharrow 3593
\downdownarrows 3601
\downharpoonleft 3596
\downharpoonright 3597
\downuparrows 3605
\downupharpoons 3607
\downwhitearrow 3600

E
\ell . 3297
\emptyset 3300
\Epsilon 2563, 2833
\epsilon 2588, 2877
\eqcolon 3387
\eqsim 3379
\equiv 3252
\Eta 2565, 2835
\exists 3299
\extbigopsdefault 544
\extsymbolsdefault 546

Index Implementation 145

F
\fakelangle 2200, 2626, 3077
\fakellangle 2204, 2628, 3083
\fakerangle 2202, 2627, 3080
\fakerrangle 2206, 2629, 3086
\familydefault 993
\fflat 3312
\flat 3309
\fontfamily 1000
\forall 3298
\fractionslash 3237
\frakdefault 550
\from 3536

G
\Gamma 2561, 2831
\gamma 2586, 2875
\gapprox 3377
\geq . 3249
\geqq 3375
\ggg . 3373
\gimel 3000
\gnapprox 3445
\gneq 3428
\gneqq 3430
\gnsim 3443
\grave 2820
\greeklowerdefault 533
\greekupperdefault 532
\gsim 3397

H
\hat . 2822
\hbar 2812, 2813
\heartsuit 3323
\hebrewdefault 538
\het . 3005
\Heta 2906
\heta 2918
\hookleftarrow 3499, 3549
\hookrightarrow 3498, 3518
\hourglass 3365
\hsurdfactor 492, 498, 1331

I
\ifM@adjust@font 67,

422, 434, 560, 1146, 1267, 1527,
2697, 2854, 3040, 3103, 3197, 3484

\ifM@arg@good 527, 1224,
1323, 1330, 1337, 1344, 1689, 1708

\ifM@font@loaded . . 68, 1512, 1524
\ifM@mode@ 528, 1026, 1163
\ifM@Noluaotfload 66, 183
\ifM@XeTeXLuaTeX 65, 140
\iiint 2656, 3172
\iiintop 3162, 3172
\iint 2655, 3171
\iintop 3161, 3171
\Im 3471, 3473
\imath 2557, 2810
\increment 2856, 2863, 3231
\infty 3228
\IntegralItalicFactor

. . . . 85, 1342, 1350, 1353, 1374
\intop 2654, 3144
\Iota 2567, 2837
\iota 2592, 2881

J
\jmath 2558, 2811

K
\kaf . 3008
\Kappa 2568, 2838
\kappa 2593, 2882
\kern 3123, 3125, 3128
\Koppa 2909
\koppa 2921

L
\Lambda 2569, 2839
\lambda 2594, 2883
\lamed 3009
\lapprox 3376
\lbrace 3065
\lcirclearrow 3618
\Leftarrow 3538

146 Implementation Index

\leftarrow 3535, 3536
\leftarrowtail 3553
\leftarrowtobar 3562
\Leftbararrow 3545
\leftbararrow 3543, 3544
\leftbrace 3049, 3100
\leftdasharrow 3550
\leftharpoondown 3552
\leftharpoonup 3551
\leftleftarrows 3564
\leftleftleftarrows 3565
\leftoplusarrow 3554
\Leftrightarrow 3567
\leftrightarrow 3566
\leftrightarrows 3572
\leftrightarrowstobar 3574
\leftrightharpoons 3573
\leftrightwavearrow 3571
\leftsquigarrow 3556
\leftwavearrow 3555
\leftwhitearrow 3563
\leq . 3248
\leqq 3374
\lguil 2196, 2622, 3069, 3096
\lightningboltarrow 3595
\Lleftarrow 3540
\llguil 2198, 2624, 3073, 3098
\lll . 3372
\lnapprox 3444
\lneq 3427
\lneqq 3429
\lnsim 3442
\Longleftarrow 3501, 3542
\longleftarrow 3496, 3541
\Longleftbararrow 3548
\longleftbararrow 3546, 3547
\Longleftrightarrow . . 3502, 3570
\longleftrightarrow . . 3497, 3569
\longleftsquigarrow 3557
\longmapsfrom 3547
\longmapsto 3516
\Longrightarrow 3500, 3511

\longrightarrow 3495, 3510
\Longrightbararrow 3517
\longrightbararrow . . . 3515, 3516
\longrightsquigarrow 3526
\looparrowleft 3558
\looparrowright 3527
\lowerdefault 530
\lsim 3396

M
\M@addto@families . . 591, 852, 859
\M@agreeklower@set . . . 1074, 2916
\M@agreeklowershape 2917
\M@agreekupper@set . . . 1074, 2904
\M@agreekuppershape 2905
\M@arrows@set 1074, 3487
\M@arrowsshape 3488
\M@BadIntegerError 717,

1326, 1333, 1340, 1350, 1704, 1715
\M@bb@mathcodes 3641, 3646
\M@bb@num 3644, 3647–3708
\M@bb@set 1074, 3634
\M@bbshape 3645
\M@bcal@mathcodes 3846, 3851
\M@bcal@num 3849, 3852–3903
\M@bcal@set 1074, 3839
\M@bcalshape 3850
\M@bfrak@mathcodes . . . 3911, 3916
\M@bfrak@num 3914, 3917–3968
\M@bfrak@set 1074, 3904
\M@bfrakshape 3915
\M@bigops@set 1074, 3138
\M@bigopsshape 3139
\M@bound@ssert 1749, 1948
\M@cal@mathcodes 3716, 3721
\M@cal@num 3719, 3722–3773
\M@cal@set 1074, 3709
\M@calshape 3720
\M@Charm 495, 1669, 1671, 1676, 1680
\M@check@csarg . . 1191, 1223, 1234
\M@check@int 1268,

1322, 1329, 1336, 1343, 1688, 1707

Index Implementation 147

\M@check@nfss@shapes 733, 778, 783
\M@check@opt 863, 880
\M@checkspecials 1203, 1228
\M@cyrilliclower@set . . 1074, 2962
\M@cyrilliclowershape 2963
\M@cyrillicupper@set . . 1074, 2928
\M@cyrillicuppershape 2929
\M@declare@shape . . . 745, 759, 861
\M@DecSymDef 485, 487
\M@default@newmath@cmds

. 1236, 1245, 1256
\M@defaultkeys 558, 561, 561, 1003
\M@define@newmath@cmd

. 1232, 1246, 1255
\M@delimiters@set 1074, 3041, 3090
\M@delimitersshape . . . 3042, 3091
\M@diacritics@set 1074, 2814
\M@diacriticsshape 2815
\M@digits@set 1074, 3025
\M@digitsshape 3026
\M@empty@ssert 1798
\M@entries@ssert 1902, 1918
\M@entries@warning . . . 1904, 1920
\M@extbigops@set 1074, 3145
\M@extbigopsshape 3146
\M@extsymbols@set 1074, 3287
\M@extsymbolsshape 3288
\M@families 565, 592,

594, 594, 596, 596, 1475, 1478
\M@families@begin 1458, 1479
\M@FamilyTypeError 625, 985
\M@fill@nfss@shapes

. 750, 809, 815, 862
\M@FontChangeInfo 597, 1066
\M@FontFamilyInfo . . 598, 807, 813
\M@fontinfo@begin 1431, 1496
\M@fontinfo@begin@

. 1435, 1446, 1456, 1457
\M@FontShapesError

. . . . 669, 803, 1031, 1049, 1116
\M@frak@mathcodes 3781, 3786
\M@frak@num 3784, 3787–3838

\M@frak@set 1074, 3774
\M@frakshape 3785
\M@greeklower@set 1074, 2871
\M@greeklowershape 2872
\M@greekupper@set 1074, 2827
\M@greekuppershape 2828
\M@hebrew@set 1074, 2996
\M@hebrewshape 2997
\M@HModeError

698, 3637, 3712, 3777, 3842, 3907
\M@index@ssert 1820, 1822
\M@InvalidOptionError . . 633, 868
\M@InvalidSuboptionError 641, 950
\M@keys 553, 869, 1495
\M@loader

70, 366, 367, 373, 406, 408, 805
\M@localfonts@begin . . 1456, 1505
\M@lower@set 1074, 2782
\M@lowershape 2783
\M@LuaTeXOnlyWarning . . 681, 1148
\M@missing@ssert 1802
\M@MissingCSError 689, 1196, 1200
\M@MissingOptionError . . 650, 866
\M@MissingSuboptionError 659, 887
\M@mode@false 907, 910
\M@mode@true 904
\M@newfont

764, 970, 1006, 1106, 1155, 1225
\M@NewFontCommandInfo . 601, 1226
\M@NFSSShapesWarning . . . 603, 741
\M@NoBaseModeError 611, 785
\M@NoCharmFileError . . 724, 1682
\M@NoFontAdjustError

. 707, 1358, 1360, 1364
\M@NoluaotfloadError . . . 186, 214
\M@NoMathfontError

. 72, 95, 107, 110, 114, 124, 131
\M@num@localfonts

. . . . 490, 578, 1398, 1407, 1501
\M@number@ssert 1775
\M@operator@set 1074, 3037
\M@operatorshape 3039

148 Implementation Index

\M@otf@features
. . 412, 417, 809, 815, 824, 830

\M@p@tch@decl@re 484, 485
\M@parse@option 877, 1011
\M@parse@sub

. . . . 893, 896, 1016, 1108, 1161
\M@radical@set . . 1074, 3104, 3133
\M@radicalshape 3105, 3134
\M@SetMathConstants

. 1102, 1128, 1129, 1150
\M@split@colon 760, 765
\M@split@slash 914, 958
\M@split@star 900, 961
\M@strip@colon 763, 767
\M@strip@equals 876, 892
\M@strip@star 964
\M@SymbolFontInfo

599, 1033, 1051, 1118, 1166, 1178
\M@symbolfonts@begin . . 1457, 1489
\M@symbols@set 1074, 3176
\M@symbolsshape 3177
\m@th@const@nts@f@mily . 1109,

1112, 1118, 1125, 1134, 1138
\m@th@const@nts@series

. 1110, 1135, 1139
\m@th@const@nts@sh@pe

. 1111, 1135, 1140
\M@upper@set 1074, 2754
\M@uppershape 2755
\M@virtual@ssert 2013
\M@XeTeXLuaTeXError . . . 143, 165
\mainfont . . 120, 628, 630, 967, 969
\mapsfrom 3544
\mapsto 3513
\math@fonts 1143, 1150
\mathand 3220, 3264
\mathbackslash 3062, 3063
\mathbb 1204, 3635, 3637
\mathbcal 1204, 3840, 3842
\mathbf 1260
\mathbfit 1261
\mathbfrak 1204, 3905, 3907

\mathbfsc 1264
\mathbfscit 1265
\mathcal 1204, 3710, 3712
\mathchoice 3273
\mathconstantsfont

. 122, 1091, 1103, 1148
\mathdollar 3218
\mathellipsis 3179, 3261
\mathfontcommands 1095, 1257, 1266
\mathfontshapes 121, 680, 1151, 1189
\mathfrak 1204, 3775, 3777
\mathhash 3217, 3262
\mathit 1259
\mathng 3482, 3483
\mathnolimitsmode 1528
\mathparagraph 3221
\mathpercent 3219, 3263
\mathring 2825
\mathrm 1258
\mathsc 1262
\mathscit 1263
\mathsection 3222
\mathsterling 3223, 3224
\mem . 3010
\mid . 3226
\mkern 3131
\models 3271

N
\nabla 2858, 2867, 3210, 3485
\napprox 3436
\natural 3310
\Nearrow 3609
\nearrow 3608
\neg . 3225
\negslash 3272
\neq 3295, 3423
\nequiv 3458
\neswarrow 3617
\newmathbf . . 100, 1239, 1249, 1260
\newmathbfit . 101, 1240, 1250, 1261
\newmathbfsc . 104, 1243, 1253, 1264

Index Implementation 149

\newmathbfscit 105, 1244, 1254, 1265
\newmathfontcommand

130, 131, 1222, 1223, 1231, 1235
\newmathit . . . 99, 1238, 1248, 1259
\newmathrm . . . 98, 1237, 1247, 1258
\newmathsc . . 102, 1241, 1251, 1262
\newmathscit . 103, 1242, 1252, 1263
\ngeq 3426
\ngsim 3441
\nLeftarrow 3539
\nleftarrow 3537
\nLeftrightarrow 3568
\nleq 3425
\nlsim 3440
\nprec 3446
\npreceq 3448
\nRightarrow 3508
\nrightarrow 3506
\nsim 3435
\nsimeq 3437
\nsimeqq 3438
\nsqsubseteq 3419
\nsqsupseteq 3420
\nsubset 3413
\nsubseteq 3415
\nsucc 3447
\nsucceq 3449
\nsupset 3414
\nsupseteq 3416
\ntriangleleft 3431
\ntrianglelefteq 3433
\ntriangleright 3432
\ntrianglerighteq 3434
\Nu 2571, 2841
\nullfont 996
\nun . 3011
\Nwarrow 3611
\nwarrow 3610
\nwsearrow 3616

O
\odiv 3342

\odot 3344
\oiiint 2659, 3175
\oiiintop 3165, 3175
\oiint 2658, 3174
\oiintop 3164, 3174
\oint 2657, 3173
\ointop 3163, 3173
\Omega 2582, 2852
\omega 2607, 2896
\Omicron 2573, 2843
\omicron 2598, 2887
\ominus 3341
\operator@font 3038
\operatordefault 540
\oplus 3339
\oslash 3343
\otimes 3340

P
\parallel 3253
\partial 3229
\Phi 2579, 2849
\phi 2604, 2893
\Pi 2574, 2844
\pi 2599, 2888
\pm . 3239
\prec 3398
\precapprox 3406
\preceq 3400
\preceqq 3402
\precnapprox 3456
\precneq 3450
\precneqq 3452
\precnsim 3454
\precprec 3408
\precsim 3404
\prime 3215
\prod 2641, 3141, 3143
\proportion 3369
\propto 3363
\Psi 2581, 2851
\psi 2606, 2895

150 Implementation Index

Q
\qeq . 3395
\qof . 3016

R
\r@@t 3114
\radicaldefault 542
\radicandoffset . . . 494, 500, 3131
\ratio 3368
\rbrace 3067
\rcirclearrow 3619
\Relbar 3185,

3189, 3193, 3625, 3629, 3632
\relbar 3183,

3188, 3192, 3624, 3628, 3631
\resh 3017
\rguil 2197, 2623, 3071, 3097
\Rho 2575, 2845
\rho 2600, 2889
\Rightarrow 3507
\rightarrow 3504, 3505
\rightarrowtail 3522
\rightarrowtobar 3531
\Rightbararrow 3514
\rightbararrow 3512, 3513
\rightbrace 3050, 3101
\rightdasharrow 3519
\rightharpoondown 3521
\rightharpoonup 3520
\rightleftarrows 3575
\rightleftharpoons . . . 3503, 3576
\rightoplusarrow 3523
\rightrightarrows 3533
\rightrightrightarrows 3534
\rightsquigarrow 3525
\rightwavearrow 3524
\rightwhitearrow 3532
\ringeq 3388
\rootbox 3122, 3125, 3127
\rrguil 2199, 2625, 3075, 3099
\Rrightarrow 3509
\RuleThicknessFactor

. . . . 84, 1321, 1326, 1353, 1373

\rulethicknessfactor 491, 497, 1324

S
\samekh 3012
\Sampi 2907
\sampi 2919
\San . 2912
\san . 2924
\Searrow 3613
\searrow 3612
\selectfont 1000
\seq . 3384
\setfont 83, 1097, 1099
\setminus 3244
\sharp 3311
\shin 3018
\Sho . 2911
\Sigma 2576, 2846
\sigma 2601, 2890
\sim 3250, 3267, 3269
\simeq 3266, 3290, 3378
\simeqq 3380, 3381
\simneqq 3439
\spadesuit 3322
\sqcap 3330
\sqcup 3331
\sqdot 3348
\sqminus 3347
\sqplus 3345
\sqrt 3110
\sqrtsign 3115, 3130
\sqsubset 3291, 3355
\sqsubseteq 3357
\sqsubsetneq 3421
\sqsupset 3292, 3356
\sqsupseteq 3358
\sqsupsetneq 3422
\sqtimes 3346
\ssharp 3313
\sssim 3383
\st@ck@fl@trel 1379, 1380
\stack@flatrel . . 1378, 3267, 3269

Index Implementation 151

\star 3335
\stareq 3392
\Stigma 2910
\stigma 2922
\subset 3351
\subseteq 3353
\subsetneq 3417
\succ 3399
\succapprox 3407
\succeq 3401
\succeqq 3403
\succnapprox 3457
\succneq 3451
\succneqq 3453
\succnsim 3455
\succsim 3405
\succsucc 3409
\sum 2642, 3140, 3142
\supset 3352
\supseteq 3354
\supsetneq 3418
\surd . 2653, 3106, 3107, 3135, 3136
\surdbox 488,

3116, 3118, 3119, 3121–3123, 3128
\SurdHorizontalFactor

. . . . 87, 1328, 1333, 1354, 1375
\SurdVerticalFactor

. . . . 86, 1335, 1340, 1354, 1376
\Swarrow 3615
\swarrow 3614
\symbolsdefault 545

T
\Tau 2577, 2847
\tau 2602, 2891
\tav . 3019
\tet . 3006
\textbackslash 3062
\textng 3481, 3483
\therefore 3366
\Theta 2566, 2836
\theta 2591, 2880

\tilde 2826
\times 2639, 3235
\tracinglostchars 1394, 1395
\triangleeq 3393
\triangleleft 3359
\trianglelefteq 3361
\triangleright 3360
\trianglerighteq 3362
\tsadi 3015
\twoheaddownarrow 3598
\twoheadleftarrow 3561
\twoheadrightarrow 3530
\twoheaduparrow 3584

U
\Uparrow 3490, 3578
\uparrow 3489, 3577
\uparrowtobar 3585
\upbararrow 3580
\updasharrow 3581
\Updownarrow 3494, 3603
\updownarrow 3493, 3602
\updownarrows 3604
\updownharpoons 3606
\upharpoonleft 3582
\upharpoonright 3583
\upperdefault 529
\Upsilon 2578, 2848
\upsilon 2603, 2892
\upuparrows 3588
\upwhitearrow 3586
\upwhitebararrow 3587
\Uradical 3112
\Uuparrow 3579

V
\varbeta 2608, 2897
\varcdot 3337
\varDigamma 2914
\vardigamma 2926
\varepsilon 2609, 2898
\varIm 3476, 3478
\varkaf 3020

152 Implementation Index

\varkappa 2899
\varKoppa 2915
\varkoppa 2927
\varmem 3021
\varnun 3022
\varpe 3023
\varphi 2613, 2903
\varRe 3465, 3467
\varrho 2611, 2901
\varSampi 2913
\varsampi 2925
\varsetminus 3338
\varsigma 2612, 2902
\varTheta 2583, 2853
\vartheta 2610, 2900
\vartsadi 3024
\vav . 3003
\vdash 3307
\vee . 3327
\veeeq 3391
\vert 3060

\vsurdfactor 493, 499, 1338

W
\wclubsuit 3318
\wdiamondsuit 3319, 3324
\wedge 3326
\wedgeeq 3390
\wheartsuit 3320, 3323
\wp . 3296
\wspadesuit 3321

X
\Xi 2572, 2842

Y
\yod . 3007

Z
\zayin 3004
\Zeta 2564, 2834
\zeta 2589, 2878
\zigzagarrow 3594, 3595

