
LuaTEX-jaパッケージ

LuaTEX-jaプロジェクトチーム

20260107.0（2026年 1月 7日）

目次

第 I部 ユーザーズマニュアル 5

1 はじめに 5
1.1 背景 . 5
1.2 pTEXからの主な変更点 . 5
1.3 用語と記法 . 7
1.4 プロジェクトについて . 7

2 使い方 8
2.1 インストール . 8
2.2 注意点 . 9
2.3 plain TEXで使う . 9
2.4 LaTEXで使う . 10

3 フォントの変更 13
3.1 plain TEX and LaTEX 2𝜀 . 13
3.2 luatexja-fontspecパッケージ . 14
3.3 和文フォントのプリセット設定 . 15
3.4 \CID, \UTFと otfパッケージのマクロ . 16

4 パラメータの変更 16
4.1 JAcharの範囲 . 16
4.2 �kanjiskip � と �xkanjiskip� . 20
4.3 �xkanjiskip � の挿入設定 . 20
4.4 ベースラインの移動 . 21
4.5 禁則処理関連パラメータと OpenType機能 . 22

第 II部 リファレンス 24

5 LuaTEX-jaにおける \catcode 24
5.1 予備知識：pTEXと upTEXにおける \kcatcode . 24
5.2 LuaTEX-jaの場合 . 24
5.3 制御綴中に使用出来る JIS非漢字の違い . 24

6 縦組 25
6.1 サポートする組方向 . 26
6.2 異方向のボックス . 26
6.3 組方向の取得 . 28
6.4 実装の比較 . 29

1

7 プリミティブの再定義 29
7.1 再定義の抑制 . 31

8 フォントメトリックと和文フォント 32
8.1 \jfont命令 . 32
8.2 \tfont命令 . 37
8.3 標準和文フォント・JFMの変更 . 38
8.4 psftプリフィックス . 39
8.5 JFMファイルの構造 . 40
8.6 数式フォントファミリ . 46
8.7 コールバック . 46

9 パラメータ 49
9.1 \ltjsetparameter . 49
9.2 \ltjgetparameter . 51
9.3 \ltjsetparameterの代替 . 52

10 plainでも LaTEXでも利用可能なその他の命令 53
10.1 pTEX互換用命令 . 53
10.2 \inhibitglue, \disinhibitglue . 53
10.3 \ltjfakeboxbdd, \ltjfakeparbegin . 54
10.4 \insertxkanjiskip, \insertkanjiskip . 55
10.5 \ltjdeclarealtfont . 56
10.6 \ltjalcharと \ltjjachar . 56

11 LaTEX2𝜺 用の命令 57
11.1 LaTEX 2𝜀 下での和文フォントの読み込み . 57
11.2 NFSS2へのパッチ . 57
11.3 \fontfamilyコマンドの詳細 . 60
11.4 \DeclareTextSymbol使用時の注意 . 62
11.5 \strutbox . 62

12 expl3形式の命令 62

13 拡張パッケージ 63
13.1 luatexja-fontspec . 63
13.2 luatexja-otf . 65
13.3 luatexja-adjust . 66
13.4 luatexja-ruby . 70
13.5 lltjext . 71
13.6 luatexja-preset . 74

2

第 III部 実装 81

14 パラメータの保持 81
14.1 LuaTEX-jaで用いられるレジスタと whatsitノード . 81
14.2 LuaTEX-jaのスタックシステム . 83
14.3 スタックシステムで使用される関数 . 84
14.4 パラメータの拡張 . 85

15 和文文字直後の改行 86
15.1 参考：pTEXの動作 . 86
15.2 LuaTEX-jaの動作 . 87
15.3 濁点・半濁点付き仮名の正規化→ luaotfload v3.19以降ではそちらで 88

16 JFMグルーの挿入，�kanjiskip� と �xkanjiskip � 89
16.1 概要 . 89
16.2 「クラスタ」の定義 . 89
16.3 段落／ hboxの先頭や末尾 . 91
16.4 概観と典型例：2つの「和文 A」の場合 . 92
16.5 その他の場合 . 96

17 ベースライン補正の方法 99
17.1 yoffsetフィールド . 99
17.2 ALcharの補正 . 100

18 listingsパッケージへの対応 100
18.1 注意 . 100
18.2 文字種 . 101

19 和文の行長補正方法 103
19.1 行末文字の位置調整（行分割後の場合） . 104
19.2 行末文字の位置調整（行分割での考慮） . 104
19.3 グルーの調整 . 105

20 複数フォントの「合成」（未完） 106

21 LuaTEX-jaにおけるキャッシュ 106
21.1 キャッシュの使用箇所 . 106
21.2 内部命令 . 107

22 縦組の実装 108
22.1 direction whatsit . 108
22.2 dir box . 109
22.3 縦組用字形の取得 . 112

3

参考文献 114

4

第 I部

ユーザーズマニュアル
1 はじめに

LuaTEX-jaパッケージは，次世代標準 TEXである LuaTEXの上で，pTEXと同等／それ以上の品質の
日本語組版を実現させようとするマクロパッケージである．

1.1 背景

従来，「TEXを用いて日本語組版を行う」といったとき，エンジンとしては ASCII pTEXやそれの拡
張物が用いられることが一般的であった．pTEXは TEXのエンジン拡張であり，（少々仕様上不便な点
はあるものの）商業印刷の分野にも用いられるほどの高品質な日本語組版を可能としている．だが，
それは弱点にもなってしまった．pTEXという（組版的に）満足なものがあったため，海外で行われて
いる数々の TEXの拡張⸺例えば 𝜀-TEXや pdfTEX⸺や，TrueType, OpenType, Unicodeといった計
算機で日本語を扱う際の状況の変化に追従することを怠ってしまったのだ．
ここ数年，若干状況は改善されてきた．現在手に入る大半の pTEXバイナリでは外部 UTF-8入力が

利用可能となり，さらに Unicode化を推進し，pTEXの内部処理まで Unicode化した upTEXも開発され
ている．また，pTEXに 𝜀-TEX拡張をマージした 𝜀-pTEXも登場し，TEX Live 2011では pLaTEXが 𝜀-pTEX
の上で動作するようになった．だが，pdfTEX拡張の主要部分（PDF直接出力や micro-typesetting）を
pTEXに対応させようという動きはなく，海外との gapは未だにあるのが現状である．
しかし，LuaTEX の登場で，状況は大きく変わることになった．Lua コードで “callback” を書くこ

とにより，LuaTEX の内部処理に割り込みをかけることが可能となった．これは，エンジン拡張とい
う真似をしなくても，Luaコードとそれに関する TEXマクロを書けば，エンジン拡張とほぼ同程度の
ことができるようになったということを意味する．LuaTEX-ja は，このアプローチによって Lua コー
ド・TEX マクロによって日本語組版を LuaTEX の上で実現させようという目的で開発が始まったパッ
ケージである．

1.2 pTEXからの主な変更点

LuaTEX-jaは，pTEXに多大な影響を受けている．初期の開発目標は，pTEXの機能を Luaコードによ
り実装することであった．しかし，（pTEX はエンジン拡張であったのに対し）LuaTEX-ja は Lua コー
ドと TEX マクロを用いて全てを実装していなければならないため，pTEX の完全な移植は不可能で
あり，また pTEX における実装がいささか不可解になっているような状況も発見された．そのため，
LuaTEX-ja は，もはや pTEX の完全な移植は目標とはしない．pTEX における不自然な仕様・挙動が
あれば，そこは積極的に改める．
以下は pTEXからの主な変更点である．より詳細については第 III部など本文書の残りを参照．

■命令の名称 例えば pTEXで追加された次のようなプリミティブ

\kanjiskip=10pt \dimen0=kanjiskip

\tbaselineshift=0.1zw

\dimen0=\tbaselineshift

5

\prebreakpenalty`ぁ=100

\ifydir ... \fi

は LuaTEX-jaには存在しない．LuaTEX-jaでは以下のように記述することになる．

\ltjsetparameter{kanjiskip=10pt} \dimen0=\ltjgetparameter{kanjiskip}

\ltjsetparameter{talbaselineshift=0.1\zw}

\dimen0=\ltjgetparameter{talbaselineshift}

\ltjsetparameter{prebreakpenalty={`ぁ,100}}

\ifnum\ltjgetparameter{direction}=4 ... \fi

特に注意してほしいのは，pTEXで追加された zwと zhという単位は LuaTEX-jaでは使用できず，\zw,
\zhと制御綴の形にしないといけないという点である*1．

■和文文字直後の改行 日本語の文書中では改行はほとんどどこでも許されるので，pTEX では和文
文字直後の改行は無視される（スペースが入らない）ようになっていた．しかし，LuaTEX-ja では
LuaTEXの仕様のためにこの機能は完全には実装されていない．詳しくは 15章を参照．

■和文関連の空白 2 つの和文文字の間や，和文文字と欧文文字の間に入るグルー／カーン（両者を
あわせて JAglueと呼ぶ）の挿入処理が 0から書き直されている．

• LuaTEX の内部での合字の扱いは「ノード」を単位として行われるようになっている（例えば，
of{}fice で合字は抑制されない）．それに合わせ，JAglue の挿入処理もノード単位で実行さ
れる．

• さらに，2つの文字の間にある行末では効果を持たないノード（例えば \specialノード）や，イ
タリック補正に伴い挿入されるカーンは挿入処理中では無視される．

• 注意：上の 2つの変更により，従来 JAglueの挿入処理を分断するのに使われていたいくつかの
方法は用いることができない．具体的には，次の方法はもはや無効である：

ちょ{}っと ちょ\/っと

もし同じことをやりたければ，空の水平ボックス (hbox)を間に挟めばよい：

ちょ\hbox{}っと

• 処理中では，2つの和文フォントは，実フォントが異なるだけの場合には同一視される．

■組方向 バージョン 20150420.0からは，不安定ながらも LuaTEX-jaにおける縦組みをサポートして
いる．なお，LuaTEX 本体も Ω 流の組方向をサポートしているが，それとは全くの別物であることに
注意してほしい．特に，異なった組方向のボックスを扱う場合には \wd, \ht, \dp等の仕様が pTEXと
異なるので注意．詳細は第 6章を参照．

■\discretionary \discretionary 内に直接和文文字を記述することは，pTEX においても想定され
ていなかった感があるが．LuaTEX-ja においても想定していない．和文文字をどうしても使いたい場
合は \hboxで括ること．

*1 別のパッケージやユーザが \zw, \zh を書き換えてしまうことに対応するため，LuaTEX-ja 20200127.0 以降では，
\ltj@zw, \ltj@zhがそれぞれ \zw, \zhのコピーとして定義されている．

6

■ギリシャ文字・キリル文字と ISO 8859-1 の記号 標準では，LuaTEX-ja はギリシャ文字やキリル
文字を和文フォントを使って組む．ギリシャ語などを本格的に組むなどこの状況が望ましくない場
合，プリアンブルに

\ltjsetparameter{jacharrange={-2,-3}}

を入れると上記種類の文字は欧文フォントを用いて組まれるようになる．詳しい説明は 4.1 節を参照
してほしい．
また，¶, §といった ISO 8859-1の上位領域と JIS X 0208の共通部分の文字はバージョン 20150906.0

から標準で欧文扱いとなった．LaTEX 2𝜀 2017/01/01 以降では標準で TU エンコーディングの Latin
Modern フォントが使われるので，特に何もせずソース中にそのまま記述してもこれらの文字が出力
される．和文扱いで出力するには \ltjjachar`§のように \ltjjachar命令を使えばよい．

1.3 用語と記法

本ドキュメントでは，以下の用語と記法を用いる：

• 文字は次の 2種類に分けられる．この類別は固定されているものではなく，ユーザが後から変更
可能である（4.1節を参照）．
– JAchar: ひらがな，カタカナ，漢字，和文用の約物といった日本語組版に使われる文字のこ
とを指す．

– ALchar: ラテンアルファベットを始めとする，その他全ての文字を指す．
そして，ALchar の出力に用いられるフォントを欧文フォントと呼び，JAchar の出力に用いら
れるフォントを和文フォントと呼ぶ．

• 下線つきローマン体で書かれた語（例： �prebreakpenalty �）は日本語組版用のパラメータを表し，
これらは \ltjsetparameter命令のキーとして用いられる．

• 下線なしサンセリフ体の語（例：fontspec）は LaTEXのパッケージやクラスを表す．
• 本ドキュメントでは，自然数は 0 から始まる．（TEX で扱える）自然数全体の集合は 𝜔 と表記
する．

1.4 プロジェクトについて

■プロジェクトWiki プロジェクトWikiは構築中である．

• https://github.com/luatexja/luatexja/wiki（日本語）
• https://github.com/luatexja/luatexja/wiki/Home(en)（英語）
• https://github.com/luatexja/luatexja/wiki/Home(zh)（中国語）

本プロジェクトは GitHubのサービスを用いて運営されている．

7

https://github.com/luatexja/luatexja/wiki
https://github.com/luatexja/luatexja/wiki/Home(en)
https://github.com/luatexja/luatexja/wiki/Home(zh)

■開発メンバー

• 北川弘典 • 前田一貴 • 八登崇之
• 黒木裕介 • 阿部紀行 • 山本宗宏
• 本田知亮 • 齋藤修三郎 • 馬起園

2 使い方

2.1 インストール

LuaTEX-jaパッケージの動作には次のパッケージ類が必要である．

• LuaTEX 1.10.0 (or later)（DVI出力 (\outputmode=0)は対応していない．）
• recent luaotfload (v3.1 or later recommended)
• adobemapping (Adobe cmap and pdfmapping files)
• etoolbox（LaTEX 2𝜀 下で LuaTEX-jaを使う場合）
• ltxcmds, pdftexcmds

• fontspec v2.9e (or later)
• 原ノ味フォント (https://github.com/trueroad/HaranoAjiFonts)

LuaTEX-jaの最低限の動作には原ノ味明朝 Regular (HaranoAjiMincho-Regular)と原ノ味角ゴシッ
クMedium (HaranoAjiGothic-Medium)があれば十分である．

現在，LuaTEX-jaは CTAN (macros/luatex/generic/luatexja)に収録されている他，以下のディス
トリビューションにも収録されている：

• MiKTEX (luatexja.tar.lzma)
• TEX Live (texmf-dist/tex/luatex/luatexja)

これらのディストリビューションは原ノ味フォントも収録している（TEX Live, MiKTEX では
haranoaji）.

■HarfBuzz と LuaTEX-ja 現時点では，HarfBuzz の機能を用いたときの LuaTEX-ja の使用は十分
にテストされていない．エラーが発生せずにタイプセットできるかもしれないが，特に縦組時や
\CIDなどで意図しない結果となりうる可能性が大きい．特に，Renderer=Harfbuzz等（fontspec）や
mode=harf指定（それ以外）を通じて和文フォントに対して HarfBuzzを用いることは推奨しない．

■手動インストール方法

1. ソースを以下のいずれかの方法で取得する．現在公開されているのはあくまでも開発版であっ
て，安定版でないことに注意．

• Gitリポジトリを次のコマンドでクローンする：

$ git clone https://github.com/luatexja/luatexja.git

• masterブランチのスナップショット（zip形式）をダウンロードする：
https://github.com/luatexja/luatexja/archive/refs/heads/master.zip.

8

http://www.luatex.org/
https://github.com/latex3/luaotfload
https://github.com/josephwright/etoolbox/
https://github.com/wspr/fontspec/
https://github.com/trueroad/HaranoAjiFonts
https://github.com/luatexja/luatexja/archive/refs/heads/master.zip

masterブランチ（従って，CTAN内のアーカイブも）はたまにしか更新されないことに注意．主
な開発は masterの外で行われ，比較的まとまってきたらそれを masterに反映させることにして
いる．

2.「Gitリポジトリをクローン」以外の方法でアーカイブを取得したならば，それを展開する．src/
をはじめとしたいくつかのディレクトリができるが，動作には src/以下の内容だけで十分．

3. もし CTAN から本パッケージを取得したのであれば，日本語用クラスファイルを生成するため
に，以下を実行する必要がある：

$ cd src

$ lualatex ltjclasses.ins

$ lualatex ltjsclasses.ins

$ lualatex ltjltxdoc.ins

4. srcの中身を自分の TEXMFツリーにコピーする．場所の例としては，例えば
TEXMF/tex/luatex/luatexja/

がある．シンボリックリンクが利用できる環境で，かつリポジトリを直接取得したのであれば，
（更新を容易にするために）コピーではなくリンクを貼ることを勧める．

5. 必要があれば，mktexlsrを実行する．

2.2 注意点

pTEXからの変更点として，1.2節も熟読するのが望ましい．ここでは一般的な注意点を述べる．

• 原稿のソースファイルの文字コードは UTF-8 固定である．従来日本語の文字コードとして用い
られてきた EUC-JPや Shift-JISは使用できない．

• LuaTEX-jaは動作が pTEXに比べて非常に遅い．コードを調整して徐々に速くしているが，まだ満
足できる速度ではない．また，和文フォントを読み込むために多量のメモリを消費することにも
注意が必要である．

• 現在 RTTと Identity-V CMapを用いた縦組の実装を試験中である（6.4小節を参照）．この新たな
実装は「縦組時でもあっても pdfからのテキスト抽出がまともになる」という利点があるが，荒
削りであるのでまだ標準では有効になっていない．有効にするには，LuaTEX-ja 読み込み前*2に，
次を実行する：

\directlua{luatexja_cmapidv = true}

2.3 plain TEXで使う

LuaTEX-jaを plain TEXで使うためには，単に次の行をソースファイルの冒頭に追加すればよい：

\input luatexja.sty

これで（ptex.texのように）日本語組版のための最低限の設定がなされる：

• 以下の 12個の和文フォントが定義される：

*2 LaTEXで使う場合には，\documentclassより前に記述するのが安全である．

9

組方向 字体 フォント名 “10 pt” “7 pt” “5 pt”

横組 明朝体 原ノ味明朝 Regular \tenmin \sevenmin \fivemin

ゴシック体 原ノ味角ゴシックMedium \tengt \sevengt \fivegt

縦組 明朝体 原ノ味明朝 Regular \tentmin \seventmin \fivetmin

ゴシック体 原ノ味角ゴシックMedium \tentgt \seventgt \fivetgt

– 標準和文フォントや JFMを原ノ味フォントから別のものに置き換えるには，\ltj@stdmcfont
等を luatexja.sty読み込み前に定義すればよい．8.3節を参照．

– 欧文フォントの文字は和文フォントの文字よりも，同じ文字サイズでも一般に小さくデザイ
ンされている．そこで，標準ではこれらの和文フォントの実際のサイズは指定された値より
も小さくなるように設定されており，具体的には指定の 0.962216倍にスケールされる．この
0.962216という数値も，pTEXにおけるスケーリングを踏襲した値である．

• JAcharと ALcharの間に入るグルー (�xkanjiskip �)の量は次のように設定されている：

(0.25 · 0.962216 · 10 pt)+1 pt
−1 pt = 2.40554 pt+1 pt

−1 pt.

2.4 LaTEXで使う

LaTEX 2𝜀 を用いる場合も基本的には同じである．日本語組版のための最低限の環境を設定するため
には，luatexja.styを読み込むだけでよい：

\usepackage{luatexja}

これで pLaTEXの plfonts.dtxと pldefs.ltxに相当する最低限の設定がなされる．

• 和文フォントのエンコーディングとしては，横組用には JY3，縦組用には JT3が用いられる．
• pLaTEXと同様に，標準では「明朝体」「ゴシック体」の 2種類を用いる．

字体 命令 ファミリ名

明朝体 \textmc{...} {\mcfamily ...} \mcdefault

ゴシック体 \textgt{...} {\gtfamily ...} \gtdefault

（タイプライタ体と合わせる和文） — \jttdefault

\jttdefault は \verb や verbatim 環境中の和文文字に使われる和文フォントファミリであり，
標準値は \mcdefault，つまり明朝体である*3．和文フォントファミリ（のみ）を \jttdefaultに
切り替える命令は準備していない．

• 標準では，次のフォントが用いられる：

字体 ファミリ \mdseries \bfseries スケール

明朝体 mc 原ノ味明朝 Regular 原ノ味角ゴシックMedium 0.962216
ゴシック体 gt 原ノ味角ゴシックMedium 原ノ味角ゴシックMedium 0.962216

明朝・ゴシックどちらのファミリにおいても，太字 (\bfseries) のフォントはゴシック体中字

*3 ltjsclasses を使用したり，また luatexja-fontspec や luatexja-preset パッケージを matchオプションを指定して読み込んだ
ときは，単なる \ttfamily によっても和文フォントが \jttdefault に変更される．また，これらのクラスファイルや
パッケージは \jttdefaultを \gtdefault（ゴシック体）に再定義する．

10

(\gtfamily\mdseries)で使われるフォントと同じであることに注意．また，どちらのファミリで
もイタリック体・スラント体は定義されない．

• 和文の太字を表すシリーズ名は，（元々の Computer Modernが太字に bxを用いていたことから）
伝統的に bx (Bold Extended)が使われてきた．しかし，太字にシリーズ bを使うフォントも増え
てきたため，バージョン 20180616.0以降では和文の太字として bx, bの両方を扱えるようにした．

• バージョン 20181102.0 以降では，disablejfam オプションを LuaTEX-ja 読み込み時に指定でき
るようになった．このオプションは，数式モード中に直に和文文字を書けるようにするための
LaTEXへのパッチを読み込まない．
disablejfam のない状況では，以前と同様に和文文字を数式モード中に直に書くことができる
（但し 13ページの記述も参照）．その際には明朝体 (mc)で出力される．

• beamer クラスを既定のフォント設定で使う場合，既定欧文フォントがサンセリフなので，既定
和文フォントもゴシック体にしたいと思うかもしれない．その場合はプリアンブルに次を書けば
よい：

\renewcommand{\kanjifamilydefault}{\gtdefault}

• pLaTEXと同様に，mc, gt両ファミリには「従属欧文」書体が定義されている．これらは \userelfont

を \selectfont（や，その他の「実際に」フォントを変更する命令）の前で実行することにより
使うことができる．
pLaTEX では標準の欧文フォントは OT1 エンコーディングの Computer Modern Roman (cmr) で
あったが，2017年以降の LuaLaTEXでは TUエンコーディングの Latin Modern Roman (lmr)に変
更されている．そのため，前段落で述べた「従属欧文」も，Latin Modern Romanに設定している．

しかしながら，上記の設定は日本語の文書にとって十分とは言えない．日本語文書を組版するため
には，article.cls, book.clsといった欧文用のクラスファイルではなく，和文用のクラスファイルを
用いた方がよい．現時点では，jclasses（pLaTEXの標準クラス）と jsclasses（奥村晴彦氏による「pLaTEX 2𝜀
新ドキュメントクラス」）に対応するものとして，ltjclasses*4，ltjsclasses*5がそれぞれ LuaTEX-ja 標準
で用意されている．
元々の jsclasses では本文のフォントサイズを設定するのに \mag プリミティブが使われていたが，

LuaTEXでは PDF出力時の \magのサポートが廃止された．そのため，ltjsclassesでは nomag*オプショ
ン*6が標準で有効になっており，これを使って本文フォントサイズの設定を行っている．しかし，こ
の nomag*オプションでは（バージョン 20180121.0より前で unicode-mathパッケージ使用時に起きた
ように）予想外の意図しない現象に遭遇する危険がある．そのような場合は \documentclass におい
て nomagオプションを指定してほしい．

■脚注とボトムフロートの出力順序 オリジナルの LaTEX では脚注はボトムフロートの上に出力さ
れ，また \raggedbottom命令でページの高さが不揃いであることを許した場合には脚注の下端の垂直
位置もページに応じて変わるようになっている．一方，日本語の組版では脚注はボトムフロートの下
に来るのが一般的であるので，pLaTEXではそのように変更されており，さらに \raggedbottom命令を

*4 横 組 用 は ltjarticle.cls, ltjbook.cls, ltjreport.cls で あ り， 縦 組 用 は ltjtarticle.cls, ltjtbook.cls,
ltjtreport.clsである．

*5 ltjsarticle.cls, ltjsbook.cls, ltjsreport.cls, ltjskiyou.cls.
*6 jsclassesや，八登崇之氏による BXjsclsクラスにおける同名のオプションと同じ．上記クラスは TEXコードのみで実装し
ているが，ltjsclassesでは Luaコードも用いている．

11

実行した後でも脚注は常にページの下端に固定されるようになっている．
脚注とボトムフロートの順序，及び \raggedbottom時の脚注の垂直位置は，LuaTEX-jaパッケージ

はとくに変更しない*7が，これら 2点については，以下のような制御手段がある：

LaTEX2𝜺 2024-12-01以前 footmiscパッケージか stfloatsパッケージを利用する．例えば stfloatsパッ
ケージを利用して脚注をボトムフロートの下に組む場合は，次のようにする：

\usepackage{stfloats}\fnbelowfloat

また，\raggedbottom時の脚注の垂直位置は，\iffnfixbottomという真偽値で制御する．
偽 (\fnfixbottomfalse)の場合 LaTEX標準と同じく，本文と脚注の間の空白は \skip\footinsの
み．従って脚注の垂直位置はページにより変動する．

真 (\fnfixbottomtrue)の場合 pLaTEX や footmisc パッケージを bottomオプションで読み込んだ
場合のように，脚注は常にページの下端に固定される．

LaTEX2𝜺 2025-06-01以降 LaTEX 2𝜀 本体の提供する build/column/outputbox ソケットを利用する．
このソケットには 1 つのプラグを選択して挿すことができるが，「脚注を下端に」という目的で
使えるプラグは以下の通りである：

• space-floats-footnotes プラグ：余分の空白→ボトムフロート→脚注の順に出力する．
\usepackage[bottomfloats,belowfloats]{footmisc}の場合の組み方．

• floats-space-footnotes プラグ：ボトムフロート→余分の空白→脚注の順に出力する．
\usepackage[bottom]{footmisc}の場合の組み方．

• floats-footnotes-platexプラグ：pLaTEXの挙動を再現したもの．
例えば floats-footnotes-platexプラグを挿す場合は，次のようにする：

\AssignSocketPlug{build/column/outputbox}{floats-footnotes-platex}

「互換クラス」ltjclasses, ltjsclassesの挙動 pLaTEXと合わせるために，以下のようにしている：
LaTEX2𝜺 2024-12-01以前 \iffnfixbottomを真にし，かつ

\fnfixbottomtrue\usepackage{stfloats}\fnbelowfloatを実行する．
LaTEX2𝜺 2025-06-01以降 build/column/outputboxソケットに floats-footnotes-platexプラ
グを挿す．

■縦組での geometry パッケージ pLaTEX の縦組用標準クラスファイルでは geometry パッケージを
利用することは出来ず，

! Incompatible direction list can't be unboxed.

\@begindvi ->\unvbox \@begindvibox

\global \let \@begindvi \@empty

というようなエラーが発生することが知られている．LuaTEX-ja では，ltjtarticle.cls といった縦
組クラスの下でも geometryパッケージが利用できるようにパッチ lltjp-geometryパッケージを自動的
に当てている．
なお，lltjp-geometry パッケージは pTEX 系列でも明示的に読み込むことによって使用可能である．

詳細や注意事項は lltjp-geometry.pdfを参照のこと．

*7 LuaTEX-jaを「欧文の中にちょっとだけ日本語を入れる」ため使うことも考慮したためである

12

lltjp-geometry.pdf

3 フォントの変更

3.1 plain TEX and LaTEX2𝜺

■plain TEX plain TEX で和文フォントを変更するためには，pTEX のように \jfont 命令や \tfont

命令を直接用いる．8.1節を参照．

■LaTEX2𝜺 (NFSS2) LaTEXで用いる際には，pLaTEX 2𝜀 (plfonts.dtx)用のフォント選択機構の大部分
を流用している．

エンコーディング ファミリ シリーズ シェイプ 選択

欧文 \romanencoding \romanfamily \romanseries \romanshape \useroman

和文 \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji

両方 — – \fontseries \fontshape∗ —
自動選択 \fontencoding \fontfamily — — \usefont

• \fontfamily, \fontseries, \fontshapeは欧文・和文フォント両方の属性を変更しようとする．も
ちろん，それらを実際に反映させるには手動で \selectfontを実行する必要がある．
なお，\fontshape{〈shape〉}は常に欧文フォントのシェイプを設定するが，もしも現在の和文フォ
ントファミリ・シリーズで要求されたシェイプが利用不能だった場合には，和文フォントのシェ
イプは変更しない．詳細は 11.2節を参照すること．

• ここで，\fontencoding{〈encoding〉}は，引数により和文側か欧文側かのどちらかのエンコーディ
ングを変更する．例えば，\fontencoding{JY3} は和文フォントのエンコーディングを JY3 に変
更し，\fontencoding{T1}は欧文フォント側を T1へと変更する．\fontfamilyも引数により和文
側，欧文側，あるいは両方のフォントファミリを変更する．詳細は 11.2節を参照すること．

• 和文フォントファミリの定義には \DeclareFontFamilyの代わりに \DeclareKanjiFamilyを用い
る．以前の実装では \DeclareFontFamily を用いても問題は生じなかったが，現在の実装ではそ
うはいかない．

• 和文フォントのシェイプを定義するには，通常の \DeclareFontShapeを使えば良い：

\DeclareFontShape{JY3}{mc}{b}{n}{<-> s*HaranoAjiMincho--Bold:jfm=ujis;-kern}{}

% Harano Aji Mincho Bold

仮名書体を使う場合など，複数の和文フォントを組み合わせて使いたい場合は 10.5 節の
\ltjdeclarealtfontと，その LaTEX版の \DeclareAlternateKanjiFont（11.2節）を参照せよ．

■数式モード中の和文文字 pTEX では，特に何もしないでも数式中に和文文字を記述することがで
きた．そのため，以下のようなソースが見られた：

 $f_{高温}$~($f_{\text{high temperature}}$).

 \[y=(x-1)^2+2\quad よって\quad y>0 \]

 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈ 素 := { 𝑝 ∈ N : 𝑝 is a prime }.

LuaTEX-ja プロジェクトでは，数式モード中での和文文字はそれらが識別子として用いられるときの
み許されると考えている．この観点から，

13

表 1. luatexja-fontspec で定義される命令

和文 \jfontspec \setmainjfont \setsansjfont \setmonojfont

欧文 \fontspec \setmainfont \setsansfont \setmonofont

和文 \newjfontfamily \renewjfontfamily \setjfontfamily \providejfontfamily

欧文 \newfontfamily \renewfontfamily \setfontfamily \providefontfamily

和文 \newjfontface \renewjfontface \setjfontface \providejfontface

欧文 \newfontface \renewfontface \setfontface \providefontface

和文 \defaultjfontfeatures \addjfontfeatures

欧文 \defaultfontfeatures \addfontfeatures

• 上記数式のうち 1, 2 行目は正しくない．なぜならば「高温」が意味のあるラベルとして，「よっ
て」が接続詞として用いられているからである．

• しかしながら，3行目は「素」が単なる識別子として用いられているので正しい．

したがって，LuaTEX-jaプロジェクトの意見としては，上記の入力は次のように直されるべきである：

 $f_{\text{高温}}$~%

 ($f_{\text{high temperature}}$).

 \[y=(x-1)^2+2\quad

 \mathrel{\mbox{よって}}\quad y>0 \]

 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈ 素 := { 𝑝 ∈ N : 𝑝 is a prime }.

なお LuaTEX-jaプロジェクトでは，和文文字が識別子として用いられることはほとんどないと考え
ており，したがってこの節では数式モード中の和文フォントを変更する方法については記述しない．
この方法については 8.6節を参照のこと．
既に記述した通り，disablejfamオプションを指定して LuaTEX-jaを読み込んだ場合は，$素$のよ

うに直接和文文字を数式モード中に記述することはできなくなる．\mbox，あるいは amsmath パッ
ケージの提供する \text命令などを使うことになる．

3.2 luatexja-fontspecパッケージ

fontspecパッケージは，LuaTEX・X ETEXにおいて TrueType・OpenTypeフォントを容易に扱うため
のパッケージであり，このパッケージを読み込んでおけば Unicode による各種記号の直接入力もで
きるようになる．LuaTEX-ja では和文と欧文を区別しているため，fontspec パッケージの機能は欧文
フォントに対してのみ有効なものとなっている．

LuaTEX-ja 上において，fontspec パッケージと同様の機能を和文フォントに対しても用いる場合は
luatexja-fontspecパッケージを読み込む：

\usepackage[〈options〉]{luatexja-fontspec}

このパッケージは自動で luatexjaパッケージと fontspecパッケージを読み込む．
luatexja-fontspec パッケージでは，表 1 �� の「和文」行に示した命令を fontspec パッケージの元のコ

マンド（「欧文」行）に対応するものとして定義している：

14

luatexja-fontspecパッケージのオプションは以下の通りである：

match

このオプションが指定されると，「pLaTEX 2𝜀 新ドキュメントクラス」のように \rmfamily,
\textrm{...}, \sffamily等が欧文フォントだけでなく和文フォントも変更するようになる．

pass=〈options〉
fontspecパッケージに渡すオプション 〈options〉 を指定する．本オプションは時代遅れである．

scale=〈float〉
欧文に対する和文の比率を手動で上書きするときに使用する．標準では

• \Cjascaleが定義されている場合*8は，それを用いる．
• \Cjascale が未定義の場合は，luatexja-fontspec 読み込み時の和文フォントから自動計算さ
れる．

上記にないオプションは全て fontspecパッケージに渡される．例えば，下の 2行は同じ意味になる：

\usepackage[no-math]{fontspec}\usepackage{luatexja-fontspec}

\usepackage[no-math]{luatexja-fontspec}

これらの和文用のコマンドではフォント内のペアカーニング情報は標準では使用されない，言い換え
れば kern featureは標準では無効化となっている．これは以前のバージョンの LuaTEX-jaとの互換性
のためである（8.1節を参照）．
以下に \jfontspecの使用例を示す．

 \jfontspec[CJKShape=NLC]{HaranoAjiMincho-Regular}

 JIS~X~0213:2004→辻鯵\par

 \jfontspec[CJKShape=JIS1990]{HaranoAjiMincho-Regular}

 JIS~X~0208-1990→辻鯵\par

 \jfontspec[CJKShape=JIS1978]{HaranoAjiMincho-Regular}

 JIS~C~6226-1978→辻鯵

JIS X 0213:2004→辻鯵
JIS X 0208-1990→辻鯵
JIS C 6226-1978→辻鰺

3.3 和文フォントのプリセット設定

よく使われている和文フォント設定を一行で指定できるようにしたのが luatexja-preset パッケージ
である．オプションや各プリセットの詳細については 13.6節を参照して欲しい．現時点では以下のプ
リセットが定義されている：

haranoaji, hiragino-pro, hiragino-pron, ipa, ipa-hg, ipaex, ipaex-hg, kozuka-pr6,

kozuka-pr6n, kozuka-pro, moga-mobo, moga-mobo-ex, bizud, morisawa-pr6n, morisawa-pro,

ms, ms-hg, noembed, noto-otc, noto-otf, noto, noto-jp, sourcehan, sourcehan-jp, ume,

yu-osx, yu-win, yu-win10

例えば，本ドキュメントでは luatexja-presetパッケージを

\usepackage[haranoaji]{luatexja-preset}

として読み込み，原ノ味フォントを使うことを指定している．

*8 LuaTEX-jaが用意しているクラスファイル (ltjclasses, ltjsclasses)を使う場合はこちらに当てはまる．

15

3.4 \CID, \UTFと otfパッケージのマクロ

pLaTEXでは，JIS X 0208にない Adobe-Japan1-6の文字を出力するために，齋藤修三郎氏による otf

パッケージが用いられていた．このパッケージは広く用いられているため，LuaTEX-jaにおいても otf

パッケージの機能の一部を（luatexja-otfという別のパッケージとして）実装した．

 森\UTF{9DD7}外と\CID{13966}田百\UTF{9592}とが
 \UTF{9AD9}島屋に\\

 \CID{7652}飾区の\CID{13706}野家，
 \CID{1481}城市，葛西駅，\\

 高崎と\CID{8705}\UTF{FA11}，濱と\ajMayuHama\\

 \aj半角{カタカナ}\ajKakko3\ajMaruYobi{2}%

 \ajLig{令和}\ajLig{○問}\ajJIS

森鷗外と內田百閒とが髙島屋に
葛飾区の𠮷野家，葛城市，葛西駅，
高崎と髙﨑，濱と濵
ｶﾀｶﾅ⑶㊊㋿㉄〄

otfパッケージでは，それぞれ次のようなオプションが存在した：

deluxe

明朝体・ゴシック体各 3ウェイトと，丸ゴシック体を扱えるようになる．
expert

仮名が横組・縦組専用のものに切り替わり，ルビ用仮名も \rubyfamily によって扱えるように
なる．

bold

ゴシック体を標準で太いウェイトのものに設定する．

しかしこれらのオプションは luatexja-otf パッケージには存在しない．otf パッケージが文書中で使用
する和文用 TFM を自前の物に置き換えていたのに対し，luatexja-otf パッケージでは，そのようなこ
とは行わないからである．
これら 3 オプションについては，luatexja-preset パッケージにプリセットを使う時に一緒に指定す

るか，あるいは対応する内容を 3.1節，11.2節 (NFSS2)や 3.2節 (fontspec)の方法で手動で指定する必
要がある．

4 パラメータの変更
LuaTEX-ja には多くのパラメータが存在する．そして LuaTEX の仕様のために，その多くは TEX の

レジスタにではなく，LuaTEX-ja 独自の方法で保持されている．これらのパラメータを設定・取得す
るためには \ltjsetparameterと \ltjgetparameterを用いる．

4.1 JAcharの範囲

LuaTEX-jaは，Unicodeの U+0080–U+10FFFFの空間を 1番から 217番までの文字範囲に分割してい
る．区分けは \ltjdefcharrange を用いることで（グローバルに）変更することができ，例えば，次
は追加漢字面 (SIP)にある全ての文字と「漢」を「100番の文字範囲」に追加する．

\ltjdefcharrange{100}{"20000-"2FFFF,`漢}

各文字はただ一つの文字範囲に所属することができる．例えば，SIP 内の文字は全て LuaTEX-ja の

16

表 2. 文字範囲 8 に指定されている文字．
§ (U+00A7) Section Sign ¨ (U+00A8) Diaeresis
° (U+00B0) Degree sign ± (U+00B1) Plus-minus sign
´ (U+00B4) Spacing acute ¶ (U+00B6) Paragraph sign
× (U+00D7) Multiplication sign ÷ (U+00F7) Division Sign

表 3. 文字範囲 1 に指定されている Unicode ブロック．
U+0080–U+00FF Latin-1 Supplement U+0100–U+017F Latin Extended-A
U+0180–U+024F Latin Extended-B U+0250–U+02AF IPA Extensions
U+02B0–U+02FF Spacing Modifier Letters U+0300–U+036F Combining Diacritical Marks
U+1E00–U+1EFF Latin Extended Additional

デフォルトでは 4番の文字範囲に属しているが，上記の指定を行えば SIP内の文字は 100番に属すよ
うになり，4番からは除かれる．
ALcharと JAcharの区別は文字範囲ごとに行われる．これは jacharrangeパラメータによって編集

できる．例えば，以下は LuaTEX-jaの初期設定であり，次の内容を設定している：

• 1番，4番，5番，8番の文字範囲に属する文字は ALchar．
• 2番，3番，6番，7番，9番の文字範囲に属する文字は JAchar．

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8, +9}}

jacharrange パラメータの引数は非零の整数のリストである．リスト中の負の整数 −𝑛 は「文字範囲 𝑛

に属する文字は ALchar として扱う」ことを意味し，正の整数 +𝑛 は「JAchar として扱う」ことを
意味する．
なお，U+0000–U+007Fは常に ALcharとして扱われる（利用者が変更することは出来ない）．

■文字範囲の初期値 LuaTEX-ja では 9 つの文字範囲を予め定義しており，これらは以下のデータに
基づいて決定している．

• Unicode 12.0のブロック．
• Adobe-Japan1-7の CIDと Unicodeの間の対応表 Adobe-Japan1-UCS2．
• 八登崇之氏による upTEX用の PXbaseバンドル．

以下ではこれら 9 つの文字範囲について記述する．添字のアルファベット「J」「A」は，その文
字範囲内の文字が JAchar か ALchar かを表している．これらの初期設定は PXbase バンドルで定
義されている prefercjk と類似のものであるが，8 ビットフォント使用時のトラブルを防ぐために
U+0080–U+00FF の文字は全部 ALchar としている．なお，U+0080 以降でこれら 9 つの文字範囲に属
さない文字は，217番の文字範囲に属することになっている．

範囲 8A ISO 8859-1 の上位領域（ラテン 1 補助）と JIS X 0208 の共通部分．文字のリストは表 2 �� を
参照．

範囲 1A ラテン文字のうち，Adobe-Japan1-7 との共通部分があるもの．この範囲は表 3�� で示した
Unicodeのブロックのうち範囲 8を除いた部分で構成されている．

範囲 2J ギリシャ文字とキリル文字．JIS X 0208（したがってほとんどの和文フォント）には，これら
の文字の一部が含まれている．

17

表 4. 文字範囲 3 に指定されている Unicode ブロック．
U+2070–U+209F Superscripts and Subscripts
U+20A0–U+20CF Currency Symbols U+20D0–U+20FF Comb. Diacritical Marks for Symbols
U+2100–U+214F Letterlike Symbols U+2150–U+218F Number Forms
U+2190–U+21FF Arrows U+2200–U+22FF Mathematical Operators
U+2300–U+23FF Miscellaneous Technical U+2400–U+243F Control Pictures
U+2500–U+257F Box Drawing U+2580–U+259F Block Elements
U+25A0–U+25FF Geometric Shapes U+2600–U+26FF Miscellaneous Symbols
U+2700–U+27BF Dingbats U+2900–U+297F Supplemental Arrows-B
U+2980–U+29FF Misc. Math Symbols-B U+2B00–U+2BFF Misc. Symbols and Arrows

表 5. 文字範囲 9 に指定されている文字．

  (U+2002) En space AJ ‐ (U+2010) Hyphen
‑ (U+2011) Non-breaking hyphen AJ – (U+2013) En dash 13
— (U+2014) Em dash ― (U+2015) Horizontal bar
‖ (U+2016) Double vertical line ‘ (U+2018) Left single quotation mark
’ (U+2019) Right single quotation mark ‚ (U+201A) Single low-9 quotation mark AJ
“ (U+201C) Left double quotation mark ” (U+201D) Right double quotation mark
„ (U+201E) Double low-9 quotation mark AJ † (U+2020) Dagger
‡ (U+2021) Double dagger • (U+2022) Bullet 13
‥ (U+2025) Two dot leader … (U+2026) Horizontal ellipsis
‰ (U+2030) Per mille sign ′ (U+2032) Prime
″ (U+2033) Double prime ‹ (U+2039) Single left-pointing angle quot. AJ
› (U+203A) Single right-pointing angle quot. AJ ※ (U+203B) Reference mark
‼ (U+203C) Double exclamation mark 13 ‾ (U+203E) Overline
‿ (U+203F) Undertie 13 ⁂ (U+2042) Asterism 13
⁄ (U+2044) Fraction slash AJ ⁇ (U+2047) Double question mark 13
⁈ (U+2048) Question exclamation mark 13 ⁉ (U+2049) Exclamation question mark 13
⁑ (U+2051) Two asterisks aligned vertically 13

• U+0370–U+03FF: Greek and Coptic
• U+0400–U+04FF: Cyrillic

• U+1F00–U+1FFF: Greek Extended

範囲 3J 記号類．ブロックのリストは表 4 �� に示してある．
範囲 9J Unicodeの「一般句読点」ブロック (U+2000–U+206F)と Adobe-Japan1-7の共通部分．この文

字範囲は表 5�� に示した文字で構成される．
範囲 4A 通常和文フォントには含まれていない文字．この範囲は他の範囲にないほとんど全ての

Unicode ブロックで構成されている．したがって，ブロックのリストを示す代わりに，範囲の定
義そのものを示す．

\ltjdefcharrange{4}{%

"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,

"2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A95F, "A980-"ABFF, "E000-"F8FF,

"FB00-"FE0F, "FE20-"FE2F, "FE70-"FEFF, "10000-"1AFFF, "1B170-"1F0FF,

"1F300-"1FFFF, ... (and characters in U+2000–U+206Fwhich are not in range 9)
} % non-Japanese

範囲 5A 代用符号と補助私用領域．
範囲 6J 日本語で用いられる文字．ブロックのリストは表 6�� に示す．
範囲 7J CJK言語で用いられる文字のうち，Adobe-Japan1-7に含まれていないもの．ブロックのリス

18

表 6. 文字範囲 6 に指定されている Unicode ブロック．
U+2460–U+24FF Enclosed Alphanumerics U+2E80–U+2EFF CJK Radicals Supplement
U+3000–U+303F CJK Symbols and Punctuation U+3040–U+309F Hiragana
U+30A0–U+30FF Katakana U+3190–U+319F Kanbun
U+31F0–U+31FF Katakana Phonetic Extensions U+3200–U+32FF Enclosed CJK Letters and Months
U+3300–U+33FF CJK Compatibility U+3400–U+4DBF CJK Unified Ideographs Ext-A
U+4E00–U+9FFF CJK Unified Ideographs U+F900–U+FAFF CJK Compatibility Ideographs
U+FE10–U+FE1F Vertical Forms U+FE30–U+FE4F CJK Compatibility Forms
U+FE50–U+FE6F Small Form Variants U+FF00–U+FFEF Halfwidth and Fullwidth Forms
U+1B000–U+1B0FF Kana Supplement U+1B100–U+1B12F Kana Extended-A
U+1F100–U+1F1FF Enclosed Alphanumeric Supp. U+1F200–U+1F2FF Enclosed Ideographic Supp.
U+20000–U+2FFFF (Supp. Ideographic Plane) U+30000–U+3FFFF (Tert. Ideographic Plane)
U+E0100–U+E01EF Variation Selectors Supp.

表 7. 文字範囲 7 に指定されている Unicode ブロック．

U+1100–U+11FF Hangul Jamo U+2F00–U+2FDF Kangxi Radicals
U+2FF0–U+2FFF Ideographic Description Characters U+3100–U+312F Bopomofo
U+3130–U+318F Hangul Compatibility Jamo U+31A0–U+31BF Bopomofo Extended
U+31C0–U+31EF CJK Strokes U+A000–U+A48F Yi Syllables
U+A490–U+A4CF Yi Radicals U+A960–U+A97F Hangul Jamo Extended-A
U+AC00–U+D7AF Hangul Syllables U+D7B0–U+D7FF Hangul Jamo Extended-B

トは表 7�� に示す．

■U+0080–U+00FFについての注意 LuaTEX-jaで，marvosymパッケージ等，Unicodeフォントでなく
伝統的な 8ビットフォントを用いる場合には注意が必要である．
例えば，marvosymパッケージの提供する \Frowny も，符号位置は 167，つまり Unicodeにおける

§ (U+00A7) と同じ符号位置にある．即ち，以前のバージョンのように，「前節の文字範囲 8内の文字
は JAchar」という設定であったとすると，上記の \Frowny は和文フォントで「§」を出力すること
になる．
このような事態を避けるために，バージョン 20150906.0 からは U+0080–U+00FF の範囲の文字は全

て ALcharとなるように初期設定を変更している．
なお，文字範囲の設定に関わらず 1つの文字を ALchar, JAcharで出力したい場合には，以下の例

のようにそれぞれ \ltjalchar, \ltjjacharに該当文字の文字コードを渡せばよい．

 \gtfamily\large % default, ALchar, JAchar

 ¶, \ltjalchar`¶, \ltjjachar`¶\\ % default: ALchar

 α, \ltjalchar`α, \ltjjachar`α % default: JAchar

¶, ¶,¶
α, α,α

■絵文字など，複数コードポイントの列で表現される字形をを利用する場合の注意 （luaotfloadによ
る）OpenType 機能や合字等の処理は，LuaTEX-ja が段落・水平ボックスの中身全体に対して「この
文字は JAchar だから和文フォントで組む」とフォントを置き換えた後に適用される．そのため，異
体字セレクタや絵文字といった複数のコードポイントの列で表現される文字を組む場合には，列全体
で JAcharの範囲か ALcharの範囲かが統一されていないといけない．
例えば，CJK統合漢字（とその拡張達）と IVS用の異体字セレクタ (U+E0100–U+E01EF)は標準では

どちらも同じ文字範囲 6 であるため，（フォントがサポートしていれば）IVS は正しく機能する．し
かし，下の例のように異体字セレクタを ALchar の文字範囲 (4) に移動させると，IVS は機能しなく

19

なる：

 \ltjdefcharrange{4}{"E0100-"E01EF}

 葛0E0
100城市，葛0E0

101飾区，葛西 葛 城市，葛 飾区，葛西

また，標準では絵文字として使われる可能性が大きい一部の文字が JAchar となっている*9．絵文
字を用いる場合にはこの点に留意する必要がある．
\ltjsetparameter{jacharrange={+3}}

\font\nce=NotoColorEmoji.ttf:mode=harf\nce

01F
469

ZW
J

27
64

VS
16

ZW
J

01F
48B

ZW
J

01F
468 % U+2764: JAchar

\ltjsetparameter{jacharrange={-3}}

01F
469

ZW
J

27
64

VS
16

ZW
J

01F
48B

ZW
J

01F
468 % U+2764: ALchar

�

4.2 �kanjiskip � と �xkanjiskip�

JAglueは以下の 3つのカテゴリに分類される：

• JFM で指定されたグルー／カーン．もし \inhibitglue が JAchar の周りで発行されていれば，
このグルーは挿入されない．

• デフォルトで 2つの JAcharの間に挿入されるグルー (�kanjiskip �)．
• デフォルトで JAcharと ALcharの間に挿入されるグルー (�xkanjiskip �)．

�kanjiskip� や �xkanjiskip� の値は以下のようにして変更可能である．

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},

xkanjiskip={0.25\zw plus 1pt minus 1pt}}

ここで，\zw は現在の和文フォントの全角幅を表す長さであり，pTEXにおける長さ単位 zw と同じよ
うに使用できる．
これらのパラメータの値は以下のように取得できる．戻り値は内部値ではなく文字列である（\the

は前置できない）ことに注意してほしい：

 kanjiskip: \ltjgetparameter{kanjiskip},\\

 xkanjiskip: \ltjgetparameter{xkanjiskip}

kanjiskip: 0.0pt plus 0.99597pt minus 0.09953pt,
xkanjiskip: 2.69249pt plus 1.61542pt minus
0.64616pt

JFM は「望ましい �kanjiskip� の値」や「望ましい �xkanjiskip � の値」を持っていることがある．こ
れらのデータを使うためには， �kanjiskip� や �xkanjiskip� の値を \maxdimen の値に設定すればよいが，
\ltjgetparameterによって取得することはできないので注意が必要である．

4.3 �xkanjiskip� の挿入設定

�xkanjiskip� がすべての JAcharと ALcharの境界に挿入されるのは望ましいことではない．例えば，
�xkanjiskip� は開き括弧の後には挿入されるべきではない（「(あ」と「(あ」を比べてみよ）．LuaTEX-jaで
は �xkanjiskip � をある文字の前／後に挿入するかどうかを，JAcharに対しては �jaxspmode � を，ALchar
に対しては �alxspmode � をそれぞれ変えることで制御することができる．

*9 同じ Unicodeブロック内に Adobe-Japan1-6の文字があったため．

20

 \ltjsetparameter{jaxspmode={`あ,preonly},

alxspmode={`\!,postonly}}

 pあq い!う
pあqい!う

2つ目の引数の preonlyは「�xkanjiskip� の挿入はこの文字の前でのみ許され，後では許さない」こと
を意味する．他に指定可能な値は postonly, allow, inhibitである．
なお，現行の仕様では，�jaxspmode�, �alxspmode � はテーブルを共有しており，上のコードの 1 行目を

次のように変えても同じことになる：

\ltjsetparameter{alxspmode={`あ,preonly}, jaxspmode={`\!,postonly}}

また，これら 2パラメータには数値で値を指定することもできる（9.1節を参照）．
もし全ての �kanjiskip� と �xkanjiskip� の挿入を有効化／無効化したければ，それぞれ �autospacing � と

�autoxspacing� を true/falseに設定すればよい．

4.4 ベースラインの移動

和文フォントと欧文フォントを合わせるためには，時々どちらかのベースラインの移動が必要に
なる．pTEXではこれは \ybaselineshift（または \tbaselineshift）を設定することでなされていた
（ALchar のベースラインがその分だけ下がる）．しかし，日本語が主ではない文書に対しては，欧文
フォントではなく和文フォントのベースラインを移動した方がよい．このため，LuaTEX-ja では欧文
フォントのベースラインのシフト量と和文フォントのベースラインのシフト量を独立に設定できるよ
うになっている．

横組など 縦組

欧文フォントのシフト量 �yalbaselineshift � parameter �talbaselineshift� parameter
和文フォントのシフト量 �yjabaselineshift� parameter �tjabaselineshift� parameter

下の例において引かれている水平線がベースラインである．

 \vrule width 150pt height 0.2pt depth 0.2pt

\hskip-120pt

 \ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=0pt}abcあいう
 \ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abcあいう

abcあいう abcあいう

この機能には面白い使い方がある：2 つのパラメータを適切に設定することで，サイズの異なる
文字を中心線に揃えることができる．以下は一つの例である（値はあまり調整されていないことに
注意）：

 \vrule width 150pt height4.417pt depth-4.217pt%

 \kern-150pt

 \large xyz漢字
 {\scriptsize

 \ltjsetparameter{yjabaselineshift=-1.757pt,

 yalbaselineshift=-1.757pt}

 漢字xyzあいう
 }あいうabc

xyz漢字漢字 xyz あいうあいう abc

21

表 8. 数式関係のベースライン補正 (yalbaselineshift = 10 pt)

入力 数式abc: $あa\hbox{い}$, $\int_0^x t\,dt=x^2/2$,

$\Phi\vdash F(x)\ \hbox{for all}\ x\in A$,

$\sqrt{A}-\underline{X}+\frac{あ3}{2あ}-\vcenter{\hbox{aお}}$

pTEX (p4.0.0) 数式
abc: あ 𝑎

い
,
∫ 𝑥

0 𝑡 𝑑𝑡 = 𝑥2/2, Φ ` 𝐹 (𝑥) for all 𝑥 ∈ 𝐴
√
𝐴 − 𝑋 + あ 3

2 あ − a
お

LuaTEX-ja 数式
abc:

あ
𝑎
い

,
∫ 𝑥

0 𝑡 𝑑𝑡 = 𝑥2/2, Φ ` 𝐹 (𝑥) for all 𝑥 ∈ 𝐴,
√
𝐴 − 𝑋 +

あ
3

2
あ − a

お

なお，以下の場合には 1文字の ALcharからなる「音節」の深さは増加しないことに注意．

• �yalbaselineshift�, �talbaselineshift� パラメータが正になっている．
•「音節」を構成する唯一の文字 𝑝 の左余白への突出量 (\lpcode)，右余白への突出量 (\rpcode) が
どちらも非零である．

JAcharは必要に応じて 1文字ずつボックスにカプセル化されるため，�yjabaselineshift �, �tjabaselineshift�

パラメータについてはこのような問題は起こらない．

■数式における挙動：pTEX との違い ALchar のベースラインを補正する �yalbaselineshift�,
�talbaselineshift� パラメータはほぼ pTEX における \ybaselineshift, \tbaselineshift に対応している
ものであるが，数式中の挙動は異なっているので注意が必要である（表 8 �� 参照）．

• バージョン 20221002.0以降では，pTEX 4.0.0と同様に数式が �yalbaselineshift� だけシフトされる．
しかしそれでは数式中に直に書かれた \hbox, \vbox中の欧文には �yalbaselineshift� が二重に適用さ
れることになるので，数式中に直に書かれた \hbox, \vboxには �yalbaselineshift� を打ち消す補正を
している．
なお，\vcenterによるボックスにはこの「打ち消す補正」は行われないので注意．

• pTEX では数式のスタイルごとに「打ち消す補正」の割合を \textbaselineshiftfactor,
\scriptbaselineshiftfactor, \scriptscriptbaselineshiftfactor で指定できるようにしたが，
LuaTEX-ja では 2 番の数式ファミリ (\fam2) に使われているフォントの大きさから自動で計算
する．

• 数式中に直に書かれた和文文字（表 8�� 中の “あ”）については pTEX と LuaTEX-ja で違いが見られ
る．pTEXでは，欧文文字と変わらず欧文ベースライン補正 (\ybaselineshift)がかかり，また周
囲に和欧文間空白 (\xkanjiskip)が入りうる．その一方，LuaTEX-jaでは「和文ベースライン補正
(�yjabaselineshift�)がかかる」見た目になり，また周囲に和欧文間空白は入らない．

4.5 禁則処理関連パラメータと OpenType機能

禁則処理や �kanjiskip�, �xkanjiskip � の挿入に関連したパラメータのうち

�jaxspmode�, �alxspmode�, �prebreakpenalty�, �postbreakpenalty �, �kcatcode�

は，文字コードごとに設定する量である．

22

fontspecパッケージを使う（3.2節）場合など，各種の OpenType機能を適用することもあると思う
が，前段落に述べたパラメータ類は，OpenType機能の適用前の文字コードによって適用される．例
えば，以下の例において 10 行目の「ア」は，hwid feature の適用により半角カタカナの「ｱ」に置き
換わる．しかし，その直後に挿入される �postbreakpenalty � は，置換前の「ア」に対する値 10である．

 \ltjsetparameter{postbreakpenalty={`ア, 10}}

 \ltjsetparameter{postbreakpenalty={`ｱ, 20}}

 \newcommand\showpostpena[1]{%

 \leavevmode\setbox0=\hbox{#1\hbox{}}%

 \unhbox0\setbox0=\lastbox\the\lastpenalty}

 \showpostpena{ア},

 \showpostpena{ｱ},
 {\addjfontfeatures{CharacterWidth=Half}\showpostpena{ア}}

ア 10, ｱ 20,ア 10

23

第 II部

リファレンス
5 LuaTEX-jaにおける \catcode

5.1 予備知識：pTEXと upTEXにおける \kcatcode

pTEX，upTEXにおいては，和文文字が制御綴内で利用できるかどうかは \kcatcodeの値によって決
定されるのであった．詳細は表 9�� を参照されたい．

pTEXでは \kcatcode は JIS X 0208の区単位，upTEXでは概ね Unicodeブロック単位*10で設定可能
になっている．そのため，pTEX と upTEX の初期状態では制御綴内で使用可能な文字が微妙に異なっ
ている．

5.2 LuaTEX-jaの場合

LuaTEX-jaでは，従来の pTEX・upTEXにおける \kcatcodeの役割を分割している：

欧文/和文の区別 (upTEX) \ltjdefcharrangeと jacharrangeパラメータ（4.1節）
制御綴中に使用可か LuaTEX自身の \catcodeでよい
�jcharwidowpenalty� が挿入可か �kcatcode � パラメータの最下位ビット
直後の改行 日本語しか想定していないので，JAchar直後の改行で半角スペースが挿入されることは

ない．

最近の（2015-10-01 以降の）LuaLaTEX では漢字や仮名を制御綴内に使用することが可能である
が，全角英数字は使用できない．これでは pTEX で使用できた \１年目西暦*11などが使えないため，
LuaTEX-jaへの移行で手間が生じることになる．
そのため，LuaTEX-jaでは全角英数字など一部の文字*12の \catcodeを 11に変更し，これらの文字

を制御綴中で使用可能にしている．

5.3 制御綴中に使用出来る JIS非漢字の違い

エンジンが異なるので，pTEX, upTEX, LuaTEX-ja において制御綴中に使用可能な JIS X 0208の文字
は異なる．異なっているところだけを載せると，表 10 �� のようになる．「・」「゛」「゜」を除けば，
LuaTEX-jaでは upTEXより多くの文字が制御綴に使用可能になっている．

JIS X 0213の範囲に広げると，差異はさらに大きくなる．詳細については例えば https://github.

com/h-kitagawa/kct中の kct-out.pdfなどを参照すること．

*10 U+FF00–U+FFEF (Halfwidth and Fullwidth Forms)は「全角英数字」「半角カナ」「その他」と 3つに分割されており，それ
ぞれ別々に \kcatcodeが指定できるようになっている．

*11 科研費 LaTEXで使用されているそうです．
*12 正確には，Unicodeの行分割アルゴリズム (UAX #14)で “ID” (Ideographic)と指定されている文字．

24

https://github.com/h-kitagawa/kct
https://github.com/h-kitagawa/kct

表 9. \kcatcode in upTEX u1.30

\kcatcode 意図 制御綴中に使用 文字ウィドウ処理 直後での改行

15 non-cjk (treated as usual LaTEX)
16 kanji Y Y ignored
17 kana Y Y ignored
18 other N N ignored
19 hangul Y Y space

文字ウィドウ処理：「漢字が一文字だけ次の行に行くのを防ぐ」\jcharwidowpenaltyが，その文字の直前に挿入
されうるか否か，を示す．

表 10. 制御綴中に使用出来る JIS X 0208 非漢字の違い

区 点 pTEX upTEX LuaTEX-ja

・(U+30FB) 1 6 N Y N
゛ (U+309B) 1 11 N Y N
゜ (U+309C) 1 12 N Y N
｀ (U+FF40) 1 14 N N Y
＾ (U+FF3E) 1 16 N N Y
￣ (U+FFE3) 1 17 N N Y
＿ (U+FF3F) 1 18 N N Y
ヽ (U+30FD) 1 19 N Y Y
ヾ (U+30FE) 1 20 N Y Y
ゝ (U+309D) 1 21 N Y Y
ゞ (U+309E) 1 22 N Y Y
〃 (U+3003) 1 23 N N Y
仝 (U+4EDD) 1 24 N Y Y
々 (U+3005) 1 25 N N Y
〆 (U+3006) 1 26 N N Y
〇 (U+3007) 1 27 N N Y
ー (U+30FC) 1 28 N Y Y

区 点 pTEX upTEX LuaTEX-ja

／ (U+FF0F) 1 31 N N Y
＼ (U+FF3C) 1 32 N N Y
～ (U+FF5E) 1 33 N N Y
｜ (U+FF5C) 1 35 N N Y
＋ (U+FF0B) 1 60 N N Y
＝ (U+FF1D) 1 65 N N Y
＜ (U+FF1C) 1 67 N N Y
＞ (U+FF1E) 1 68 N N Y
＃ (U+FF03) 1 84 N N Y
＆ (U+FF06) 1 85 N N Y
＊ (U+FF0A) 1 86 N N Y
＠ (U+FF20) 1 87 N N Y
〒 (U+3012) 2 9 N N Y
〓 (U+3013) 2 14 N N Y
￢ (U+FFE2) 2 44 N N Y
Å (U+212B) 2 82 N N Y
ギリシャ文字（6区） Y N Y
キリル文字（7区） N N Y

6 縦組
LuaTEX 本体でも，Ω・ℵ 由来の機能として，複数の組方向をサポートしている．しかし，LuaTEX

がサポートするのは TLT, TRT, RTT, LTLのみであり，日本語の縦組に使うのは望ましくない*13．そのた
め，LuaTEX-jaでは横組 (TLT)で組んだボックスを回転させる方式で縦組を実装した．

25

表 11. LuaTEX-jaのサポートする組方向

横組 縦組 「dtou方向」 「utod方向」

命令 \yoko \tate \dtou \utod

字送り方向 水平右向き（→） 垂直下向き（↓） 垂直上向き（↑） 垂直下向き（↓）
行送り方向 垂直下向き（↓） 水平左向き（←） 水平右向き（→） 水平左向き（←）
使用する和文フォント 横組用 (\jfont) 縦組用 (\tfont) 横組用 (\jfont)の 90◦ 回転

組版例∗
OOOO

_��

//銀は、Ag

OO OO_��

//

銀
は
、A

g

OOOO _��

//
銀
は
、

A
g

OO OO_��

//
銀
は
、

A
g

∗ 幅 (width)，高さ (height)，深さ (depth)の増加方向を，それぞれ「 //」，「 // //」，「 �//」で表している．

6.1 サポートする組方向

LuaTEX-jaがサポートする組方向は表 11 �� に示す 4つである．4列目の \dtouは聞き慣れない命令だ
と思うが，実は pTEXに同名の命令が（ドキュメントには書かれていないが）存在する．Down-TO-Up
の意味なのだろう．\dtou を使用する機会はないだろうが，LuaTEX-ja ではデバッグ用に実装してい
る．5列目の \utodは，pTEXで言う「縦数式ディレクション」に相当するものである．
組方向は，\yoko, \tate, \dtou, \utodをそれぞれ使用することで，現在作成中のリストやボックス

が空の時にのみ変更可能である．ただし，現在のモードが非制限水平モードや（文中，別行立て問わ
ず）数式モードであるときには組方向を変更することは出来ない．また，縦組中の数式内のボックス
は pTEXと同じように組方向が \utodとなる．
なお，LaTEXの下で LuaTEX-jaを使用する場合，組方向変更命令には「新たな組方向下での和文フォ

ントを必要なら読み込み（・選択する）」という処理が付け加えられている（11.1節参照）．

6.2 異方向のボックス

縦組の中に「42」などの 2桁以上の算用数字を横組で組むなど，異なる組方向を混在させることが
しばしば行われる．組方向の混在も pTEXと同じようにできる：

 ここは横組% yoko

 \hbox{\tate % tate

 \hbox{縦組}% tate

 の中に
 \hbox{\yoko 横組の内容}% yoko

 を挿入する
 }

 また横組に戻る% yoko ここは横組

縦
組
の
中
に

横組の内容
を
挿
入
す
る また横組に戻る

異なる組方向のボックスを配置した場合にどう組まれるかの仕様も，pTEX を踏襲している．表 12 ��

に示す．

*13 和文文字だけならば RTT を使えばなんとかなると思うが，欧文文字が入ってきた場合はうまくいかず，RTR という組方
向が必要になる．

26

表 12. 異方向のボックスの配置

横組中に配置 縦組中に配置 組方向 \dtou中に配置

tate/utod

ℎT𝑑T

𝑤T𝐻Y

𝐷Y

𝑊Y

𝑊Y = ℎT + 𝑑T,
𝐻Y = 𝑤T,

𝐷Y = 0 pt

yokoℎY

𝑑Y

𝑤Y
𝑊T

𝐻T𝐷T

𝑊T = ℎY + 𝑑Y,
𝐻T = 𝑤Y/2,
𝐷T = 𝑤Y/2

yokoℎY

𝑑Y

𝑤Y
𝑊D

𝐻D 𝐷D

𝑊D = ℎY + 𝑑Y,
𝐻D = 𝑤Y,

𝐷D = 0 pt

dt
ou

ℎD 𝑑D

𝑤D𝐻Y

𝐷Y

𝑊Y

𝑊Y = ℎD + 𝑑D,
𝐻Y = 𝑤D,

𝐷Y = 0 pt

dt
ou

ℎD 𝑑D

𝑤D𝑊T

𝐻T𝐷T

𝑊T = ℎD + 𝑑D,
𝐻T = 𝑑D,

𝐷T = ℎD

tate/utod

ℎT𝑑T

𝑤T𝑊D

𝐻D 𝐷D

𝑊D = 𝑤T,

𝐻D = 𝑑T,

𝐷D = ℎT

■\wd 達と組方向 ボックスレジスタ \box〈num〉 にセットされているボックスの幅・高さ・深さの
取得や変更にはそれぞれ \wd, \ht, \dp プリミティブを用いるのであった．pTEXではこれらのプリミ
ティブは，「現在の組方向におけるボックスの寸法」を指すもので，同じボックスに対しても現在の
組方向によって返る値は異なるものであった．

LuaTEX-ja においては状況が異なり，\wd, \ht, \dp が返す値は現在の組方向には依存しない．下の
例のように，横組のボックスが格納されていれば \wd等は常に「横組におけるボックスの寸法」を意
味する．

 \setbox0=\hbox to 20pt{foo}

 \the\wd0,~\hbox{\tate\vrule\the\wd0}

 \wd0=100pt

 \the\wd0,~\hbox{\tate \the\wd0}
20.0pt,

20.0pt 100.0pt,

100.0pt

pTEXのように現在の組方向に応じたボックスの寸法の取得・設定を行うには，代わりに次の命令を
使用する．

\ltjgetwd〈num〉, \ltjgetht〈num〉, \ltjgetdp〈num〉
現在の組方向に応じたボックスの寸法の取得を行う．結果は内部長さであるため，

27

\dimexpr 2\ltjgetwd42-3pt\relax, \the\ltjgetwd1701

のように \wd〈num〉 の代わりとして扱うことができる．使用例は以下の通りである．

 \parindent0pt

 \setbox32767=\hbox{\yoko よこぐみ}

 \fboxsep=0mm\fbox{\copy32767}

 \vbox{\hsize=20mm

 \yoko YOKO \the\ltjgetwd32767, \\

 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}

 \vbox{\hsize=20mm\raggedleft

 \tate TATE \the\ltjgetwd32767, \\

 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}

 \vbox{\hsize=20mm\raggedleft

 \dtou DTOU \the\ltjgetwd32767, \\

 \the\ltjgetht32767, \\ \the\ltjgetdp32767.}

よこぐみ

YOKO
39.83649pt,
8.76402pt,
1.1951pt.

TATE
9.95912pt,

19.91824pt,
19.91824pt.

D
TO

U
9.

95
91

2p
t,

39
.8

36
49

pt
,

0.
0p

t.

\ltjsetwd〈num〉=〈dimen〉, \ltjsetht〈num〉=〈dimen〉, \ltjsetdp〈num〉=〈dimen〉
現在の組方向に応じたボックスの寸法の設定を行う．\afterassignment を 2 回利用して実装し
ているので，次の 4通りは全て同じ意味である．

\ltjsetwd42 20pt, \ltjsetwd42=20pt, \ltjsetwd=42 20pt, \ltjsetwd=42=20pt

設定値は「横組」「縦組または utod方向」「dtou方向」の 3種ごとに独立して記録される．参考
として，Gitリポジトリ内の test/test55-boxdim_diffdir.{tex,pdf}を挙げておく．

6.3 組方向の取得

「現在の組方向」や「〈num〉 番のボックスの組方向」は，pTEXでは \ifydirや \ifybox〈num〉といっ
た条件判断文を使って判断することができた．しかし，LuaTEX-ja はあくまでも TEX マクロと Lua
コードで記述されており，それでは新たな条件判断命令を作るのは難しい．

LuaTEX-jaでは，�direction� パラメータで現在の組方向を，�boxdir� パラメータ（と追加の引数 〈num〉）
によって \box〈num〉 の組方向をそれぞれ取得できるようにした．戻り値は文字列である：

組方向 横組 tate縦組 dtou方向 utod方向 (未割り当て)

戻り値 4 3 1 11 0

 \leavevmode\def\DIR{\ltjgetparameter{direction}}

 \hbox{\yoko\DIR}, \hbox{\tate\DIR},

 \hbox{\dtou\DIR}, \hbox{\utod\DIR},

 \hbox{\tate$\hbox{tate math: \DIR}$}

 \setbox2=\hbox{\tate}\ltjgetparameter{boxdir}{2}

4, 3 , 1,

11 ,

tate
m

ath:11

3

これらを用いれば，例えば pTEXの \ifydir, \ifybox200と同等の条件判断を

\ifnum\ltjgetparameter{direction}=4

\ifnum\ltjgetparameter{boxdir}{200}=4

のように行うことができる．\iftdirは少々面倒であるが，8 で割った余りが 3 であるか否かを判断
すれば良いから

28

\ifnum\numexpr

\ltjgetparameter{direction}-(\ltjgetparameter{direction}/8)*8=3

とすればよい．

6.4 実装の比較

現バージョンの LuaTEX-ja では，縦組みの実装方法について従来からの「一文字ずつ回転」方式
（以下，方式 A）と試験中の「RTTと IDentity-V CMap を用いた」方式（以下，方式 B）の 2 つから
選べるようになっている．2.2小節で述べたように，今のところ標準は方式 Aであり，方式 Bを試す
には

\directlua{luatexja_cmapidv = true}

を LuaTEX-ja読み込み前*14に記述する必要がある．
どちらの方式でも，「横組 (TLT)でボックスを組み，最後にボックス全体を時計回りに 90度回転さ

せる」ことと使うグリフは同じだが，それ以外の点では異なる：

方式 A 縦組用和文フォントであっても，PDF 中では Identity-H エンコーディング（横組用）を用い
る．ボックス内の JAcharは一文字ずつ反時計周りに回転される．
LuaTEX-ja の縦組みとして 10 年以上用いられており安定した方法であるが，PDF では一文字ず
つ別々の TJ オペレータで描画されるという性質上，この方式で組まれた縦組からはまともにテ
キスト抽出ができないというのが難点である．

方式 B 縦組用和文フォントは，PDF中で Identity-Vエンコーディング（縦組用）を用いる．同じ「水
平位置」で出力可能な JAcharたちの並びは，Ωでいう組方向 RTTのボックスとしてまとめられ
る*15．PDFでは，個々の RTTボックスごとに 1つの TJオペレータでまとめて描画されることに
なる．
方式 Aと比べるとテキスト抽出がまともに行えるが，未だ不安が残るのは確かである：

• Identity-V CMapや，フォントの書字方向 (WMode)として縦書きを用いることは LuaTEXの
undocumentedな機能である

• 組方向 RTT はほとんど使用されておらず，LuaTEX でもほとんどテストされていない．現状
ではグリフ出力位置の計算がどこかおかしいようである*16

両者の比較として，30ページに載せた入力例と，その下にある PDFの一部も参照してほしい．

7 プリミティブの再定義
LuaTEX-ja では和文組版や異なる組方向に対応するために，以下に挙げるプリミティブ

は \protected\defにより再定義を行っている．

\/ 和文フォントに対するイタリック補正のサポートが追加されている．

*14 LaTEXで使う場合には，\documentclassより前に記述するのが安全である．
*15 まとめる作業は \shipoutの直前に行われるため，ユーザが意識することは通常はない．
*16 LuaTEX-ja では適宜カーンで補正しているが，その補正量の根拠は「色々な場合で試してみてとりあえずこれでうまく
いっているようだ」以上にはない．

29

\documentclass{ltjarticle}

\pagestyle{empty}\pdfcompresslevel=0

\begin{document}

\hbox{\tate あいう\ltjjachar`α漢字}% 「α」は90度寝た形で出力される
\end{document}

図 1. 縦組みの 2 方式の比較用入力

<< /Length 937 >>

stream

1 0 0 1 133.768 655.585 cm

q

0 -1 1 0 0 0 cm

1 0 0 1 -57.517 4.793 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -76.251 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 71.458 651.942 Tm [<034B>]TJ

ET

1 0 0 1 76.251 660.378 cm

Q

1 0 0 1 9.586 0 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -85.837 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 81.044 651.942 Tm [<034D>]TJ

ET

1 0 0 1 85.837 660.378 cm

Q

1 0 0 1 9.586 0 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -95.423 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 90.63 651.942 Tm [<034F>]TJ

ET

1 0 0 1 95.423 660.378 cm

Q

1 0 0 1 -95.423 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 105.01 656.736 Tm [<040B>]TJ

ET

1 0 0 1 114.596 660.378 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -114.596 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 109.803 651.942 Tm [<05FD>]TJ

ET

1 0 0 1 114.596 660.378 cm

Q

1 0 0 1 9.586 0 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -124.182 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 119.389 651.942 Tm [<08C8>]TJ

ET

1 0 0 1 124.182 660.378 cm

Q

1 0 0 1 9.586 -4.793 cm

Q

endstream

図 2. 方式 A による出力の一部

<< /Length 493 >>

stream

1 0 0 1 133.768 655.585 cm

q

0 -1 1 0 0 0 cm

1 0 0 1 -57.517 4.793 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -76.251 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 76.251 660.378 Tm [<034B034D034F>]TJ

ET

1 0 0 1 76.251 660.378 cm

Q

1 0 0 1 -76.251 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 109.803 665.172 Tm [<040B>]TJ

ET

1 0 0 1 114.596 660.378 cm

q

0 1 -1 0 0 0 cm

1 0 0 1 -114.596 -660.378 cm

BT

/F18 9.58624 Tf

1 0 0 1 114.596 660.378 Tm [<05FD08C8>]TJ

ET

1 0 0 1 114.596 660.378 cm

Q

1 0 0 1 19.172 -4.793 cm

Q

endstream

図 3. 方式 B による出力の一部

30

 \makeatletter\scriptsize\ttfamily

 \meaning\vadjust \\ % current

 \meaning\ltj@@vadjust \\ % LuaTeX-ja

 \meaning\ltj@@orig@vadjust % original

luacall 50

luacall 50

\vadjust

図 4. Redefining \vadjust primitive by LuaTEX-ja

\unhbox〈number〉, \unvbox〈number〉, \unhcopy〈number〉, \unvcopy〈number〉
ボックスの組方向が現在のリストと異なる場合は事前にエラーメッセージを出力する．pTEX と
異なり，エラーを無視して無理矢理 \unhbox, \unvbox等を続行させることもできるが，その場合
の組版結果は保証しない．

\vadjust{〈material〉}
一旦プリミティブ本来の挙動を行う．その後，〈material〉 の組方向が周囲の垂直リストの組方向
と一致しない場合にエラーを出力し，該当の \vadjustを無効にする．

\insert〈number〉{〈material〉}
一旦プリミティブ本来の挙動を行い，その後 〈material〉 内の各ボックス・罫線の直前に組方向を
示す direction whatsitを挿入する．

\lastbox

ボックスの「中身」を現在の組方向に合わせるためのノード（dir box という）を必要ならば除
去し，正しく「中身」のボックスが返されるように前処理をする．

\raise〈dimen〉〈box〉, \lower〈dimen〉〈box〉, \moveleft〈dimen〉〈box〉, \moveright〈dimen〉〈box〉,
\split〈number〉to〈dimen〉, \vcenter{〈material〉}

これらのプリミティブについては必要に応じて dir box を作成する前処理を追加している．

上記の一覧中にあるプリミティブ \〈primitive〉 については，LuaTEX-ja 読み込み前の意味が
\ltj@@orig@〈primitive〉 に，そして LuaTEX-ja による再定義後の意味が \ltj@@〈primitive〉 に保存
される．例えば，\vadjustについては図 4 �� のようになっている．

7.1 再定義の抑制

場合によっては LuaTEX-ja によるプリミティブの再定義が不都合を起こすこともある．例えば，
breqnパッケージ（少なくとも v0.98k, 2020-09-24)）は読み込み時に \vadjust, \insertがプリミティ
ブのままであることを要請するので，このままでは LuaTEX-jaの後で読み込むことはできない．
この状況に対応するため，バージョン 20210517.0以降では

• 制御綴 \ltj@stop@overwrite@primitive内に並べられたプリミティブは，LuaTEX-ja読み込み直
前時の意味のままとなる．

• LuaTEX-ja 読み込み後に \ltj@overwrite@primitive に引数として与えたプリミティブを与える
ことで，それらを「LuaTEX-jaによって再定義する」際の意味に再定義する

機能を導入した．使用例については図 5�� を参照．

31

\makeatletter

\def\ltj@stop@overwrite@primitive{\insert\vadjust\/\unhbox\vcenter\fontseries}

\makeatother

%% Keep the meaning of \insert, \vadjust, \/, \unhbox and \vcenter.

%% \fontseries will still be redefined by \LuaTeX-ja, because it is not primitive.

\usepackage{luatexja}

...

\usepackage{breqn}

...

\makeatletter

\ltj@overwrite@primitive\expandafter{\insert\vadjust\/\unhbox\vcenter}

\makeatother

%% Redefine \insert, \vadjust, \/, \unhbox and \vcenter.

図 5. \ltj@stop@overwrite@primitive and \ltj@overwrite@primitive

8 フォントメトリックと和文フォント

8.1 \jfont命令

フォントを（横組用）和文フォントとして読み込むためには，\jfont を \font プリミティブの代
わりに用いる．\jfontの文法は \fontと同じである．LuaTEX-jaは luaotfloadパッケージを自動的に
読み込むので，TrueType/OpenTypeフォントに featureを指定したものを和文フォントとして用いる
ことができる：

 \jfont\tradmc={IPAexMincho:script=latn;%

 +trad;-kern;jfm=ujis} at 14pt

 \tradmc 当／体／医／区
當／體／醫／區

\jfont命令の実行ごとにどの（横組用）JFMを用いるのかを指定する必要がある．JFMは文字の寸
法情報と和文組版で自動的に挿入されるグルー／カーンの寸法情報を持っている Lua スクリプトで，
その構造は次の節で述べる．
なお，\jfontで定義された制御綴（上の例だと \tradmc）は font def トークンではなくマクロであ

る．従って，\fontname\tradmcのような入力はエラーとなる．以下では \jfontで定義された制御綴
を 〈jfont cs〉 で表す．

■JFMの指定 JFMの一般的な指定は次のようになっている：

\jfont〈jfont cs〉=...;jfm=〈JFM name〉[/{〈JFM features〉}];...;[jfmvar=〈identifier〉];...

〈JFM name〉（横組用）JFMの名称．LuaTEX-jaは jfm-〈JFM name〉.luaというファイルを探索して読
み込む*17．

〈JFM features〉 省略可能なコンマ区切りリスト．全体を囲む {} は省略可能であるが，囲ったからと

*17 LuaTEX-ja 20230409.0 以降では，LaTEX 2𝜀 下で読み込まれた場合には \input@pathで指定された箇所も加えて JFM を探
索する．

32

 \ltjsetparameter{differentjfm=both}

 \jfont\F=HaranoAjiMincho-Regular:jfm=ujis

 \jfont\G=HaranoAjiGothic-Medium:jfm=ujis

 \jfont\H=HaranoAjiGothic-Medium:jfm=ujis;jfmvar=hoge

 \F ）{\G 【】}（ % halfwidth space

 ）{\H 『』}（ % fullwidth space

 ほげ，{\G 「ほげ」}（ほげ）\par

 ほげ，{\H 「ほげ」}（ほげ）% pTeX-like

 \ltjsetparameter{differentjfm=paverage}

）【】（）『』（
ほげ，「ほげ」（ほげ）
ほげ，「ほげ」（ほげ）

図 6. Example of jfmvar key

表 13. LuaTEX-jaに同梱されている横組用 JFM の違い

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

ちょっと！ 何ちょっと！何 ちょっと！何ちょっと！何 ちょっと！ 何ちょっと！何
漢漢 っっ 漢漢 っっ 漢漢 っっ

(Blue: jfm-ujis.lua, Black: jfm-jis.lua, Red: jfm-min.lua)

いって 〈JFM features〉 の中で使用可能な文字が増えるわけではない．〈JFM features〉 で指定され
た内容は，テーブル luatexja.jfont.jfm featureとして JFM読み込み時に（JFMから）アクセ
ス可能である．図 7 �� に使用例を載せた．
なお，LuaTEX-jaが標準で提供する JFMではこの機能は用いられていない．

〈identifier〉 省略可能な文字列．

LuaTEX-jaは JFMとサイズが同じで，実フォントだけが異なる 2つの和文フォントは「区別されな
い」．ここで「JFMが同じ」とは，両フォントの 〈JFM name〉, 〈JFM features〉, 〈identifier〉 が全て一致
することである．
例えば図 6�� において，最初の「）」と「【」の実フォントは異なるが，JFM もサイズも同じなので，

普通に「）【」と入力した時と同じように組まれる，つまり両文字の間は半角空きとなる．
しかし，JFM とサイズが同じであっても，jfmvarキーの値 〈identifier〉 の異なる 2 つの和文フォン

ト，例えば図 6 �� で言う \Fと \H，は「区別される」．異なる和文フォントに異なる jfmvarキーを割り
当て，かつ �differentjfm� パラメータを bothに設定すれば，pTEXと似た状況で組版されることになる．

■横組用 JFM 以下の横組用 JFMが LuaTEX-jaには同梱されている：

jfm-ujis.lua LuaTEX-ja の標準 JFM ファイルであり，この JFM は upTEX で用いられる UTF/OTF

33

\A: (nil)
\B: [ps] = false, [kern] = “0.5”, [kana] = true,
\C: [down] = “0.2”, [kern] = “0.5”,
\D: [down] = “0.2”, [kern] = “0.5”,

\A \B \C \D

\A あ漢イ字 あ漢 イ 字 あ漢 イ 字 あ漢 イ 字
\B あ 漢 イ字 あ 漢イ 字 あ 漢 イ 字 あ 漢 イ 字
\C あ 漢 イ字 あ 漢 イ 字 あ 漢イ 字 あ 漢イ 字
\D あ 漢 イ字 あ 漢 イ 字 あ 漢イ 字 あ 漢イ 字

 \small\ltjsetparameter{differentjfm=both}\tabcolsep=.5\zw

 % \printjfmfeat is defined in the source of this document

 \jfont\A=HaranoAjiMincho-Regular:jfm=testf at 9pt \printjfmfeat\A

 \jfont\B=HaranoAjiMincho-Bold:jfm=testf/kern=0.5,-ps,+kana at 9pt \printjfmfeat\B

 \jfont\C=HaranoAjiGothic-Regular:jfm=testf/kern=0.5,down=0.2 at 9pt \printjfmfeat\C

 \jfont\D=HaranoAjiGothic-Bold:jfm=testf/down=0.2,kern=0.5 at 9pt \printjfmfeat\D

 \def\TEST#1{\string#1&{#1あ漢}{\A イ字}&{#1あ漢}{\B イ字}&{#1あ漢}{\C イ字}&{#1あ漢}{\D イ字}}

 \vspace{-4\baselineskip}\hfill\ttfamily

 \begin{tabular}{lllll}

 &\string\A&\string\B&\string\C&\string\D\\\TEST\A\\\TEST\B\\\TEST\C\\\TEST\D\\

 \end{tabular}

 % No space between ``漢'' and ``イ'' iff two Japanese fonts uses same JFM

 \ltjsetparameter{differentjfm=paverage}

図 7. Example of JFM features

パッケージ用の和文用 TFMである upnmlminr-h.tfmを元にしている．luatexja-otfパッケージを
使うときはこの JFMを指定するべきである．

jfm-jis.lua pTEXで広く用いられている「JISフォントメトリック」jis.tfmに相当する JFMである．
jfm-ujis.luaとこの jfm-jis.luaの主な違いは，jfm-ujis.luaではほとんどの文字が正方形状
であるのに対し，jfm-jis.luaでは横長の長方形状であることと，jfm-ujis.luaでは「？」「！」
の直後に半角空白が挿入されることである．

jfm-min.lua pTEX に同梱されているデフォルトの和文用 TFM (min10.tfm) に相当し，行末で文字が
揃うようにするために「っ」など一部の文字幅が変わっている．min10.tfm については [6] が詳
しい．

jfm-prop.lua プロポーショナル組用の JFM．文字幅・高さ・深さの情報も自動挿入されるグルー・
カーンの情報は持たない（つまりグリフの文字幅をそのまま採用する）．

jfm-propw.lua プロポーショナル組用のさらなる JFM．jfm-prop.lua と異なり，高さ・深さの情報
は持っている．

jfm-ujis.lua, jfm-jis.lua, jfm-min.luaの違いは表 13 �� に示した．表中の文例の一部には，[6]の図
3, 4のものを用いた．

■ペアカーニング情報の使用 いくつかのフォントはグリフ間のスペースについての情報を持っ
ている．このカーニング情報は以前の LuaTEX-ja とはあまり相性が良くなかったが，バージョン
20140324.0 以降ではカーニングによる空白はイタリック補正と同様に扱うことになっている．つま
り，カーニング由来の空白と JFM由来のグルー・カーンは同時に入ることがある．図 8�� を参照．

• \jfontや，NFSS2用の命令（3.1節，11.2節）では，カーニング情報を使用する設定（OpenType

34

ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ

ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ
ダイナミックダイクマ

 \newcommand\test{\vrule ダイナミックダイクマ\vrule\\}

 \jfont\KMFW = HaranoAjiMincho-Regular:jfm=prop;-kern at 17.28pt

 \jfont\KMFK = HaranoAjiMincho-Regular:jfm=prop at 17.28pt % kern is activated

 \jfont\KMPW = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;-kern at 17.28pt

 \jfont\KMPK = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;+kern at 17.28pt

 \begin{multicols}{2}

 \ltjsetparameter{kanjiskip=0pt}

 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}

 \ltjsetparameter{kanjiskip=3pt}

 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}

 \end{multicols}

図 8. Kerning information and �kanjiskip�

機能 kern）はとくに指定しなくても有効になる．すなわち，以下の 2行目と 3行目，5行目と 6
行目はそれぞれ等価である：

 \jfont\hoge=hogem:jfm=ujis;-kern at 3.5mm % ==> kern 無効（明示）
 \jfont\hoge=hogem:jfm=ujis at 3.5mm % ==> kern 有効（暗黙）
 \jfont\hoge=hogem:jfm=ujis;+kern at 3.5mm % ==> kern 有効（明示）
 \DeclareFontShape{JY3}{fuga}{m}{n}{<-> s*hogem:jfm=ujis;-kern}{} % ==> kern 無効（明示）
 \DeclareFontShape{JY3}{fuga}{m}{n}{<-> s*hogem:jfm=ujis}{} % ==> kern 有効（暗黙）
 \DeclareFontShape{JY3}{fuga}{m}{n}{<-> s*hogem:jfm=ujis;+kern}{} % ==> kern 有効（明示）

• バージョン 20220411.0以降では，LuaTEX-ja読み込み時や，ltjclasses, ltjsclassesにおいて和文フォ
ントを

\jfont\tenmin=\ltj@stdmcfont:-kern;jfm=\ltj@stdyokojfm\space at 9.62216pt

\DeclareFontShape{JY3}{mc}{m}{n}{<-> s*[\ifdefined\Cjascale\Cjascale\else 0.962216\fi]

\ltj@stdmcfont:-kern;jfm=\ltj@stdyokojfm}{}

と OpenType 機能 kernを明示的に無効化した状態で定義する．これは標準 JFM (jfm-ujis.lua,
jfm-ujisv.lua)がフォント由来のカーニングが入ることを期待していないためである．

• 一方，luatexja-fontspecの提供する \setmainjfontなどの命令の標準設定ではカーニング情報
は使用しない (Kerning=Off)．すなわち，次の 2行は等価である：

\setmainjfont{HaranoAjiMincho-Regular}

\setmainjfont[Kerning=Off]{HaranoAjiMincho-Regular}

これは前項目の理由の他に，以前のバージョンの LuaTEX-jaとの互換性のためもある．

■extendと slant OpenType機能と見かけ上同じような形式で指定できるものに，

35

 \leavevmode

 \ltjsetparameter{kanjiskip=0pt plus 3\zw}

 \vrule\hbox to 15\zw{あ「い」う，えお}\vrule\\

 \jfont\G=HaranoAjiMincho-Regular%

 :jfm=ujis;-ltjksp at \zw

 \G\leavevmode%

 \vrule\hbox to 15\zw{あ「い」う，えお}\vrule

あ 「い」 う， え お
あ「い」う，え お

図 9. ltjksp “feature”

extend=〈extend〉 横方向に 〈extend〉 倍拡大する．
slant=〈slant〉 〈slant〉 に指定された割合だけ傾ける．

の 2 つがある．extend や slant を指定した場合は，それに応じた JFM を指定すべきである*18．例
えば，次の例では無理やり通常の JFM を使っているために，文字間隔やイタリック補正量が正しく
ない：

 \jfont\E=HaranoAjiMincho-Regular:extend=1.5;jfm=ujis;-kern

 \jfont\S=HaranoAjiMincho-Regular:slant=1;jfm=ujis;-kern

 \E あいうえお \S あいう\/ABC

あいうえおあいう ABC

■ltjksp「機能」 LuaTEX-ja 標準では，JFM 中における kanjiskip natural, kanjiskip stretch,
kanjiskip shrink キー（42 ページ）の使用によって，「JFM 由来のグルーの他に， �kanjiskip � の自
然長/伸び量/縮み量の一部が同じ場所に挿入される」という状況が起こりうる．この機能を無効化
し，バージョン 20150922.0 以前と同じような組版を得るためには，他の OpenType 機能と同じよう
に -ltjksp指定を行えば良い（図 9�� 参照）．なお，

\jfont\G=HaranoAjiMincho-Regular:jfm=ujis;-ltjksp;+ltjksp at \zw

のように +ltjksp指定を行った場合は，kanjiskip naturalなど 3キーは再び有効化される．-ltjksp,
+ltjkspを複数回指定した場合は，最後に指定したものが有効となる．

■ltjpci「機能」 luaotfload v3.19以降では，標準で Unicode（文字から作られるノードたち）が NFC
に正規化されるようになっている．これにより，ソース中で例えば「か」と合成用濁点 (U+3099)を続
けて入力した場合，両者それぞれからノードが生成されるが，結果的には「が」を表す 1ノードにな
るわけである．
しかし，NFC に正規化することで，例えば「神」(U+FA19) が「神」(U+795E) にというふうに，CJK

互換漢字が CJK 統合漢字に変換されてしまうという問題がある．異体字セレクタを用いればこのよ
うなことは起きないが，古くからあるフォントでは異体字セレクタをサポートしていない．
以上の事情に対応するため，LuaTEX-ja では，標準で CJK 互換漢字・CJK 互換漢字補助の文字に

は luaotfload パッケージによる処理は働かないようにしている．この機能を無効化するには，他の
OpenType 機能と同じように -ltjpci 指定を行えば良い（図 10�� 参照）．ltjksp と同様に，-ltjpci,
+ltjpciを複数回指定した場合は，最後に指定したものが有効となる．

*18 LuaTEX-jaでは，これらに対する JFMを特に提供することはしない予定である．

36

 \def\TEST{\leavevmode\char"FA10\char"FA12\char"FA15

 \char"FA19.か\char"3099.は\char"309A.\par}

 \jfont\A=HaranoAjiMincho-Regular:jfm=ujis; at 15pt

 \A\TEST % default

 \jfont\G=HaranoAjiMincho-Regular:jfm=ujis;-ltjpci at 15pt

 \G\TEST % ltjpci off

 \jfont\H=HaranoAjiMincho-Regular:jfm=ujis;-normalize at 15pt

 \H\TEST % normalization off

塚晴凞神.が.ぱ.
塚晴凞神.が.ぱ.
塚晴凞神. が. ぱ.

図 10. ltjpci “feature”

8.2 \tfont命令

\tfontはフォントを縦組用の和文フォントとして読み込む命令であり，\tfontの構文は \jfontと
同様である．\tfontで定義された縦組用和文フォントは，以下の点が \jfontによる横組用和文フォ
ントとは異なる：

• 明示的に OpenType機能 vert, vrt2（のいずれか）の有効・無効を指定した場合を除き，自動的
に OpenType機能 vrt2の有効化が指定されたものとみなされる*19．

\tfont\S=HaranoAjiMincho-Regular:jfm=ujisv % vrt2 is automatically activated

\tfont\T=HaranoAjiMincho-Regular:jfm=ujisv;-vert % vert and vrt2 are not activated

\tfont\U=file:ipaexm.ttf:jfm=ujisv

% vert is automatically activated, since this font does not have vrt2

• vert, vrt2の少なくとも一つの有効を指定した場合にも関わらず，script tagと language system
identifierの値の組み合わせによって実際には有効にならなかった場合，LuaTEX-jaは
どれかの script, language で定義されている vertによる（単一グリフから単一グリフへの）
置換を全部適用する

という挙動を取る*20．
• さらに，置換前と置換後のグリフがどちらも「UAX #50で “r”もしくは “Tr”と指定されている」
ものは 90度自動回転させる．

• 8.6節で述べる，数式中の和文フォントには縦組用和文フォントは指定できない．
• 〈JFM name〉 には縦組用 JFMを指定する．以下の縦組用 JFMが LuaTEX-jaには同梱されている．
jfm-ujisv.lua LuaTEX-jaの標準縦組用 JFMである．この JFMは upTEXで用いられる UTF/OTF
パッケージ用の和文用 TFMである upnmlminr-v.tfmを元にしている．

jfm-tmin.lua pTEX に同梱されているデフォルトの和文用縦組 TFM である tmin10.tfm に相当
し，min10.tfmと同様に「っ」など一部の文字幅が狭められている．

• vert, vrt2の少なくとも片方が（明示的・自動的を問わず）有効になっていた場合，さらに jpotf

を指定することで「通常では行わない縦組用字形への置換」を行うことができる．

*19 もしフォントが vrt2を定義していなかった場合，代わりに vertを用いる．
*20 例えば，Windows 7に付属している SimHeiでは，vertは Scriptが hani，Languageが CHNという状況でのみ定義され
ている．しかし，luaotfloadではこの script, languageの組み合わせを指定することはできないので，luaotfloadそのまま
では vertを適用させることはできない．

37

 \jfont\X=[HaranoAjiMincho-Regular.otf]:jfm=ujis

 \tfont\U=[HaranoAjiMincho-Regular.otf]:jfm=ujisv

 \tfont\V=[HaranoAjiMincho-Regular.otf]:jfm=ujisv;jpotf

 \def\TEST#1#2{\leavevmode

 \hbox{#1#2\string#2 “引用，と句読点．” }}

 \ttfamily\centering

 \TEST\yoko\X\quad \TEST\tate\U\quad

 \TEST\tate\V \X “引用，と句読点．”

\
U

“引
用
︐
と
句
読
点
．”

\
V

〝
引
用
、
と
句
読
点
。〟

図 11. jpotf “feature”

表 14. jpotfが指定された際に行われる追加の縦組形への置換

︐(U+FF0C) ↦−→、(U+3001) ．(U+FF0E) ↦−→。(U+3002)

“(U+201C) ↦−→〝(U+301D) ”(U+201D) ↦−→〟(U+301F)

標準では，表 14 �� に示した置換が登録されている*21．実行例は図 11 �� を参照．
ユーザ側で「置換」をカスタマイズしたい場合，luatexja.jfont.register_vert_replace 関数
に変更内容を記したテーブルを渡す．例えば置換 𝑖1 ↦−→ 𝑣1, 𝑖2 ↦−→ 𝑣2, . . . を登録する場合は

\directlua{luatexja.jfont.register_vert_replace{[𝑖1]=𝑣1, [𝑖2]=𝑣2, ...}}

を実行する．luatexja.jfont.register_vert_replace による変更はこの関数の実行後に定義さ
れるフォントについてのみ有効である．

なお，pTEXでは，\font, \jfont, \tfontのどれでも欧文フォント・横組用和文フォント・縦組用和
文フォントの定義が可能であったが，LuaTEX-jaではそうでないので注意．

8.3 標準和文フォント・JFMの変更

LuaTEX-ja が読み込まれる前に以下の命令が定義されていた場合は，それらが標準和文フォントや
それらに用いる JFMとして使われる．

\ltj@stdmcfont 明朝体として用いるフォント．
\ltj@stdgtfont ゴシック体として用いるフォント．
\ltj@stdyokojfm 標準で用いる横組用 JFM．
\ltj@stdtatejfm 標準で用いる縦組用 JFM．

例えば

\def\ltj@stdmcfont{IPAMincho}

\def\ltj@stdgtfont{IPAGothic}

と記述しておけば，標準和文フォントが IPA明朝・IPAゴシックへと変更される．
この機能は，特別の JFM を用いるクラス*22などでの使用を意図しており，命令名に@が含まれる

*21 jpotf という名前にしたのは，OTF パッケージの縦組用和文 TFM でほぼ同じの処理（そちらではさらに一重引用符を
「シングルミニュート」に置換する機能もあった）を行っていたことに由来する．

*22 例えば阿部紀行氏による jlreqがそれにあたる．

38

ことから通常の TEX/LaTEX 文書での使用は意図していない．通常の LaTEX 文書では luatexja-preset や
luatexja-fontspecなどで使用フォントを選択することを推奨する．
旧バージョンとの互換性のため，LuaTEX から見える位置に luatexja.cfgがあれば，LuaTEX-ja は

それを読み込む．しかし，luatexja.cfg内で \ltj@stdmcfont等が定義されていた場合はそちらが優
先されるので，もはや luatexja.cfgは使わないほうが良いだろう．

8.4 psftプリフィックス

luaotfloadで使用可能になった fileと nameのプリフィックスに加えて，\jfont（と \fontプリミ
ティブ）では psftプリフィックスを用いることができる．このプリフィックスを用いることで，PDF
には埋め込まれない「名前だけの」和文フォントを指定することができる．なお，現行の LuaTEX で
非埋め込みフォントを作成すると PDF 内でのエンコーディングが Identity-H となり，PDF の標準規
格 ISO32000-1:2008 ([10])に非準拠になってしまうので注意してほしい．
psftプリフィックスの下では +jp90などの OpenType機能の効力はない．非埋込フォントを PDF

に使用すると，実際にどのようなフォントが表示に用いられるか予測できないからである．extendと
slant指定は単なる変形のため psftプリフィックスでも使用可能である．

■cid キー 標準で psft プリフィックスで定義されるフォントは日本語用のものであり，Adobe-
Japan1-7の CIDに対応したものとなる．しかし，LuaTEX-jaは中国語の組版にも威力を発揮すること
が分かり，日本語フォントでない非埋込フォントの対応も必要となった．そのために追加されたのが
cidキーである．
cidキーに値を指定すると，その CIDを持った非埋込フォントを定義することができる：

 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-7;jfm=jis} % Japanese

 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default: Adobe-Japan1-7

 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-7;jfm=jis}% Traditional Chinese

 \jfont\testG={psft:SimSun:cid=Adobe-GB1-6;jfm=jis} % Simplified Chinese

 \jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis} % Korean

 \jfont\testKR={psft:SourceHanSerifAKR9:cid=Adobe-KR-9;jfm=jis} % Korean

上のコードでは中国語・韓国語用フォントに対しても JFM に日本語用の jfm-jis.lua を指定してい
るので注意されたい．
今のところ，LuaTEX-jaは上のサンプルコード中に書いた 5つの値しかサポートしていない．

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

のようにそれら以外の値を指定すると，エラーが発生する：

 ! Package luatexja Error: bad cid key `Adobe-Japan2'.

 See the luatexja package documentation for explanation.

 Type H <return> for immediate help.

 <to be read again>

 \par

 l.78

 ? h

 I couldn't find any non-embedded font information for the CID

39

 `Adobe-Japan2'. For now, I'll use `Adobe-Japan1-6'.

 Please contact the LuaTeX-ja project team.

 ?

8.5 JFMファイルの構造

JFMファイルはただ一つの関数呼び出しを含む Luaスクリプトである：

luatexja.jfont.define_jfm { ... }

実際のデータは上で { ... }で示されたテーブルの中に格納されている．以下ではこのテーブルの構
造について記す．なお，JFM ファイル中の長さは全て design size を単位とする浮動小数点数である
ことに注意する．

version=〈version〉（任意，既定値は 1）
JFMのバージョン．1, 2, 3がサポートされる．

dir=〈direction〉（必須）
JFMの書字方向．'yoko'（横組）と 'tate'（縦組）がサポートされる．

zw=〈length〉（必須）
「全角幅」の長さ．この量が \zwの長さとなる．pTEXでは「全角幅」1zwは「文字クラス 0の文
字」の幅と決められていたが，LuaTEX-jaではここで指定する．

zh=〈length〉（必須）
「全角高さ」(height + depth)の長さ．通常は全角幅と同じ長さになるだろう．pTEXでは「全角高
さ」1zh は「文字クラス 0 の文字」の高さと深さの和と決められていたが，LuaTEX-ja ではここ
で指定する．

kanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉}（任意）
理想的な �kanjiskip� の量を指定する．4.2節で述べたように，もし �kanjiskip� が \maxdimenの値なら
ば，このフィールドで指定された値が実際には用いられる（指定なしは 0 pt として扱われる）．
〈stretch〉 と 〈shrink〉 のフィールドも design sizeが単位であることに注意せよ．

xkanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉}（任意）
kanjiskipフィールドと同様に，�xkanjiskip � の理想的な量を指定する．

■文字クラス 上記のフィールドに加えて，JFMファイルはそのインデックスが自然数であるいくつ
かのサブテーブルを持つ．インデックスが 𝑖 ∈ 𝜔 であるテーブルは文字クラス 𝑖 の情報を格納する．
少なくとも，文字クラス 0 は常に存在するので，JFM ファイルはインデックスが [0] のサブテーブ
ルを持たなければならない．それぞれのサブテーブル（そのインデックスを 𝑖 で表わす）は以下の
フィールドを持つ：

chars={〈character〉, ...}（文字クラス 0を除いて必須）
このフィールドは文字クラス 𝑖 に属する文字のリストである．このフィールドは 𝑖 = 0の場合に
は任意である（文字クラス 0 には，0 以外の文字クラスに属するものを除いた全ての JAchar が
属するから）．このリスト中で文字を指定するには，以下の方法がある：

• Unicodeにおけるコード番号
•「'あ'」のような，文字それ自体

40

JFM書字方向 'yoko'（横組） 'tate'（縦組）

width 「実際のグリフ」の幅
height 「実際のグリフ」の高さ 0.0
depth 「実際のグリフ」の深さ 0.0

italic 0.0

表 15. widthフィールド等の標準値

height

depth

width

left

down

align フィールドの値が 'middle' であるような文字クラス
に属する和文文字ノードを考えよう．

• 黒色の長方形はノードの枠であり，その幅，高さ，深さ
は JFMによって指定されている．

• align フィールドは 'middle' なので，実際のグリフの
位置はまず水平方向に中央揃えしたものとなる（緑色の
長方形）．

• さらに，グリフは leftと downの値に従ってシフトされ
る．最終的な実際のグリフの位置は赤色の長方形で示さ
れた位置になる．

図 12. 横組和文フォントにおける「実際の」グリフの位置

•「'あ*'」のような，文字それ自体の後にアスタリスクをつけたもの
• いくつかの「仮想的な文字」（後に説明する）

width=〈length〉, height=〈length〉, depth=〈length〉, italic=〈length〉（必須）
文字クラス 𝑖 に属する文字の幅，高さ，深さ，イタリック補正の量を指定する．文字クラス 𝑖 に
属する全ての文字は，その幅，高さ，深さがこのフィールドで指定した値であるものとして扱わ
れる．省略時や，数でない値を指定した時には表 15 に示されている値を用いる．例えば，横組
用 JFM で width フィールドには数値以外の値を指定した場合，文字の幅はその「実際の」グリ
フの幅となる．OpenTypeの prop featureと併用すれば，これによってプロポーショナル組を行
うことができる．

left=〈length〉, down=〈length〉, align=〈align〉
これらのフィールドは実際のグリフの位置を調整するためにある．align フィールドに指定でき
る値は 'left', 'middle', 'right'のいずれかである．もしこれら 3つのフィールドのうちの 1つ
が省かれた場合，leftと downは 0，alignフィールドは 'left'であるものとして扱われる．こ
れら 3つのフィールドの意味については図 12��（横組用和文フォント），図 13 ��（縦組用和文フォン
ト）で説明する．
多くの場合，leftと downは 0である一方，alignフィールドが'middle'や'right'であること
は珍しいことではない．例えば，align フィールドを'right' に指定することは，文字クラスが
開き括弧類であるときに実際必要である．

kern={[𝑗]=〈kern〉, [𝑗 ′]={〈kern〉, [ratio=〈ratio〉]}, ...}

41

heightdepth

width

left

down

alignフィールドの値が 'right'であるような文字クラスに
属する和文文字を考えよう．

• 実際のグリフの「垂直位置」は，まずベースラインが文
字の物理的な左右方向の中央を通る位置となる．

• また，この場合 alignフィールドは 'right'なので，「水
平位置」は字送り方向に「右寄せ」したものとなる（緑
色の長方形）．

• その後さらに leftと downの値に従ってシフトされるの
は横組用和文フォントと変わらない．

図 13. 縦組和文フォントにおける「実際の」グリフの位置

glue={[𝑗]={〈width〉, 〈stretch〉, 〈shrink〉, [ratio=〈ratio〉, ...]}, ...}

文字クラス 𝑖 の文字と 𝑗 の文字の間に挿入されるカーンやグルーの量を指定する．
〈ratio〉 は，グルーの自然長のうちどれだけの割合が「後の文字」由来かを示す量で，0 か
ら +1 の実数値をとる．省略時の値は 0.5 である．このフィールドの値は �differentjfm� の値が
pleft, pright, paverageの値のときのみ実際に用いられる．
例えば，[7] では，句点と中点の間には，句点由来の二分空きと中点由来の四分空きが挿入され
るが，この場合には

• 〈width〉 には 0.5 + 0.25 = 0.75を指定する．
• 〈ratio〉 には 0.25/(0.5 + 0.25) = 1/3を指定する．

グルーの指定においては，上記に加えて各 [𝑗]の各サブテーブル内に次のキーを指定できる，

priority=〈priority〉 luatexja-adjustによる優先順位付き行長調整（13.3節）において，このグルー
の優先度を指定する．許される値は以下の通り：
バージョン 1 −4から +3の間の整数
バージョン 2以降 −4から +3の間の整数の 2つ組{〈stretch〉, 〈shrink〉}か，または −4から
+3 の間の整数．〈stretch〉, 〈shrink〉 はそれぞれこのグルーが伸びるときの優先度，縮む
ときの優先度であり，単に整数 𝑖 が指定された場合は{𝑖, 𝑖}であると解釈される．

ここで指定する値は，大きい値ほど「先に伸ばされる」「先に縮ませる」ことを意味してお
り，省略時の値は 0である．範囲外の値が指定されたときの動作は未定義である．

kanjiskip natural=〈num〉, kanjiskip stretch=〈num〉, kanjiskip shrink=〈num〉
JFMによって本来挿入されるグルーの他に �kanjiskip �分の空白を自然長 (kanjiskip natural)，
伸び量 (kanjiskip stretch)，縮み量 (kanjiskip shrink)ごとに挿入するための指定である．
いずれも省略された場合のデフォルト値は 0（追加しない）である．
例えば，LuaTEX-jaの横組標準 JFMの jfm-ujis.luaでは，

• 通常の文字「あ」と開き括弧類の間に入るグルーは，自然長・縮み量半角，伸び量 0の
グルーとなっているが，さらに �kanjiskip� の伸び量に kanjiskip stretch（ここでは 1）
を掛けた分だけ伸びることが許される．

• 同様に，閉じ括弧類（全角コンマ「，」も含む）と和文文字「う」「え」，閉じ括弧類と
「f」の間も自然長・縮み量半角，伸び量 0のグルーとなっているが，さらに �kanjiskip � の

42

伸び量に kanjiskip stretch（ここでは 1）を掛けた分だけ伸びることが許される．
• 一方，開き括弧類と通常の文字の間，また通常の文字と閉じ括弧類の間は自然長・縮み
量・伸び量 0のグルーだが， �kanjiskip� の縮み量に kanjiskip shrink（ここでは 1）を掛
けた分だけ縮むことが許される．

となっている．従って，以下のような組版結果を得る．
 \leavevmode\let\V=\vrule

 \ltjsetparameter{kanjiskip=0pt plus 5\zw}

 \ltjsetparameter{xkanjiskip=0pt plus 0.5\zw}

 \V\hbox spread 7\zw{aあ「い」う，えお」f}\V

 \vrule\hbox{ああ「い」う，えお」f}\V\par

 \ltjsetparameter{kanjiskip=0pt minus \zw}

 \V\hbox spread -2.5\zw{aあ「い」う，えお」f}\

V

aあ 「い」 う， え お」 f
ああ「い」う，えお」f
aあ「い」う，えお」f

end stretch=〈kern〉, end shrink=〈kern〉（任意，バージョン 1のみ）
優先順位付き行長調整が有効であり，かつ現在の文字クラスの文字が行末に来た時に，行長を詰
める調整・伸ばす調整のためにこの文字と行末の間に挿入可能なカーンの大きさを指定する．

end adjust={〈kern〉, 〈kern〉, ...}（任意，バージョン 2以降）
行末文字の位置調整が有効であり，かつ現在の文字クラスの文字が行末に来た時に，この文字と
行末の間には指定された値のいずれかの大きさのカーンが挿入される（subsection 13.3�� 参照）．
バージョン 1における

end_stretch = a, end_shrink = b

という指定は，バージョン 2以降では次の指定と同じになる．

end_adjust = {-b, 0.0, a}

もし真ん中の 0.0がない場合は，𝑎 か −𝑏 かいずれかのカーンが常に行末に追加される．
round threshold=〈float〉（任意，バージョン 3以降，文字クラス 0のみ）
「実際のグリフの幅に合わせて文字幅を整数倍する」際のしきい値を指定する．より正確に述べ
ると，次のようになる．このフィールドに正の数 𝑟 が指定されていたとし，JFM中で「文字クラ
ス 0の文字幅」と指定されている値が𝑤，文字クラス 0に属する文字のあるグリフの実際の幅が
𝑤 ′ であったとする．𝑛 = nint(𝑤 ′/𝑤) とした*23とき，もし𝑤 ′ > 𝑤 かつ |𝑤 ′/𝑤 −𝑛 | < 𝑟 であれば，
JFMで文字幅 𝑛𝑤 が指定されたものとして扱う．
この機能は，ほとんど源ノ明朝・源ノ角ゴシックにおける 2 倍角・3 倍角ダッシュの合字のため
に実装されたと言ってもよい（この場合𝑤 ′ = 2, 3である）．これらのグリフは LuaTEX内部では
Unicodeの私用領域に割り当てられるので，JFM側で番号を指定することができない．

■文字クラスの決定 文字からその文字の属する文字クラスを算出する過程について，次の内容を含
んだ jfm-test.luaを用いて説明する．

[0] = {

chars = { '漢' },

align = 'left', left = 0.0, down = 0.0,

*23 ここで，nint(𝑎) = b𝑎 + 0.5c は 𝑎 に「もっとも近い整数」を表す．

43

width = 1.0, height = 0.88, depth = 0.12, italic=0.0,

},

[2000] = {

chars = { '。', 'ﾋ' },

align = 'left', left = 0.0, down = 0.0,

width = 0.5, height = 0.88, depth = 0.12, italic=0.0,

},

ここで，次のような入力とその実行結果を考える：

 \jfont\a=IPAexMincho:jfm=test;+hwid

 \setbox0\hbox{\a ヒ漢}\the\wd0
15.0pt

上記の出力結果が，15 ptとなっているのは理由によるものである：

1. hwid featureによって「ヒ」が半角幅のグリフ「ﾋ」と置き換わる（luaotfloadによる処理）．
2. JFMによれば，この「ﾋ」のグリフの文字クラスは 2000である．
3. 以上により文字クラス 2000とみなされるため，結果として「ﾋ」の幅は半角だと認識される．

この例は，文字クラスの決定は OpenType 機能の適用によるグリフ置換の結果に基づくことを示し
ている．
但し，JFMによって決まる置換後のグリフの文字クラスが 0である場合は，置換前の文字クラスを

採用する．

 \jfont\a=HaranoAjiMincho-Regular:jfm=test;+vert

 \a 漢。\inhibitglue 漢 漢︒漢

ここで，句点「。」(U+3002)の文字クラスは，以下のようにして決まる．

1. luaotfloadによって縦組用句点のグリフに置き換わる．
2. 置換後のグリフは U+FE12であり，JFMに従えば文字クラスは 0と判定される．
3. この場合，置換前の横組用句点のグリフによって文字クラスを判定する．
4. 結果として，上の出力例中の句点の文字クラスは 2000となる．

■仮想的な文字 上で説明した通り，chars フィールド中にはいくつかの「特殊文字」も指定可能で
ある．これらは，大半が pTEXの JFMグルーの挿入処理ではみな「文字クラス 0の文字」として扱わ
れていた文字であり，その結果として pTEX より細かい組版調整ができるようになっている．以下で
その一覧を述べる：

'boxbdd'

hbox の先頭と末尾，及びインデントされていない（\noindent で開始された）段落の先頭を表
す．この「文字」との間に設定したグルー・カーンがボックス 𝑏 の先頭（もしくは末尾）に来た
場合，そのボックス 𝑏 の直前（もしくは直後）には和文処理グルーは入らない．

'parbdd'

通常の（\noindentで開始されていない）段落の先頭．
'jcharbdd'

JAcharと「その他のもの」との境界．
バージョン 2 以前では ALchar，箱，罫線 (rule)，glue, kern などいろいろなものと JAchar の

44

境界に対して本特殊文字が用いられていたが，バージョン 3 以降では 'jcharbdd', 'alchar',
'nox alchar', 'glue'と細分化され，'jcharbdd'は主に JAcharとボックスや罫線 (rule)との境
界に使われるようになった．

'alchar', 'nox alchar'

（バージョン 3以降）JAcharと ALcharとの境界．JAcharと ALcharの間に �xkanjiskip� が入る
ことが可能な場合は 'alchar' が，そうでない場合は 'nox alchar' が用いられる（この区別は
ALchar側の �alxspmode � の値によってのみ行われる）．

'glue'

（バージョン 3以降）JAcharと glue，kernとの境界．
−1 行中数式と地の文との境界．

■pTEX用和文用 TFMの移植 以下に，pTEX用に作られた和文用 TFMを LuaTEX-ja用に移植する場
合の注意点を挙げておく．

• 実際に出力される和文フォントのサイズが design sizeとなる．このため，例えば 1 zwが design
size の 0.962216 倍である JIS フォントメトリック等を移植する場合は，次のようにするべきで
ある：
– JFM中の全ての数値を 1/0.962216倍しておく．
– TEX ソース中で使用するところで，サイズ指定を 0.962216 倍にする．LaTEX でのフォント宣
言なら，例えば次のように：

\DeclareFontShape{JY3}{mc}{m}{n}{<-> s*[0.962216] psft:Ryumin-Light:jfm=jis}{}

• 上に述べた特殊文字は，'boxbdd' を除き文字クラスを全部 0 とする（JFM 中に単に書かなけれ
ばよい）．

• 'boxbdd'については，それのみで一つの文字クラスを形成し，その文字クラスに関してはグルー
／カーンの設定はしない．
これは，pTEXでは，hboxの先頭・末尾とインデントされていない（\noindentで開始された）段
落の先頭には JFMグルーは入らないという仕様を実現させるためである．

• pTEXの組版を再現させようというのが目的であれば以上の注意を守れば十分である．
ところで，pTEX では通常の段落の先頭に JFM グルーが残るという仕様があるので，段落先
頭の開き括弧は全角二分下がりになる．全角下がりを実現させるには，段落の最初に手動で
\inhibitglue を追加するか，あるいは \everypar のハックを行い，それを自動化させるしかな
かった．
一方，LuaTEX-ja では，'parbdd'によって，それが JFM 側で調整できるようになった．例えば，
LuaTEX-ja 同梱の JFM のように，'boxbdd'と同じ文字クラスに'parbdd'を入れれば全角下がり
となる．

 \jfont\g=HaranoAjiMincho-Regular:jfm=test \g

 \parindent1\zw\noindent{}◆◆◆◆◆
 \par 「◆◆←二分下がり
 \par 【◆◆←全角下がり
 \par 〔◆◆←全角二分下がり

◆◆◆◆◆
「◆◆←二分下がり
【◆◆←全角下がり
〔◆◆←全角二分下がり

但し，\everypar を利用している場合にはこの仕組みは正しく動かない．そのような例としては箇

45

表 16. 和文数式フォントに対する命令

和文フォント 欧文フォント

\jfam ∈ [0, 256) \fam

�jatextfont � ={〈jfam〉,〈jfont cs〉} \textfont〈fam〉=〈font cs〉
�jascriptfont� ={〈jfam〉,〈jfont cs〉} \scriptfont〈fam〉=〈font cs〉
�jascriptscriptfont � ={〈jfam〉,〈jfont cs〉} \scriptscriptfont〈fam〉=〈font cs〉

条書き中の \item で始まる段落があり，ltjsclasses では人工的に「'parbdd' の意味を持つ」whatsit
ノードを作ることによって対処している*24．

8.6 数式フォントファミリ

TEX は数式フォントを 16 のファミリ*25で管理し，それぞれのファミリは 3 つのフォントを持って
いる：\textfont, \scriptfontそして \scriptscriptfontである.

LuaTEX-jaの数式中での和文フォントの扱いも同様である．表 16 �� は数式フォントファミリに対する
TEXのプリミティブと対応するものを示している．\famと \jfamの値の間には関係はなく，適切な設
定の下では \famと \jfamの両方に同じ値を設定することができる． �jatextfont�他の第 2引数 〈jfont cs〉
は，\jfont で定義された横組用和文フォントである．\tfont で定義された縦組用和文フォントを指
定することは想定していない．

8.7 コールバック

LuaTEX 自体のものに加えて，LuaTEX-ja もコールバックを持っている．これらのコールバックに
は，他のコールバックと同様に luatexbase.add_to_callback 関数などを用いることでアクセスする
ことができる．

luatexja.load jfmコールバック
このコールバックを用いることで JFM を上書きすることができる．このコールバックは新しい
JFMが読み込まれるときに呼び出される．

 function (<table> jfm_info, <string> jfm_name)

 return <table> new_jfm_info

 end

引数 jfm_infoは JFMファイルのテーブルと似たものが格納されるが，クラス 0を除いた文字の
コードを含んだ charsフィールドを持つ点が異なる．
このコールバックの使用例は ltjarticleクラスにあり，jfm-min.lua中の'parbdd'を強制的に
クラス 0に割り当てている．

luatexja.define jfontコールバック
このコールバックと次のコールバックは組をなしており，Unicode 中に固定された文字コード番

*24 ltjsclasses.dtx を参照されたい．JFM 側で一部の対処ができることにより，jsclasses のように if 文の判定はしてい
ない．

*25 Omega, Aleph, LuaTEX，そして 𝜀-(u)pTEX では 256 の数式ファミリを扱うことができるが，これをサポートするために
plain TEXと LaTEXでは外部パッケージを読み込む必要がある．

46

号を持たない文字を非零の文字クラスに割り当てることができる．このコールバックは新しい和
文フォントが読み込まれたときに呼び出される．

 function (<table> jfont_info, <number> font_number)

 return <table> new_jfont_info

 end

jfont_infoは最低限以下のフィールドを持つが，これらを書き換えてはならない：

size

実際に使われるフォントサイズ（sp単位）．1 sp = 2−16 pt．
zw, zh, kanjiskip, xkanjiskip

JFMファイルで指定されているそれぞれの値をフォントサイズに合わせてスケーリングした
ものを sp単位で格納している．

jfm

利用されている JFMを識別するための番号．
var

\jfont, \tfontで指定された jfmvarキーの値（未指定のときは空文字列）．
chars

文字コードから文字クラスへの対応が記述されたテーブル．
JFM内の [i].chars={〈character〉, ...} という指定は chars={[〈character〉]=𝑖, ...} とい
う形式に変換されている．

char type

𝑖 ∈ 𝜔 に対して，char type[𝑖]は文字クラス 𝑖 の文字の寸法を格納しており，以下のフィー
ルドを持つ．

• width, height, depth, italic, down, leftは JFMで指定されているそれぞれの値をスケー
リングしたものである．

• alignは JFMで指定されている値によって，
1 ('right' in JFM),
0.5 ('middle' in JFM),
0 (otherwise).

のいずれかの値をとる．
𝑖 , 𝑗 ∈ 𝜔 に対して，char type[𝑖][𝑗] は文字クラス 𝑖 の文字と 𝑗 の文字の間に挿入されるグ
ルーやカーンの情報を格納している．
間に入るものがカーンであれば，この値は [𝑗]={〈kern〉, ratio=〈ratio〉}であり，〈kern〉 は
カーンの値を sp単位で表したものである．
一方，間に入るものがグルーであれば，この値は以下のキーを持つテーブルである．
[1], [2], [3] グルーのそれぞれ自然長，伸び量，縮み量を sp単位で表したもの．
priority（バージョン 2以降の）JFMでの指定 {〈stretch〉,〈shrink〉}を

(〈stretch〉 + 4) · 8 + 〈shrink〉 + 4

として 0–63の整数にパックしたもの．
ratio, kanjiskip natural, kanjiskip stretch, kanjiskip shrink JFM 中の同名のフィール
ドの値がそのまま使われている．

47

chars cbcache

文字クラス決定の処理で．キャッシュとして使われる．

戻り値の new_jfont_infoテーブルも上に述べたフィールドをそのまま含まなければならないが，
それ以外にユーザが勝手にフィールドを付け加えることは自由である．font_number はフォント
番号である．
これと次のコールバックの良い使用例は luatexja-otf パッケージであり，JFM 中で Adobe-Japan1
CIDの文字を "AJ1-xxx"の形で指定するために用いられている．

luatexja.find char classコールバック
このコールバックは LuaTEX-ja が chr_code の文字がどの文字クラスに属するかを決定しようと
する際に呼び出される．このコールバックで呼び出される関数は次の形をしていなければなら
ない：

 function (<number> char_class, <table> jfont_info, <number> char_code)

 if char_class~=0 then return char_class

 else

 return (<number> new_char_class or 0)

 end

 end

引数 char_class は LuaTEX-ja のデフォルトルーチンか，このコールバックの直前の関数呼び
出しの結果を含んでおり，したがってこの値は 0 ではないかもしれない．さらに，戻り値の
new_char_class は char_class が非零のときには char_class の値と同じであるべきで，そうで
ないときは LuaTEX-jaのデフォルトルーチンを書き換えることになる．

luatexja.set widthコールバック
このコールバックは LuaTEX-ja が JAchar の寸法と位置を調節するためにその glyph node をカ
プセル化しようとする際に呼び出される．

 function (<table> shift_info, <table> jfont_info, <table> char_type)

 return <table> new_shift_info

 end

引数 shift_info と戻り値の new_shift_info は downと leftのフィールドを持ち，これらの値
は文字の下／左へのシフト量（sp単位）である．
良い例が test/valign.lua である．このファイルが読み込まれた状態では，JFM 内で規定された文
字クラス 0の文字における (高さ) : (深さ) の比になるように，実際のフォントの出力上下位置が
自動調整される．例えば，

• JFM側の設定：(高さ) = 88𝑥 , (深さ) = 12𝑥（和文 OpenTypeフォントの標準値）
• 実フォント側の数値：(高さ) = 28𝑦, (深さ) = 5𝑦（和文 TrueTypeフォントの標準値）

となっていたとする．すると，実際の文字の出力位置は，以下の量だけ上にずらされることと
なる：

88𝑥
88𝑥 + 12𝑥 (28𝑦 + 5𝑦) − 28𝑦 =

26
25
𝑦 = 1.04𝑦.

48

9 パラメータ

9.1 \ltjsetparameter

先に述べたように，LuaTEX-ja の内部パラメータにアクセスするには \ltjsetparameter（または
\ltjglobalsetparameter）と \ltjgetparameterを用いる．LuaTEX-jaが pTEXのような文法（例えば，
\prebreakpenalty`）=10000）を採用しない理由の一つは，LuaTEX のソースにおける hpack_filter

コールバックの位置にある．14章を参照．
\ltjsetparameter と \ltjglobalsetparameter はパラメータを指定するための命令で，key-value

リストを引数としてとる．両者の違いはスコープであり，標準では \ltjsetparameter はローカルな
設定を行うのに対し，\ltjglobalsetparameterはグローバルな設定を行う．また，他のパラメータ指
定と同様に \globaldefsの値にも従う．
以下は \ltjsetparameterに指定することができるパラメータの一覧である．[\cs]は pTEXにおけ

る対応物を示す．また，それぞれのパラメータの右上の記号には次の意味がある：

• “∗”：段落や hboxの終端での値がその段落／ hbox全体で用いられる．
• “†”：指定は常にグローバルになる．

�jcharwidowpenalty� =〈penalty〉∗ [\jcharwidowpenalty]
パラグラフの最後の字が孤立して改行されるのを防ぐためのペナルティの値．このペナルティは
（日本語の）句読点として扱われない最後の JAcharの直後に挿入される．

�kcatcode� ={〈char code〉,〈natural number〉}∗

文字コードが 〈char code〉 の文字が持つ付加的な属性値．バージョン 20120506.0 以降では，
〈natural number〉 の最下位ビットが，その文字が句読点とみなされるかどうかを表している（上
の �jcharwidowpenalty� の記述を参照）．

�prebreakpenalty� ={〈char code〉,〈penalty〉}∗ [\prebreakpenalty]
文字コード 〈char code〉 の JAcharが行頭にくることを抑止するために，この文字の前に挿入/追
加されるペナルティの量を指定する．
例えば閉じ括弧「〗」は絶対に行頭にきてはならないので，

\ltjsetparameter{prebreakpenalty={`〙,10000}}

と，最大値の 10000が標準で指定されている．他にも，小書きのカナなど，絶対禁止というわけ
ではないができれば行頭にはきて欲しくない場合に，0 と 10000 の間の値を指定するのも有用で
あろう．
pTEXでは，\prebreakpenalty, \postbreakpenaltyにおいて，

• 一つの文字に対して，pre, postどちらか一つしか指定することができない*26

• pre, post合わせて 256文字分の情報を格納することしかできない
という制限があったが，LuaTEX-jaではこれらの制限は解消されている．

�postbreakpenalty � ={〈char code〉,〈penalty〉}∗ [\postbreakpenalty]
文字コード 〈char code〉 の JAcharが行末にくることを抑止するために，この文字の後に挿入/追

*26 後から指定した方で上書きされる．

49

加されるペナルティの量を指定する．
�jatextfont� ={〈jfam〉,〈jfont cs〉}∗ [TEXの \textfont]
�jascriptfont� ={〈jfam〉,〈jfont cs〉}∗ [TEXの \scriptfont]
�jascriptscriptfont� ={〈jfam〉,〈jfont cs〉}∗ [TEXの \scriptscriptfont]
�yjabaselineshift� =〈dimen〉
�yalbaselineshift� =〈dimen〉 [\ybaselineshift]
�tjabaselineshift� =〈dimen〉
�talbaselineshift� =〈dimen〉 [\tbaselineshift]
�jaxspmode� ={〈char code〉,〈mode〉}∗

文字コードが 〈char code〉 の JAchar の前／後ろに �xkanjiskip � の挿入を許すかどうかの設定．以
下の 〈mode〉 が許される：
0, inhibit �xkanjiskip � の挿入は文字の前／後ろのいずれでも禁止される．
1, preonly �xkanjiskip � の挿入は文字の前では許されるが，後ろでは許されない．
2, postonly �xkanjiskip � の挿入は文字の後ろでは許されるが，前では許されない．
3, allow �xkanjiskip � の挿入は文字の前／後ろのいずれでも許される．これがデフォルトの値で
ある．

このパラメータは pTEXの \inhibitxspcodeプリミティブと似ているが，互換性はない．
�alxspmode � ={〈char code〉,〈mode〉}∗ [\xspcode]

文字コードが 〈char code〉 の ALchar の前／後ろに �xkanjiskip � の挿入を許すかどうかの設定．以
下の 〈mode〉 が許される：
0, inhibit �xkanjiskip � の挿入は文字の前／後ろのいずれでも禁止される．
1, preonly �xkanjiskip � の挿入は文字の前では許されるが，後ろでは許されない．
2, postonly �xkanjiskip � の挿入は文字の後ろでは許されるが，前では許されない．
3, allow �xkanjiskip � の挿入は文字の前／後ろのいずれでも許される．これがデフォルトの値で
ある．

�jaxspmode� と �alxspmode � は共通のテーブルを用いているため，これら 2 つのパラメータは互いの
別名となっていることに注意する．

�autospacing� =〈bool〉 [\autospacing]
�autoxspacing� =〈bool〉 [\autoxspacing]
�kanjiskip� =〈skip〉∗ [\kanjiskip]

デフォルトで 2つの JAcharの間に挿入されるグルーである．通常では，pTEXと同じようにフォ
ントサイズに比例して変わることはない．しかし，自然長が \maxdimenの場合は，例外的に和文
フォントの JFM側で指定されている値を採用（こちらはフォントサイズに比例）することになっ
ている．

�xkanjiskip� =〈skip〉∗ [\xkanjiskip]
デフォルトで JAcharと ALcharの間に挿入されるグルーである．�kanjiskip� と同じように，通常
ではフォントサイズに比例して変わることはないが，自然長が \maxdimenの場合が例外である．

�differentjfm� =〈mode〉†

JFM（もしくはサイズ）が異なる 2 つの JAchar の間にグルー／カーンをどのように入れるかを
指定する．許される値は以下の通り：

average, both, large, small, pleft, pright, paverage
50

デフォルト値は paverageである．各々の値による差異の詳細は 16.4節の「『右空白』の算出」を
参照してほしい．

�jacharrange� =〈ranges〉
�kansujichar� ={〈digit〉, 〈char code〉}∗ [\kansujichar]
�direction� =〈dir〉 (always local)

組方向を変更する \yoko (if 〈dir〉 = 4), \tate (if 〈dir〉 = 3), \dtou (if 〈dir〉 = 1), \utod (if 〈dir〉 = 11)
と同じ役割を持つ．利用可能な状況もこれら 4 命令と同一である．引数 〈dir〉 が 4, 3, 1, 11 のい
ずれでも無いときの動作は未定義である．

9.2 \ltjgetparameter

\ltjgetparameter はパラメータの値を取得するための命令であり，常にパラメータの名前を第一
引数にとる．

 \ltjgetparameter{differentjfm},

 \ltjgetparameter{autospacing},

 \ltjgetparameter{kanjiskip},

 \ltjgetparameter{prebreakpenalty}{`）}.

paverage, 1, 0.0pt plus 0.99597pt minus 0.09953pt,
10000.

\ltjgetparameter の戻り値は常に文字列である．これは tex.write() によって出力しているため
で，空白「 」(U+0020)を除いた文字のカテゴリーコードは全て 12 (other)となる．一方，空白のカテ
ゴリーコードは 10 (space)である．

• 第 1引数が次のいずれかの場合には，追加の引数は必要ない．
jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing,

kanjiskip, xkanjiskip, differentjfm, direction

\ltjgetparameter{autospacing}と \ltjgetparameter{autoxspacing}は，trueや falseを返す
のではなく，1か 0のいずれかを返すことに注意，

• 第 1引数が次のいずれかの場合には，さらに文字コードを第 2引数としてとる．
kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\ltjgetparameter{jaxspmode}{...}や \ltjgetparameter{alxspmode}{...}は，preonlyなどと
いった文字列ではなく，0から 3までの値を返す．

• \ltjgetparameter{jacharrange}{〈range〉} は，〈range〉 が JAchar達の範囲ならば 0を，そうで
なければ 1を返す．「−1番の文字範囲」は存在しないが，〈range〉 に −1を指定してもエラーは発
生しない（1を返す）．

• 0–9 の数 〈digit〉 に対して，\ltjgetparameter{kansujichar}{〈digit〉} は，\kansuji〈digit〉 で出
力される文字の文字コードを返す．

• \ltjgetparameter{adjustdir}は，周囲の vboxの組方向（言い換えれば，\vadjustで用いられ
る組方向）を表す数値を返す．�direction� と同様に，1は \dtou方向を，3は縦組みを，4は横組み
を表す．

• 0–65535 の数 〈register〉 に対して，\ltjgetparameter{boxdir}{〈register〉} は，\box〈register〉 に
格納されているボックスの組方向を表す．もしこのレジスタが空の場合は，0が返される．

• 次のパラメータ名を \ltjgetparameterに指定することはできない．

51

jatextfont, jascriptfont, jascriptscriptfont, jacharrange

• \ltjgetparameter{chartorange}{〈char code〉} によって 〈char code〉 の属する文字範囲の番号を
知ることができる．
〈char code〉 に 0–127の値を指定した場合（このとき，〈char code〉 が属する文字範囲は存在しな
い）は −1が返る．
そのため，〈char code〉 が JAcharか ALcharかは次で知ることができる：

\ltjgetparameter{jacharrange}{\ltjgetparameter{chartorange}{〈char code〉}}
% 0 if JAchar, 1 if ALchar

• 返り値が文字列であることから，�kanjiskip � や �xkanjiskip� を直接 \ifdim を使って比較することは
望ましくない．伸び量や縮み量を持っている時には，次はエラーを発生させる：

\ifdim\ltjgetparameter{kanjiskip}>\z@ ... \fi

\ifdim\ltjgetparameter{xkanjiskip}>\z@ ... \fi

レジスタに一旦代入するのが良い：

\@tempskipa=\ltjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ ... \fi

\@tempskipa=\ltjgetparameter{xkanjiskip}\ifdim\@tempskipa>\z@ ... \fi

9.3 \ltjsetparameterの代替

原則として各種内部パラメータの設定には \ltjsetparameter もしくは \ltjglobalsetparameter

を用いることになるが，\ltjsetparameterの実行には時間がかかるという難点があり，LuaTEX-jaの
内部ではより高速に実行できる別の形式を用いている．本節は一般利用者むけの内容ではない．

■ �kanjiskip�, �xkanjiskip � の設定 pLaTEX 2𝜀 新ドキュメントクラスでは，

\def\@setfontsize#1#2#3{%

...

\kanjiskip=0zw plus .1zw minus .01zw

\ifdim\xkanjiskip>\z@

\if@slide \xkanjiskip=0.1em \else

\xkanjiskip=0.25em plus 0.15em minus 0.06em

\fi

\fi}

と，フォントサイズを変更するごとに \kanjiskip, \xkanjiskipを変更している．この \@setfontsize

は文書の中で多数回実行されるので．LuaTEX-ja用に素直に書き換えた

\ltjsetparameter{kanjiskip=0\zw plus .1\zw minus .01\zw}

\@tempskipa=\ltjgetparameter{xkanjiskip}

\ifdim\@tempskipa>\z@

\if@slide

\ltjsetparameter{xkanjiskip=0.1em}

\else

\ltjsetparameter{xkanjiskip=0.25em plus 0.15em minus 0.06em}

\fi

\fi

としたのではタイプセットが遅くなってしまう．そこで，\ltjsetparameterの中で
52

• \globaldefsの値を読み取る \ltj@setpar@global

• �kanjiskip� の設定を行う \ltjsetkanjiskip

• �xkanjiskip� の設定を行う \ltjsetxkanjiskip

を独立させ，ltjsclassesでは，

\ltj@setpar@global

\ltjsetkanjiskip{\z@ plus .1\zw minus .01\zw}

\@tempskipa=\ltjgetparameter{xkanjiskip}

\ifdim\@tempskipa>\z@

\if@slide

\ltjsetxkanjiskip.1em

\else

\ltjsetxkanjiskip.25em plus .15em minus .06em

\fi

\fi

としている．\ltj@setpar@globalを直前に実行せず，単独で \ltjsetkanjiskip, \ltjsetxkanjiskip
を実行することは想定されていないので注意．

10 plainでも LaTEXでも利用可能なその他の命令

10.1 pTEX互換用命令

以下の命令は pTEXとの互換性のために実装されている．そのため，JIS X 0213には対応せず，pTEX
と同じように JIS X 0208の範囲しかサポートしていない．

\kuten, \jis, \euc, \sjis, \ucs, \kansuji

これら 6命令は内部整数を引数とするが，実行結果は文字列であることに注意．

 \newcount\hoge

 \hoge="2423 %"

 \the\hoge, \kansuji\hoge\\

 \jis\hoge, \char\jis\hoge\\

 \kansuji1701

9251,九二五一
12355,ぃ
一七〇一

10.2 \inhibitglue, \disinhibitglue

\inhibitglue は発行箇所での JFM 由来グルー／カーンの挿入を抑制する．以下は，ボックスの始
めと「あ」の間，「あ」「ウ」の間にグルーが入る特別な JFMを用いた例である．

 \jfont\g=HaranoAjiMincho-Regular:jfm=test \g

 \fbox{\hbox{あウあ\inhibitglue ウ}}

 \inhibitglue\par\noindent あ1

 \par\inhibitglue\noindent あ2

 \par\noindent\inhibitglue あ3

 \par ）4）\inhibitglue 5

 \par\hrule\noindent あoff\inhibitglue ice

あ ウあウ
あ 1
あ 2
あ 3
） 4） 5
あ office

この例を援用して，\inhibitglueの仕様について述べる．
53

• \inhibitglueの垂直モード中での呼び出しは意味を持たない*27．4行目の入力で有効にならない
のは，\inhibitglueの時点では垂直モードであり，\noindentの時点で水平モードになるからで
ある．

• \inhibitglueは �kanjiskip�, �xkanjiskip� の挿入は抑制しない．例えば上の例の 6 行目では，「）」と
「5」の間には本来は JFM由来の半角空きが挿入されるはずだが，それが \inhibitglueで無効に
なったため，�xkanjiskip � が代わりに挿入されている．

• \inhibitglueの（制限された）水平モード中での呼び出しはその場でのみ有効であり，段落の境
界を乗り越えない．さらに，\inhibitglueは上の例の最終行のように（欧文における）リガチャ
とカーニングを打ち消す．これは，\inhibitglueが内部的には「現在のリスト中に whatsitノー
ドを追加する」ことを行なっているからである．

• \inhibitglueを数式モード中で呼び出した場合はただ無視される．
• LaTEX で LuaTEX-ja を使用する場合は，\inhibitglue の代わりとして \< を使うことができる．
既に \< が定義されていた場合は，LuaTEX-ja の読み込みで強制的に上書きされるので注意する
こと．

\disinhibitglueは \inhibitglueの効果を無効化する．言い換えれば，（\inhibitglueで抑制され
たはずの））JFM由来グルー／カーンの挿入を許可する．同じ箇所に \inhibitglueと \disinhibitglue

が両方ある場合は，後ろの指定が有効になる．この命令はバージョン 20201224.0で追加された．
なお，\disinhibitglue もリガチャやカーニングを打ち消すことに注意されたい．これは

（\inhibitglueと同様に）whatsitノードを使って実装されていることによる．

10.3 \ltjfakeboxbdd, \ltjfakeparbegin

リスト環境内での \itemで始まる各項目などでは，「段落最初の鍵括弧が余計に半角字下げされる」
など，JFMにある'parbdd', 'boxbdd'の指定が見かけ上破綻していることがある．
これは TEXが \everyparを用いて段落開始時に記号類や空白などを挿入してしまっているため，段

落最初の鍵括弧が実際には段落最初のノードではないことに起因する．以下に例を示した．

 \parindent1\zw

 \noindent ああああああああ\par % for comparison

 「ああああああ \par % normal paragraph

 \everypar{\null}

 「ああああああ \par % ???

ああああああああ
「ああああああ
「ああああああ

\ltjfakeboxbdd, \ltjfakeparbeginはこの状況を改善する命令である．実際には \everyparの末尾に
これらを追加するという使い方がほとんどになるだろう．

• \ltjfakeparbeginは，実行された箇所が「インデントあり段落の開始」であると LuaTEX-jaの和
文処理グルー挿入処理に認識させる．この命令の直前に JAchar があった場合，この文字の後ろ
に入るグルー等の処理については未定義である*28．

*27 この点は TEX Live 2014での pTEXにおける \inhibitglueの仕様変更と同じである．
*28 この命令と同等の内容は，\dirrctluaの形で ltjsclasses 内で以前から使われていた．一般ユーザでも利用しやすくする
ため，バージョン 20170505.0で新たに命令として定義した．

54

• \ltjfakeboxbddは，実行された箇所が「ボックスの先頭と末尾」であると LuaTEX-jaの和文処理
グルー挿入処理に認識させる．

例えば，先ほどの例に対して適用すると，次のようになる．

 \parindent1\zw

 \noindent ああああああああ\par % for comparison

 「ああああああ \par % normal paragraph

 \everypar{\null\ltjfakeparbegin}

 「ああああああ \par

ああああああああ
「ああああああ
「ああああああ

10.4 \insertxkanjiskip, \insertkanjiskip

TEX で日本語の文章を作成していると，しばしば「手動で和欧文間空白 �xkanjiskip � を挿入したい」
という状況に遭遇する．このような場合，\hskip\ltjgetparameter{xkanjiskip} とするのがよくあ
る対応であったが，これらには次のような難点がある：

• \xkanjiskipは「段落や hboxでの終端での値がその段落／ hbox全体で用いられる」となってい
るため，\hskip\ltjgetparameter{xkanjiskip} 以降に �xkanjiskip � の値が変わる場合に対応でき
ない．

• LuaTEX-jaでは，\xkanjiskipの自然長が \maxdimen = (230 − 1) spであった場合，JFMで指定さ
れた値を実際に利用することになっているが，それに対応できていない．

• luatexja-adjust（13.3 節）による優先度行長調整では，\hskip\ltjgetparameter{xkanjiskip} は
手動で挿入したグルーであるから，自動で挿入された �xkanjiskip� とは伸縮の優先順序が異なって
しまう．

これらの難点に対処した， �xkanjiskip� をグルーとして手動挿入する命令が \insertxkanjiskip であ
る．これはバージョン 20201224.0で追加された．以下の実行例に示すように，

• 単独で \insertxkanjiskipとした場合は，その時点での �xkanjiskip� の値を使用する
•「\insertxkanjiskip late」と lateキーワードを後置した場合は，段落／ hbox終了時にそのと
きの �xkanjiskip� の値に自動設定される（段落／ hbox途中での値は未定義）

• どちらであっても，実行箇所に本来なら自動挿入されるはずの JFM 由来グルー／カーンは挿入
されない

となっている．

 \ltjsetparameter{xkanjiskip=0.25\zw}

 あ（% 0.5\zw (from JFM)

 あ\insertxkanjiskip （% 0.25\zw (xkanjiskip at here)

 あ\insertxkanjiskip late （% 0.25\zw (xkanjiskip at EOP)

 あa% 1.25\zw (xkanjiskip at EOP)

 \\%

 \ltjsetparameter{xkanjiskip=1.25\zw}

 あ\insertxkanjiskip （% 1.25\zw (xkanjiskip at here)

 あa% 1.25\zw (xkanjiskip at EOP)

 %% At the end of the paragraph (EOP), xkanjiskip is 1.25\zw.

あ（あ（あ （あ a
あ （あ a

55

\insertxkanjiskip（または lateつき）の短縮形*29は LuaTEX-jaでは定義していない．短縮形を使
いたい人は，面倒でも各自で

\protected\def\+{\insertxkanjiskip late}

などと定義してほしい．
最後になるが，以上の説明の �xkanjiskip� をすべて標準の和文間空白 �kanjiskip� に置き換えた

\insertkanjiskip命令も準備されている．

10.5 \ltjdeclarealtfont

\jfont の書式を見ればわかるように，基本的には LuaTEX-ja における 1 つの和文フォントに使用
出来る「実際のフォント」は 1つである．しかし，\ltjdeclarealtfontを用いると，この原則から外
れることができる．
\ltjdeclarealtfontは以下の書式で使用する：

\ltjdeclarealtfont〈base font cs〉〈alt font cs〉{〈range〉}

これは「現在の和文フォント」が 〈base font cs〉 であるとき，〈range〉 に属する文字は 〈alt font cs〉 を
用いて組版される，という意味である．

• 〈base font cs〉, 〈alt font cs〉 は \jfontによって定義された和文フォントである．
• 〈range〉 は文字コードの範囲を表すコンマ区切りのリストであるが，例外として負数 −𝑛 は
「〈base font cs〉 の JFMの文字クラス 𝑛 に属する全ての文字」を意味する．
〈range〉 中に 〈alt font cs〉 中に実際には存在しない文字が指定された場合は，その文字に対する
設定は無視される．

例えば，\hogeの JFMが LuaTEX-ja標準の jfm-ujis.luaであった場合，

\ltjdeclarealtfont\hoge\piyo{"3000-"30FF, {-1}-{-1}}

は「\hogeを利用しているとき，U+3000–U+30FFと文字クラス 1（開き括弧類）中の文字だけは \piyo

を用いる」ことを設定する．{-1}-{-1} という変わった指定の仕方をしているのは，普通に -1 と指
定したのでは正しく −1と読み取られないというマクロの都合による．

10.6 \ltjalcharと \ltjjachar

文字コードが 〈char code〉 (≥ 128 = 0x80) の文字を \charプリミティブを使い \char〈char code〉と
して出力させると，その文字の属する文字範囲（4.1 節参照）によって ALchar か JAchar か，つま
り欧文フォントで出力されるか和文フォントで出力されるかが決まる．
文字範囲の設定を無視し，文字コードが 〈char code〉の文字を強制的に ALchar, JAcharで出力する

命令がそれぞれ \ltjalchar, \ltjjacharである．使用方法は \charと同じく \ltjalchar〈char code〉,
\ltjjachar〈char code〉 とすればよい．LuaTEX-ja 20190926.0 から，〈char code〉 が 127 以下の場合で
も \ltjjachar〈char code〉 が JAcharとして出力されるようになっている．
以下は 4.1節に載せた例に，\charの動作などを追加したものである．

*29 ちょうど \inhibitglueの短縮形 \<に対応するもの．

56

 \gtfamily\large

 ¶,\char`¶,\ltjalchar`¶,\ltjjachar`¶\\ % default: ALchar

 α,\char`α,\ltjalchar`α,\ltjjachar`α\\ % default: JAchar

 g,\char`g,\ltjalchar`g,\ltjjachar`g % ALchar unless \ltjjachar

¶,¶,¶,¶
α,α,α,α
g,g,g, g

11 LaTEX2𝜺 用の命令

11.1 LaTEX2𝜺 下での和文フォントの読み込み

バージョン 20190107以降では，LaTEX 2𝜀 の下で LuaTEX-jaを使用した際に，横組用和文フォントと
縦組み用和文フォントを両方一度に読み込み・選択せずに，実際にそれぞれを使う組方向になったと
きに行うという方針にした．これは実際に読み込むフォント数を削減することで，タイプセットにか
かる時間と（主に Luaの）メモリ消費を削減するためである ([11])．

• \selectfontは横組用・縦組用和文フォントのうち，現在の組方向で使う方を実際に読み込み（・
選択し），そうでない方は「フォントサイズと JFM のみ LuaTEX-ja が把握している状態」（以下，
JFM把握状態）とする．

• 組方向変更命令 \yoko, \tate, \dtou, \utodには
新たな組方向での和文フォントが読み込まれていない（JFM把握状態）ならば，現在のエン
コーディング・ファミリ・シリーズ・シェイプから改めて読み込む（または選択する）

処理が付け加えられている．もとの「組方向を変更するだけ」の命令は \ltj@@orig@yokoのよう
に ltj@@orig@が前についた命令に保存されている．

• \jfont, \tfont, \DeclareFixedFontで定義された和文フォントはその時点で実際にフォントが読
み込まれる．すなわち，以下のコードにおいて，\box0中の JAchar は \HOGEでタイプセットさ
れる．

% in horizontal direction (\yoko)

\DeclareFixedFont\HOGE{JT3}{gt}{m}{n}{12} % JT3: for vertical direction

\HOGE

\setbox0=\hbox{\tate あいう}

11.2 NFSS2へのパッチ

LuaTEX-jaの NFSS2への日本語パッチは pLaTEX 2𝜀 で同様の役割を果たす plfonts.dtxをベースに，
和文エンコーディングの管理等を Luaで書きなおしたものである．ここでは 3.1節で述べていなかっ
た命令について記述しておく．

追加の長さ変数達
pLaTEX 2𝜀 と同様に，LuaTEX-jaは「現在の和文フォントの情報」を格納する長さ変数

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

と，その \normalsize版である
\Cht (height), \Cdp (depth), \Cwd (width),
\Cvs (equals to \baselineskip), \Chs (equals to \cwd)

を定義している．なお，\cwd と \zw，また \cHT と \zh は一致しない可能性がある．なぜなら，
57

\cwd, \cHTは文字クラス 0の和文文字の寸法から決定されるのに対し，\zwと \zhは JFMに指定
された値に過ぎないからである．

\DeclareYokoKanjiEncoding{〈encoding〉}{〈text-settings〉}{〈math-settings〉}
\DeclareTateKanjiEncoding{〈encoding〉}{〈text-settings〉}{〈math-settings〉}

LuaTEX-jaの NFSS2においては，欧文フォントと和文フォントはそのエンコーディングによって
のみ区別される．例えば，OT1 と T1 のエンコーディングは欧文フォントのエンコーディングで
あり，和文フォントはこれらのエンコーディングを持つことはできない．これらコマンドは横組
用・縦組用和文フォントのための新しいエンコーディングをそれぞれ定義する．

\DeclareKanjiEncodingDefaults{〈text-settings〉}{〈math-settings〉}
\DeclareKanjiSubstitution{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}
\DeclareErrorKanjiFont{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

上記 3つのコマンドはちょうど NFSS2の \DeclareFontEncodingDefaultsなどに対応するもので
ある．

\reDeclareMathAlphabet{〈unified-cmd〉}{〈al-cmd〉}{〈ja-cmd〉}
和文・欧文の数式用フォントファミリを一度に変更する命令を作成する．具体的には，欧文数式
用フォントファミリ変更の命令 〈al-cmd〉（\mathrm等）と，和文数式用フォントファミリ変更の
命令 〈ja-cmd〉（\mathmc等）の 2つを同時に行う命令として 〈unified-cmd〉 を（再）定義する．実
際の使用では 〈unified-cmd〉 と 〈al-cmd〉 に同じものを指定する，すなわち，〈al-cmd〉 で和文側も
変更させるようにするのが一般的と思われる．
本命令は

〈unified-cmd〉{〈arg〉} −→ (〈al-cmd〉 の 1段展開結果){〈ja-cmd〉 の 1段展開結果){〈arg〉}}

と定義を行うので，使用には注意が必要である：
• 〈al-cmd〉, 〈ja-cmd〉 は既に定義されていなければならない．\reDeclareMathAlphabet

の後に両命令の内容を再定義しても，〈unified-cmd〉 の内容にそれは反映されない．
• 〈al-cmd〉, 〈ja-cmd〉 に \@mathrmなどと @をつけた命令を指定した時の動作は保証できない．

\DeclareRelationFont{〈ja-encoding〉}{〈ja-family〉}{〈ja-series〉}{〈ja-shape〉}
{〈al-encoding〉}{〈al-family〉}{〈al-series〉}{〈al-shape〉}

いわゆる「従属欧文」を設定するための命令である．前半の 4引数で表される和文フォントに対
して，そのフォントに対応する「従属欧文」のフォントを後半の 4引数により与える．

\SetRelationFont

このコマンドは \DeclareRelationFont とローカルな指定であることを除いてほとんど同じであ
る（\DeclareRelationFontはグローバル）．

\userelfont

次回（のみ）の \selectfont の実行時に，現在の欧文フォントのエンコーディング／ファミリ
／…… を，\DeclareRelationFont か \SetRelationFont で指定された現在の和文フォントに対
応する「従属欧文」フォントに変更する．
以下に \SetRelationFontと \userelfontの例を紹介しておこう．\userelfontの使用によって，
「abc」の部分のフォントが Latin Modern Sans Serif (TU/lmss/m/n)に変わっていることがわかる．

58

 \makeatletter

 \SetRelationFont{JY3}{\k@family}{m}{n}{TU}{lmss}{m}{n}

 % \k@family: current Japanese font family

 \userelfont\selectfont あいうabc

あいう abc

\adjustbaseline

pLaTEX 2𝜀 では，\adjustbaseline は縦組時に「M」と「漢」の中心線を一致させるために，
\tbaselineshiftを設定する役割を持っている：

\tbaselineshift←
(ℎM + 𝑑M) − (ℎ漢 + 𝑑漢)

2
+ 𝑑漢 − 𝑑M,

ここで，ℎ𝑎 , 𝑑𝑎 はそれぞれ「𝑎」の高さ・深さを表す．LuaTEX-ja においても，同じように
\adjustbaseline は �talbaselineshift� パラメータの調整処理を行っている（但し「漢」でなく
「文字クラス 0の和文文字」を用いる）．
pLaTEX 2𝜀 では，\adjustbaselineで（本節の最初に述べた，小文字で始まる）\cht, \cwd設定処
理も行っていたが，LuaTEX-jaでも全く同様である．

\fontfamily{〈family〉}
元々の LaTEX 2𝜀 におけるものと同様に，このコマンドは現在のフォントファミリ（欧文，和文，
もしくは両方）を 〈family〉 に変更する．詳細は 11.3節を参照すること．

\fontshape{〈shape〉}, \fontshapeforce{〈shape〉}
元々の LaTEX 2𝜀 におけるものと同様に，このコマンドは現在の欧文フォントシェイプを
\DeclareFontShapeChangeRuleによるシェイプ更新規則によって変更する．
伝統的には，\fontshapeは無条件に和文フォントシェイプも変更した．しかし，例えば多くの和
文フォントはシェイプが “n”しか持たないことと \itshapeが \fontshapeを呼び出すことから，

Font shape `JY3/mc/m/it' undefined

using `JY3/mc/m/n' instead on

といった警告をもたらしてしまっていた．
一方，LuaTEX-ja 20200323.0 以降では，\fontshape{〈shape〉}, \fontshapeforce{〈shape〉}が和文
フォントシェイプを更新するのは，シェイプ更新規則に基づいた値や 〈shape〉 の少なくとも一つ
が現在の和文フォントファミリ・シリーズで利用可能なときに限られる．どちらでもなく，和文
フォントシェイプが変更されなかった場合には

Kanji font shape JY3/mc/m/it' undefined

No change on ...

という info（警告でなく）を出力する．
\kanjishape{〈shape〉}, \kanjishapeforce{〈shape〉}

...
\DeclareAlternateKanjiFont

{〈base-encoding〉}{〈base-family〉}{〈base-series〉}{〈base-shape〉}
{〈alt-encoding〉}{〈alt-family〉}{〈alt-series〉}{〈alt-shape〉}{〈range〉}
10.5節の \ltjdeclarealtfont と同様に，前半の 4引数の和文フォント（基底フォント）のうち
〈range〉 中の文字を第 5 から第 8 引数の和文フォントを使って組むように指示する．使用例を

59

 \DeclareKanjiFamily{JY3}{edm}{}

 \DeclareFontShape{JY3}{edm}{m}{n} {<-> s*HaranoAjiMincho-Regular:jfm=ujis}{}

 \DeclareFontShape{JY3}{edm}{m}{fb} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=003FFF}{}

 \DeclareFontShape{JY3}{edm}{m}{fb2} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=FF1900}{}

 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{fb}{ "4E00-"67FF,{-2}-{-2}}

 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{fb2}{"6800-"9FFF}

 {\kanjifamily{edm}\selectfont

 日本国民は、正当に選挙された国会における代表者を通じて行動し、……}

日本国民は、正当に選挙された国会における代表者を通じて行動し、……

図 14. \DeclareAlternateKanjiFontの使用例

図 14に載せた．
• \ltjdeclarealtfont では基底フォント・置き換え先和文フォントはあらかじめ定義されて
いないといけない（その代わり即時発効）たが，\DeclareAlternateKanjiFont の設定が実
際に効力が発揮するのは，書体変更やサイズ変更を行った時，あるいは（これらを含むが）
\selectfontが実行された時である．

• 段落や hboxの最後での設定値が段落／ hbox全体にわたって通用する点や，〈range〉 に負数
−𝑛 を指定した場合，それが「基底フォントの文字クラス 𝑛 に属する文字全体」と解釈され
るのは \ltjdeclarealtfontと同じである．

この他にも，標準では \DeclareSymbolFont, \SetSymbolFontなどの命令で（NFSS2の枠組みで）数
式フォントとして日本語フォントを使えるようにするためのパッチを当てている．
一方，disablejfamオプション指定時には，これらのパッチを当てないので

\DeclareSymbolFont{mincho}{JY3}{mc}{m}{n}

\DeclareSymbolFontAlphabet{\mathmc}{mincho}

のように設定しても，数式モード中に直に日本語を記述することはできない．$\mathmc{あ}$ のよう
に \mathmcで囲んでもできない．

11.3 \fontfamilyコマンドの詳細

本節では，\fontfamily〈family〉 がいつ和文/欧文フォントファミリを変更するかについて解説す
る．基本的には，〈family〉 が和文フォントファミリだと認識されれば和文側が，欧文フォントファミ
リだと認識されれば欧文側が変更される．どちらとも認識されれば和文・欧文の両方が変わることに
なるし，当然どちらとも認識されないこともある．

■和文フォントファミリとしての認識 まず，〈family〉 が和文フォントファミリとして認識されるか
は以下の順序で決定される．これは pLaTEX 2𝜀 の \fontfamily にとても似ているが，ここでは Luaに
よって実装している．補助的に「和文フォントファミリではないと認識された」ファミリを格納した
リスト 𝑁J を用いる．

1. ファミリ 〈family〉 が既に \DeclareKanjiFamily によって定義されている場合，〈family〉 は和文
フォントファミリであると認識される．ここで，〈family〉 は現在の和文フォントエンコーディン

60

グで定義されていなくてもよい．
2. ファミリ 〈family〉 がリスト 𝑁J に既に含まれていれば，それは 〈family〉 が和文フォントファミリ
ではないことを意味する．

3. もし luatexja-fontspec パッケージが読み込まれていれば，ここで終了であり，〈family〉 は和文
フォントファミリとして認識されないことになる．
もし luatexja-fontspec パッケージが読み込まれていなければ，和文エンコーディング 〈enc〉 で
フォント定義ファイル 〈enc〉〈family〉.fd（ファイル名は全て小文字）が存在するようなものがあ
るかどうかを調べる．存在すれば，〈family〉 は和文フォントファミリと認識される（フォント定
義ファイルは読み込まれない）．存在しなければ，〈family〉 は和文フォントファミリでないと認
識され，リスト 𝑁J に 〈family〉 を追加することでそれを記憶する．

■欧文フォントファミリとしての認識 同様に，〈family〉 が和文フォントファミリとして認識される
かは以下の順序で決定される．補助的に「欧文フォントファミリと既に認識された」ファミリのリス
ト 𝐹A と，「欧文フォントファミリではないと認識された」ファミリを格納したリスト 𝑁A を用いる．

1. ファミリ 〈family〉 がリスト 𝐹A に既に含まれていれば，〈family〉 は欧文フォントファミリと認識
される．

2. ファミリ 〈family〉 がリスト 𝑁A に既に含まれていれば，それは 〈family〉 が欧文フォントファミ
リではないことを意味する．

3. ある欧文フォントエンコーディング下でファミリ 〈family〉 が定義されていれば，〈family〉 は欧
文フォントファミリと認識され，リスト 𝐹A に 〈family〉 を追加することでこのことを記憶する．

4. 最終段階では，欧文エンコーディング 〈enc〉 でフォント定義ファイル 〈enc〉〈family〉.fd（ファイ
ル名は全て小文字）が存在するようなものがあるかどうかを調べる．存在すれば，〈family〉 は欧
文フォントファミリと認識される（フォント定義ファイルは読み込まれない）．存在しなければ，
〈family〉 は欧文フォントファミリと認識されないので，リスト 𝑁A に 〈family〉 を追加してその
ことを記憶する．

また，\DeclareFontFamily が LuaTEX-ja の読み込み後に実行された場合は，第 2 引数（ファミリ
名）が自動的に 𝐹A に追加される．
以上の方針は pLaTEX 2𝜀 における \fontfamilyにやはり類似しているが，3.が加わり若干複雑になっ

ている．それは pLaTEX 2𝜀 がフォーマットであるのに対し LuaTEX-jaはそうでないため，LuaTEX-jaは
自身が読み込まれる前にどういう \DeclareFontFamily の呼び出しがあったか把握できないからで
ある．

■注意 さて，引数によっては，「和文フォントファミリとも欧文フォントファミリとも認識されな
かった」という事態もあり得る．この場合，引数 〈family〉 は不正だった，ということになるので，和
文・欧文の両方のフォントファミリを 〈family〉 に設定し，代用フォントが使われるに任せることに
する．

61

表 17. strut

box direction width height depth user command

\ystrutbox yoko 0 0.7\baselineskip 0.3\baselineskip \ystrut

\tstrutbox tate, utod 0 0.5\baselineskip 0.5\baselineskip \tstrut

\dstrutbox dtou 0 0.7\baselineskip 0.3\baselineskip \dstrut

\zstrutbox — 0 0.7\baselineskip 0.3\baselineskip \zstrut

11.4 \DeclareTextSymbol使用時の注意

LaTEX (2017/01/01)以降では，TUエンコーディングが標準となり，特に何もしなくても T1, TS1エン
コーディングで定義されていた記号類が使えるようになった．LuaTEX-ja ではこれらの命令によって
記号が欧文フォントで出力されるようにするため，\DeclareTextSymbol命令を改変し，そして TUエ
ンコーディングの定義である tuenc.defを再読込している．
従来は \DeclareTextSymbolで内部的に定義された \T1\textquotedblleftといった命令は chardef

トークンであった．しかし前段落で述べた改変によりもはやそうではなくなっており，例えば
\TU\textquotedblleftは \ltjalchar8220␣という定義になっている．

11.5 \strutbox

pLaTEX 2017/04/08以降と同じように，\strutboxは現在の組方向によって \ystrutbox, \tstrutbox,
\dstrutbox のいずれかに展開されるマクロとなっている（これらについては表 17 �� 参照）．同様に
\strutもこの 3ボックスのいずれかを組方向によって使い分けるようになっている．
\zstrutboxは utod 方向（pTEX でいう縦数式ディレクション）で使われる支柱ボックスであるが，

実際に使われるのは \zstrutが明示的に発行された時，そして lltjextパッケージで追加される組方向
指定で <u>を指定した時，および周囲が縦組の状況で <z>を指定した時に限られている．

12 expl3形式の命令
expl3の文法に沿った組方向変更命令や組方向による条件判断文である．これらは pLaTEXとの互換

性の為に用意されているので，platexモジュールとして定義されている．なお，“†” がついている命
令は LuaTEX-ja独自のものである．

\platex direction yoko:, \platex direction tate:, \platex direction dtou:

それぞれ \yoko, \tate, \dtouと同義．
\platex if direction yoko p:

\platex if direction yoko:TF {〈true code〉}{〈false code〉}
現在の組方向が横組であるか否かをテストする．

\platex if direction tate nomath p:†

\platex if direction tate nomath:TF† {〈true code〉}{〈false code〉}
現在の組方向が縦組であるか否かをテストする．

62

\platex if direction tate math p:†

\platex if direction tate math:TF† {〈true code〉}{〈false code〉}
現在の組方向が utod方向（pTEXでいう「縦数式ディレクション」）であるか否かをテストする．

\platex if direction tate p:

\platex if direction tate:TF {〈true code〉}{〈false code〉}
現在の組方向が縦組または utod方向であるか否かをテストする．

\platex if direction dtou p:

\platex if direction dtou:TF {〈true code〉}{〈false code〉}
現在の組方向が dtou方向であるか否かをテストする．

\platex if box yoko p:N 〈box〉
\platex if box yoko:NTF 〈box〉 {〈true code〉}{〈false code〉}

ボックス 〈box〉 の組方向が横組であるか否かをテストする．
\platex if box tate nomath p:N† 〈box〉
\platex if box tate nomath:NTF† 〈box〉 {〈true code〉}{〈false code〉}

ボックス 〈box〉 の組方向が縦組であるか否かをテストする．
\platex if box tate math p:N† 〈box〉
\platex if box tate math:NTF† 〈box〉 {〈true code〉}{〈false code〉}

ボックス 〈box〉 の組方向が utod方向であるか否かをテストする．
\platex if box tate p:N 〈box〉
\platex if box tate:NTF 〈box〉 {〈true code〉}{〈false code〉}

ボックス 〈box〉 の組方向が縦組または utod方向であるか否かをテストする．
\platex if box dtou p:N 〈box〉
\platex if box dtou:NTF 〈box〉 {〈true code〉}{〈false code〉}

ボックス 〈box〉 の組方向が dtou方向であるか否かをテストする．

13 拡張パッケージ
LuaTEX-jaには（動作には必須ではないが）自由に読み込める拡張が付属している．これらは LaTEX

のパッケージとして制作しているが，luatexja-otf と luatexja-adjust については plain LuaTEX でも
\inputで読み込み可能である．

13.1 luatexja-fontspec

3.2 節で述べたように，この追加パッケージは fontspec パッケージで定義されているコマンドに対
応する和文フォント用のコマンドを提供する．
fontspec パッケージで指定可能な各種 OpenType 機能に加えて，和文版のコマンドには以下の

「フォント機能」を指定することができる：

CID=〈name〉, JFM=〈name〉, JFM-var=〈name〉
これら 3 つのキーはそれぞれ \jfont, \tfont に対する cid, jfm, jfmvar キーとそれぞれ対応す
る．cid, jfm, jfmvarキーの詳細は 8.1節と 8.4節を参照．
CID キーは下の NoEmbed と合わせて用いられたときのみ有効である．また，横組用 JFM と縦

63

 \jfontspec[

 YokoFeatures={Color=FF1900}, TateFeatures={Color=003FFF},

 TateFont=HaranoAjiGothic-Regular

]{HaranoAjiMincho-Regular}

 \hbox{\yoko 横組のテスト}\hbox{\tate 縦組のテスト}

 \addjfontfeatures{Color=00AF00}

 \hbox{\yoko 横組}\hbox{\tate 縦組}

横組のテスト
縦
組
の
テ
ス
ト

横組
縦
組

図 15. TateFeatures等の使用例

 \jfontspec[

 AltFont={

 {Range="4E00-"67FF, Font=HaranoAjiGothic-Regular, Color=003FFF},

 {Range="6800-"9EFF, Color=FF1900},

 {Range="3040-"306F, Font=HaranoAjiGothic-Regular, Color=35A16B},

 }

]{HaranoAjiMincho-Regular}

 日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のために、
 諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のため
に、諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

図 16. AltFontの使用例

組用 JFM は共用できないため，実際に JFM キーを用いる際は後に述べる YokoFeatures キーや
TateFeaturesの中で用いることになる．

NoEmbed

これを指定することで，PDF に埋め込まれない「名前だけ」のフォントを指定することができ
る．8.4節を参照．

Kanjiskip=〈bool〉
36 ページで説明した \jfont 中での ltjksp 指定と同一の効力を持ち， JFM 中における
kanjiskip natural, kanjiskip stretch, kanjiskip shrinkキー（42ページ）の有効/無効を切り
替える．標準値は trueである．

TateFeatures={〈features〉}, TateFont=〈font〉
縦組において使用されるフォントや，縦組においてのみ適用されるフォント機能達を指定する．
使用例は図 15�� 参照．

YokoFeatures={〈features〉}
同様に，横組においてのみ適用されるフォント機能達を指定する．使用例は図 15 �� 参照．

AltFont

10.5節の \ltjdeclarealtfontや，11.2節の \DeclareAlternateKanjiFontと同様に，このキーを
用いると一部の文字を異なったフォントや機能たちを使って組むことができる．AltFont キーに
指定する値は，次のように二重のコンマ区切りリストである：

64

AltFont = {

...

{ Range=〈range〉, 〈features〉},
{ Range=〈range〉, Font=〈font name〉, 〈features〉 },
{ Range=〈range〉, Font=〈font name〉> },

...

}

各部分リストには Range キーが必須である（含まれない部分リストは単純に無視される）．指定
例は図 16�� に示した．

なお，luatexja-fontspec 読み込み時には和文フォント定義ファイル 〈ja-enc〉〈family〉.fdは全く参照
されなくなる．

■AltFont, YokoFeatures, TateFeatures等の制限 AltFont, YokoFeatures, TateFeaturesの各キーは
シェイプ別に指定されるべきものであり，内部では BoldFeatures などのシェイプ別の指定は行うこ
とが出来ない．例えば．

AltFont = {

{ Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,

Range="3000-"30FF, BoldFeatures={Color=FF1900} }

}

のように指定することは出来ず，

UprightFeatures = {

AltFont = { { Font=HogeraMin-Light, Range="3000-"30FF, } },

},

BoldFeatures = {

AltFont = { { Font=HogeraMin-Bold, Range="3000-"30FF, Color=FF1900 } },

}

のように指定しなければならない．
一方，AltFont キー内の各リストでは YokoFeatures, TateFeatures 及び TateFont キーを指定す

ることは可能であり．また YokoFeatures, TateFeatures キーの中身に AltFont を指定することがで
きる．
また，図 15 �� 後半部では 6行目の色定が効かず，2行目で指定した YokoFeatures, TateFeaturesに

よる色指定が有効になったままである．これは YokoFeatures, TateFeaturesによる OpenType機能
指定は組方向に依存しない OpenType機能の指定より後に解釈されるからである．

13.2 luatexja-otf

この追加パッケージは CID 番号による文字の出力をサポートする．luatexja-otf は以下の 2 つの低
レベルコマンドを提供する：

\CID{〈number〉}
CID番号が 〈number〉 の文字を出力する．もし現在の和文フォントが Adobe-Japan1, Adobe-GB1,
Adobe-CNS1, Adobe-Korea1, Adobe-KRのいずれの CID-keyed fontでもない場合，〈number〉 は

65

no adjustment 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
without priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
with priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが

The value of �kanjiskip� is 0 pt+1/5 em−1/5 em in this figure, for making the difference obvious.

図 17. 行長調整

Adobe-Japan1の CID番号であると解釈し「適切なグリフ」*30を出力する．
なお，現在の和文フォントが HarfBuzz を用いて読み込まれた場合には，\CID は正しく動作し
ない．

\UTF{〈hex number〉}
文字コードが（16進で）〈hex number〉 の文字を出力する．このコマンドは \char"〈hex number〉
と似ているが，下の注意を参照すること．

このパッケージは，マクロ集 luatexja-ajmacros.sty*31 も自動的に読み込む． luatexja-

ajmacros.styは，そのため，luatexja-otfを読みこめば ajmacros.styマクロ集にある \aj半角などの
マクロもそのまま使うことができる．

■注意 \CIDと \UTFコマンドによって出力される文字は以下の点で通常の文字と異なる：

• 常に JAcharとして扱われる．
• 縦組時には，現在の縦組用和文フォントで vert/vrt2機能が有効か無効かを問わず，\UTFで出力
される文字にはこれらの OpenType機能が働いた字形になる．

• その他の OpenType 機能（例えばグリフ置換やカーニング）をサポートするための luaotfload

パッケージによる処理はこれらの文字には働かない．

■JFM への記法の追加 luatexja-otf パッケージを読み込むと，JFM の chars テーブルのエントリと
して 'AJ1-xxx'の形の文字列が使えるようになる．これは Adobe-Japan1における CID番号が xxxの
文字を表す．
この拡張記法は，標準 JFM jfm-ujis.luaで，半角ひらがなのグリフ（CID 516–598）を正しく半角

幅で組むために利用されている．

13.3 luatexja-adjust

この追加パッケージは以下の機能を提供する．詳細な仕様については 19章を参照してほしい．

行末文字の位置調整 pTEX では，（是非はともかく）「行末の読点はぶら下げか二分取りか全角取りの
いずれかに」のように行末文字と実際の行末の位置関係を 2 通り以上にすることは面倒であっ
た．和文フォントメトリックだけでは「常に行末の読点はぶら下げ」といったことしかできず，

*30 特に縦組用グリフの CID番号を指定した場合は（LuaTeX-ja 20190504.0以降では若干改良されているが）意図しない結
果になる可能性が高い．なお，バージョン 20190708.0以降では，CIDからグリフへの選択にグリフ名の情報を使用して
いない．また，フォントに Adobe-Japan1の IVSが含まれていれば，その情報を用いてグリフを選択する．

*31 otfパッケージ付属の井上浩一氏によるマクロ集 ajmacros.styに対して漢字コードを UTF-8にしたり，plain LuaTEXで
も利用可能にするという修正を加えたものである．

66

前の文に書いたことを実現するには

\def\。{%

\penalty10000 % 禁則ペナルティ
\hbox to0pt{。\hss}\penalty0 % ぶら下げの場合
\kern.5\zw\penalty0 % 二分取りの場合
\kern.5\zw\penalty0 % 全角取りの場合

}

のような命令を定義し，文中の全ての句点を \。で書くことが必要だった．
luatexja-adjust パッケージは，上で述べた行末文字と実際の行末との位置関係を 2 通り以上から
自動的に選択する機能を提供する．pdfTEX と同じように，「TEX による行分割の後で行末文字の
位置を補正する」方法と「行分割の過程で行末文字の位置を考慮に入れる」方法を選べるように
した（luatexja-adjustパッケージの既定では前者）．

優先順位付きの行長調整 pTEXでは，行長調整において優先度の概念が存在しなかったため，図 17上
段における半角分の半端は，図 17 �� 中段のように，鍵括弧周辺の空白と和文間空白 (�kanjiskip�) の
両方によって負担される．しかし，「日本語組版処理の要件」[5]や JIS X 4051 [7]においては，こ
のような状況では半端は鍵括弧周辺の空白のみで負担し，その他の和文文字はベタ組で組まれる
（図 17 �� 下段）ことになっている．luatexja-adjust パッケージの提供する第 2 の機能は，[5] や [7]
における規定のような，優先順位付きの行長調整である．

• 優先度付き行長調整は，段落を行分割した後に個々の行について行われるものである．その
ため，行分割の位置は変化することはない．
\hbox{...}といった「途中で改行できない水平ボックス」では（たとえ幅が指定されていて
も）無効である．

• 優先度付き行長調整を行うと，和文処理グルーの自然長は変化しないが，伸び量や縮み量は
一般に変化する．そのため，既に組まれた段落を \unhboxなどを利用して組み直す処理を行
う場合には注意が必要である．

「中身までみた」行送り計算 複数行に渡る文章を組版するときには行間に空きが入ることが普通であ
る．TEXでは各行が一つずつの水平ボックスをなしていることを思い出すと，隣り合った 2つの
行（つまり水平ボックス）の間の空きは次のようにして決まるのだった：

•「通常に組んだときの行間」𝑑 を，\baselineskipから「前の行」の深さと「次の行」の高さ
を加えたものを引いた値とする．

• 𝑑 ≥ \lineskiplimitの場合，標準の行送り \baselineskipで組んでも十分な間隔があると
判断され，2行の間には長さ 𝑑 の空白が挿入される．つまり行送りは \baselineskip．

• 𝑑 < \lineskiplimitの場合，2 行の間には長さ \lineskipの空白が挿入される．そのため
（設定値によるが，多くの場合）行送りは \baselineskipより広がる．

ここで，TEX は行送りの決定で「高さ・深さを取っているものが行のどの水平位置にあるか」は
一切考慮しないことに注意してほしい．そのため，図 18 �� (a)のように「必要以上に行間が空いて
見える」状況が起こることがある．
luatexja-adjustパッケージでは，「通常に組んだときの行間」𝑑 を各行の中身の文字・グルー・ボッ
クスの寸法を勘案して計算するという方法を利用できるようにした．この機能を使うと，図 18�� (b)
のように行間の空きが必要以上に大きくなることを避けることができる．

• 段落中の隣り合った二行だけでなく，行間の空きは新たに水平ボックス ℎ を（内部・外部問

67

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(a)

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(b)

図 18. 高い行が連続したときの状況

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(a): 無効

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(b): 0.25\baselineskip刻み

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(c): 0.5\baselineskip刻み

……だから，①より
𝑎2

𝑏
=

1 +
√
5

2
．

よって 𝑏 =
1 −
√
5

2
である．

これを②式に代入すると……

(d): \baselineskip刻み

図 19. 段階的な行送り増加

わず）垂直モードで追加した時にも自動で挿入される．その場合には，前段落で述べた「中
身までみる」処理は
– 現在のリストにおける最後のノード*32が水平ボックス ℎ′ であり，かつ
– \prevdepthの値とその ℎ′ の深さの値が一致している
場合にのみ発動するようにしている．

• 行の中身に水平ボックス ℎ′′ が入ってくることもあるが，その場合は ℎ′′ の中身の高さ・深
さまでは参照せず，あくまでも ℎ′′ 自身の高さ・深さのみを参照する．参照するようにして
しまうと，\smashなど手動で行った高さ・深さ調整の意味がなくなってしまうからである．

なお，現在の実装では，「中身までみる行間調整」は，外部垂直モードにおける前の段落の最終
行と次の段落の先頭行との間では満足に動作しないことがある．これについては今後の課題で
ある．

段階的な行送り調整 既に述べたように，「通常に組んだときの行間」𝑑 が \lineskiplimitより小さい
場合，TEX標準では行間は \lineskipとなるのだった．このとき行送りは「前の行の深さ」，「次
の行の高さ」，\lineskipの 3つの和になるわけだが，場合によっては行送りを「\baselineskip

の整数倍」などと切りのいい値に揃えたいという状況が考えられなくもない．
luatexja-adjust パッケージでは，𝑑 < \lineskiplimit のときに行送りを \baselineskip の
�linestep factor � 倍ずつ増減させて

*32 最後のノードが \parskipによるグルーであった場合のみさらに一つ前のノードを参照する．

68

行間が \lineskip以上となるような，最小の (1 + 𝑘 · linestep factor)\baselineskip（𝑘 は整
数）の値

とする機能を利用できるようにした．図 19�� の (a)がこの機能を無効にした状況で，(b), (c), (d)が
それぞれ �linestep factor � を 0.25, 0.5, 1とした状況である．
なお，この機能は表組時 (\halign, \valign) には無効である．LaTEX における表組環境（tabular,
array など）では，\baselineskip, \lineskipはどちらも 0 に設定されているので（代わりに各
行に \@arstrut という支柱が入る）ために意味がないことと，数式を内部で表組を使って組む
align環境などではかえって行間が不揃いになってしまうからである．

luatexja-adjust パッケージは，上記で述べた 4 機能を有効化/無効化するための以下の命令を提供す
る．これらはすべてグローバルに効力を発揮する．

\ltjenableadjust[...]

...に指定した key-valueリストに従い，「行末文字の位置調整」「優先順位付きの行長調整」「『中
身までみた』行送り計算」「段階的な行送り調整」を有効化/無効化する．指定できるキーは以下
の通り．
lineend=[false,true,extended] 行末文字の位置調整の機能を無効化 (false)，「行分割後に調
整」の形で有効化 (true)，「行分割の過程で考慮」の形で有効化 (extended)する．

priority=[false,true] 優先順位付きの行長調整を無効化 (false)，または有効化 (true)．
profile=[false,true]「中身までみた」行送り計算を無効化 (false)，または有効化 (true)．
linestep=[false,true] 段階的な行送り調整を無効化 (false)，または有効化 (true)．
どのキーともキー名のみを指定した場合は値として trueが指定されたものと扱われる．
互換性の為，オプション無しでただ \ltjenableadjustが呼び出された場合は，

\ltjenableadjust[lineend=true,priority=true]

と扱われる．
\ltjdisableadjust

luatexja-adjustパッケージの機能を無効化する．

\ltjenableadjust[lineend=false,priority=false,profile=false,linestep=false]

と同義．

また，次のパラメータが \ltjsetparameter 内で追加される．いずれもグローバルに効力を発揮
する．

�stretch priority� ={〈list〉} �kanjiskip�, �xkanjiskip�，および「JAglue以外のグルー」を，「行を自然長より伸
ばす」場合の調整に用いる優先度を指定する．
指定方法は，〈list〉 の中に key-value listの形で

stretch_priority={kanjiskip=-35,xkanjiskip=-25,others=50}

のようにして行う．キー名 kanjiskip, xkanjiskip についてはそのままの意味であり，others

キーが「JAglue 以外のグルー」を表す．各キーの値は，JFM グルーにおける「優先度 𝑖」を 10𝑖

に対応させた整数値であり，大きい方が先に伸ばされることを意味している．初期値は

{kanjiskip=-35,xkanjiskip=-25,others=50}

であり，「優先度 −4」と指定されている JFMグルーが最も伸びにくいようになっている．
69

�shrink priority � ={〈list〉} 同様に，「行を自然長より縮める」場合の調整に用いる優先度を指定する．そ
れ以外は �stretch priority� と指定の形式は変わらない（初期値も変わらない）．

�linestep factor � =〈float〉 段階的な行送り調整の際，\baselineskipの自然長の何倍単位で行送りを変え
るかを指定する．0 を指定すると無効になるのと変わらない．また負数を指定すると，その絶対
値が指定されたかのように扱われる．初期値は 0.5（つまり半行単位）である．

�profile hgap factor � =〈float〉「中身まで見た」行送り計算の際，前の行にある深さが大きいものと次の
行にある高さが大きいものが水平方向にどれだけ離れていないといけないかを「\lineskip の自
然長の何倍か」で指定する．負数を指定すると，その絶対値が指定されたかのように扱われる．
初期値は 1（つまり \lineskip（の自然長））である．

さらに，バージョン 20220211.0以降では次の命令が提供される．

\ltjghostbeforejachar

LuaTEX-ja本体が提供している \ltjfakeparbegin, \ltjfakeboxbddと類似の命令である．実行さ
れた箇所が（限定・非限定を問わず）水平モードであった場合に，実行された箇所は「文字クラ
ス 0の JAchar」の直前であると，LuaTEX-jaの和文処理グルー挿入処理に認識させる．以下の実
行例を参照．

 \ltjsetparameter{kanjiskip=14pt,xkanjiskip=50pt}

 \let\LG=\ltjghostbeforejachar

 A\LG B \par% ==> ALchar--(xkanjiskip)--\LG

 A\LG 字 \par% ==> ALchar--(xkanjiskip)--\LG

 漢\LG B \par% ==> JAchar--(kanjiskip)--\LG

 漢\LG 字 \par% ==> JAchar--(kanjiskip)--\LG

A B
A 字
漢 B
漢 字

\ltjghostafterjachar

\ltjghostbeforejachar と対を成す命令で，実行された箇所は「文字クラス 0 の JAchar」の直
後であると，LuaTEX-jaの和文処理グルー挿入処理に認識させる．以下の実行例を参照．

 \ltjsetparameter{kanjiskip=14pt,xkanjiskip=50pt}

 \let\LG=\ltjghostafterjachar

 A\LG B \par% ==> \LG--(xkanjiskip)--ALchar

 漢\LG B \par% ==> \LG--(xkanjiskip)--ALchar

 A\LG 字 \par% ==> \LG--(kanjiskip)--JAchar

 漢\LG 字 \par% ==> \LG--(kanjiskip)--JAchar

A B
漢 B
A 字
漢 字

なお，バージョン 20220207.0で追加された \ltjghostjacharは実装にバグがあったのと「両側」とい
う点が扱いづらかったので，将来は削除する予定である．
両命令の主な仕様用途は和文ゴーストでの使用である．BXghost パッケージ ([12]) などでは伝統的

に全角空白 (U+3000) と \kern-1\zwを組み合わせた方法が使われてきたが，LuaTEX-ja では全角空白
を使っただけではうまくいかない可能性があるため，新たに命令が用意された．

13.4 luatexja-ruby

この追加パッケージは，LuaTEX-jaの機能を利用したルビ（振り仮名）の組版機能を提供する．前後
の文字種に応じた前後への自動進入や，行頭形・行中形・行末形の自動的な使い分けが特徴である．
ルビ組版に設定可能な項目や注意事項が多いため，本追加パッケージの詳細な説明は使用例と共に

70

luatexja-ruby.pdfという別ファイルに載せている．この節では簡単な使用方法のみ述べる．

グループルビ 標準ではグループルビの形で組まれる．第 1 引数に親文字，第 2 引数にルビを記述
する．

 東西線\ruby{妙典}{みようでん}駅は……\\

 東西線の\ruby{妙典}{みようでん}駅は……\\

 東西線の\ruby{妙典}{みようでん}という駅……\\

 東西線\ruby{葛西}{かさい}駅は……

東西線
みようでん

妙典駅は……
東西線の

みようでん

妙典駅は……
東西線の

みようでん

妙典という駅……
東西線

か さ い

葛西駅は……

この例のように，標準では前後の平仮名にルビ全角までかかるようになっている．
モノルビ 親文字を 1 文字にするとモノルビとなる．2 文字以上の熟語をモノルビの形で組みたい場

合は，面倒でもその数だけ \rubyを書く必要がある．

 東西線の\ruby{妙}{みよう}\ruby{典}{でん}駅は…… 東西線の
みよう

妙
でん

典駅は……

熟語ルビ 引数内の縦棒 | はグループの区切りを表し，複数グループのルビは熟語ルビとして組まれ
る．[7]にあるように，どのグループでも「親文字」が対応するルビ以上の長さの場合は各グルー
プごとに，そうでないときは全体をまとめて 1 つのグループルビとして組まれる．[5] で規定さ
れている組み方とは異なるので注意．

 \ruby{妙|典}{みよう|でん}\

 \ruby{葛|西}{か|さい}\

 \ruby{神楽|坂}{かぐら|ざか}

みようでん

妙典
か

葛
さい

西
か ぐ ら

神楽
ざか

坂

複数ルビではグループとグループの間で改行が可能である．

 \vbox{\hsize=6\zw\noindent

 \hbox to 2.5\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}

 \hbox to 2.5\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}

 \hbox to 3\zw{}\ruby{京|急|蒲|田}{けい|きゆう|かま|た}

 }

けいきゆう

京急
か ま た

蒲田
けいきゆうかまた

京急蒲田
けいきゆう

京急
か ま た

蒲田

また，ルビ文字のほうが親文字よりも長い場合は，自動的に行頭形・行中形・行末形のいずれか適
切なものを選択する．

 \vbox{\hsize=8\zw\noindent

 \null\kern3\zw ……を\ruby{承}{うけたまわ}る
 \kern1\zw ……を\ruby{承}{うけたまわ}る\\

 \null\kern5\zw ……を\ruby{承}{うけたまわ}る
 }

……を
うけたまわ

承
る ……を

うけたまわ

承る
……を

うけたまわ

承 る

13.5 lltjext

pLaTEX では縦組用の拡張として plext パッケージが用意されていたが，それを LuaTEX-ja 用に書き
なおしたものが本追加パッケージ lltjextである．
従来の plextパッケージとの違いは，

• 組方向オプション <y>（横組），<t>（縦組），<z>の他に <d>（dtou方向），<u>（utod方向）を追

71

luatexja-ruby.pdf

加した．<z>と <u>の違いは，<z>が（plextパッケージと同様に）周囲の組方向が縦組のときに
しか意味を持たない*33のに対し，<u>にはそのような制限がないことである．

• 連数字用命令 \rensujiにおける位置合わせオプション [l], [c], [r]の挙動を若干変更した．

念の為，本 lltjextパッケージで追加・変更している命令の一覧を載せておく．

tabular, array, minipage環境
これらの環境は，

\begin{tabular}<dir>[pos]{table spec} ... \end{tabular}

\begin{array}<dir>[pos]{table spec} ... \end{array}

\begin{minipage}<dir>[pos]{width} ... \end{minipage}

のように，組方向オプション <dir>が拡張されている．既に述べたように，組方向オプションに
指定できる値は以下の 5つであり，それ以外を指定した時や無指定時は周囲の組方向と同じ組方
向になる．
y 横組 (\yoko)
t 縦組 (\tate)
z 周囲が縦組の時は utod方向，それ以外はそのまま
d dtou方向
u utod方向

\parbox<〈dir〉>[〈pos〉]{〈width〉}{〈contents〉}
\parbox命令も同様に，組方向の指定ができるように拡張されている．

\pbox<〈dir〉>[〈width〉][〈pos〉]{〈contents〉}
組方向 〈dir〉 で 〈contents〉 の中身を LR モードで組む命令である．〈width〉 が正の値であるとき
は，ボックス全体の幅がその値となる．その際，中身は 〈pos〉 の値に従い，左寄せ (l)，右揃え
(r)，中央揃え（それ以外）される．

picture環境
図表作成に用いる picture環境も，

\begin{picture}<dir>(x_size, y_size)(x_offset,y_offset)

...

\end{picture}

と組方向が指定できるように拡張されている．𝑥 成分の増加方向は字送り方向，𝑦 成分の増
加方向は行送り方向の反対方向となる．plext パッケージと同様に内部ではベースライン補
正（�yalbaselineshift � パラメータなど）の影響を受けないように，\put, \line, \vector, \dashbox,
\oval, \circleもベースライン補正を受けないように再定義されている．

\rensuji[〈pos〉]{〈contents〉}, \rensujiskip

\Kanji{〈counter name〉}

\kasen{〈contents〉}, \bou{〈contents〉}, \boutenchar

*33 周囲の組方向が縦組以外のときは，<z>を指定しても中身の組方向は周囲の組方向と変わらない．

72

表 18. lltjext パッケージにおける表組・\parbox命令他の揃え位置

↓中身＼周囲→ \yoko \tate \utod \dtou

\yoko A B B B
\tate B A D C
\utod B D A C
\dtou B C C A

参照番号

■表組他の揃え位置 表組（array, tabular環境），\parbox命令，\minipage環境の揃え位置につい
ては表 18 �� を参照．pLaTEX 2017-07-29とできるだけ同じ挙動になるようにしている．表 18�� 中の A–D
の意味は次の通り．

A 周囲の組方向と中身の組方向が同じ場合．
• [t] 指定のとき：中身の先頭行のベースラインが周囲のベースラインと一致する．表組で先
頭行の上に罫線があった場合は，それがベースラインの位置*34となる．

• [c]指定のとき：中身の上下の中心が周囲の数式の軸を通る．
• [b] 指定のとき：中身の最終行のベースラインが周囲のベースラインと一致する．表組で最
終行の下に罫線があった場合は，それがベースラインの位置となる．

B 周囲の組方向と中身の組方向が 90度ずれている場合．
• [t] 指定のとき：表組においては，上端が周囲のベースラインと一致する．\parbox や
\minipage環境においては，上端が周囲の和文文字の上端と一致する．

• [c]指定のとき：中身の上下の中心が周囲の数式の軸を通る．
• [b] 指定のとき：表組においては，下端が周囲のベースラインと一致する．\parbox や
\minipage環境においては，下端が周囲の和文文字の下端と一致する．

C 周囲の組方向と中身の組方向が 180度ずれている場合．\parboxや \minipage環境においては，上
の Bの場合と同じ挙動である．表組においては，Aで [t]と [b]を入れ替えた

• [t] 指定のとき：中身の最終行のベースラインが周囲のベースラインと一致する．最終行の
下に罫線があった場合は，それがベースラインの位置となる．

• [c]指定のとき：中身の上下の中心が周囲の数式の軸を通る．
• [b] 指定のとき：中身の先頭行のベースラインが周囲のベースラインと一致する．表組で先
頭行の上に罫線があった場合は，それがベースラインの位置となる．

D 通常の縦組 (\tate)と「縦数式ディレクション」に相当する \utod方向が絡んだ場合．\parboxや
\minipage環境においては，上の Bの場合と同じ挙動である．表組においては，

• [t]指定のとき：中身の先頭行の欧文ベースラインが周囲の欧文ベースラインと一致する．
• [c]指定のとき：中身の上下の中心が周囲の数式の軸を通る．
• [b]指定のとき：中身の最終行の欧文ベースラインが周囲の欧文ベースラインと一致する．

*34 LuaTEX-ja では和文側のベースラインの位置も上下移動できることに注意．そのため「和文ベースライン」の位置に来
るとは限らない．

73

13.6 luatexja-preset

3.3 節で述べたように，よく使われている和文フォント設定を一行で指定できるようにしたのが
luatexja-preset パッケージである．このパッケージは，otf パッケージの一部（多書体化）と八登崇之
氏による PXchfonパッケージの一部（プリセット指定）とを合わせたような格好をしている．
パッケージ読み込み時に渡されたオプションのうち，本節にないものを指定した場合，それらはそ

のまま luatexja-fontspecパッケージに渡される*35．例えば，下の 1–3行目は 5行目のように一行にま
とめることができる．

\usepackage[no-math]{fontspec}

\usepackage[match]{luatexja-fontspec}

\usepackage[kozuka-pr6n]{luatexja-preset}

%%--------

\usepackage[no-math,match,kozuka-pr6n]{luatexja-preset}

13.6.1 一般的なオプション
fontspec（既定）

luatexja-fontspecパッケージの機能を用いて和文フォントを選択する．これは，fontspecパッケー
ジが自動で読み込まれることを意味する．
もし fontspecパッケージに何らかのオプションを渡す必要がある*36場合は，次のように luatexja-

presetの前に fontspecを手動で読みこめば良い：

\usepackage[no-math]{fontspec}

\usepackage[...]{luatexja-preset}

nfssonly

LaTEX標準のフォント選択機構 (NFSS2)を用いて ltjpm𝑛（明朝），ltjpg𝑛（ゴシック），それに後
に述べる deluxe オプションが指定された場合には ltjpmg𝑛（丸ゴシック）という和文フォント
ファミリを定義*37し，これらを用いる．
本オプション指定時には fontspec・luatexja-fontspec パッケージは自動では読み込まれない，し
かし，

\usepackage{fontspec}

\usepackage[hiragino-pron,nfssonly]{luatexja-preset}

のようにすれば，このオプションを指定すれば欧文フォントを fontspecパッケージの機能を使っ
て指定することができる．
一方，luatexja-presetパッケージ読み込み時に既に luatexja-fontspecパッケージが読み込まれてい
る場合は nfssonlyオプションは無視される．

match

このオプションが指定されると，「pLaTEX 2𝜀 新ドキュメントクラス」のように \rmfamily,

*35 nfssonlyオプションが指定されていた場合は，luatexja-fontspecパッケージは読み込まれないので単純に無視される．
*36 例えば，数式フォントまで置換されてしまい，\mathitによってギリシャ文字の斜体大文字が出なくなる，など．
*37 𝑛 は自然数であり，\ltjapplypresetの実行（この命令は luatexja-preset パッケージ読み込み時に自動的に実行される）
ごとに増加していく．

74

\textrm{...}, \sffamily 等が欧文フォントだけでなく和文フォントも変更するようになる．
fontspecオプションが有効になっている場合は，このオプションは luatexja-fontspecパッケージ
へと渡される．

nodeluxe（既定）
deluxeオプションの否定．LaTEX 2𝜀 環境下の標準設定のように，明朝体・ゴシック体を各 1ウェイ
トで使用する．より具体的に言うと，この設定の下では \mcfamily\bfseries, \gtfamily\bfseries,
\gtfamily\mdseriesはみな同じフォントとなる．

deluxe

明朝体・ゴシック体各 3 ウェイトと，丸ゴシック体 (\mgfamily, \textmg{...}) を利用可能にす
る．明朝体は細字・中字・太字の 3 ウェイトがあり，明朝体の細字は \mcfamily\ltseries で
利用できる．また，ゴシック体は中字・太字・極太の 3 ウェイトがあり，ゴシック体の極太は
\gtfamily\ebseriesで利用できる*38．

• プリセット設定によっては明朝体細字が用意されていないものもある．その場合は明朝体中
字が代用される．

• 明朝体細字，ゴシック体極太，丸ゴシック体の 3フォントについては実際にフォントをロー
ドする前に存在するかチェックを行う．存在しなかったものについては警告を発し，それぞ
れ明朝体中字．ゴシック体太字，ゴシック体太字で代用する．

expert

横組・縦組専用仮名を用いる．また，\rubyfamilyでルビ用仮名が使用可能となる*39．
bold

nodeluxeオプション指定時には，「明朝の太字」をゴシック体と同じフォントにする．deluxeオ
プション指定時には，「明朝の太字」「ゴシック体の中字」をゴシック体の太字と同じフォントに
する．

jis90, 90jis
出来る限り JIS X 0208:1990の字形を使う．

jis2004, 2004jis
出来る限り JIS X 0213:2004の字形を使う．

jfm yoko=〈jfm〉
横組用和文フォントで用いる JFMを jfm-〈jfm〉.luaにする．このオプションがない時は LuaTEX-ja
標準の jfm-ujis.luaが用いられる．

jfm tate=〈jfm〉
縦用和文フォントで用いる JFMを jfm-〈jfm〉.luaにする．このオプションがない時は LuaTEX-ja
標準の jfm-ujisv.luaが用いられる．

jis

jfm yoko=jisと同じ．ここで用いる JFM jfm-jis.luaは JISフォントメトリックを元にしたもの
である．

jis90, 90jis, jis2004, 2004jis については本パッケージで定義された明朝体・ゴシック体（・丸ゴ

*38 過去との互換性のため，\gtebfamily, \textgteb{...}も依然として利用可能である．
*39 \rubyfamilyとはいいつつ，実際にはフォントファミリを切り替えるのではない（通常では OpenType 機能の有効化で
あり，nfssonly指定時にはシェイプを rbに切り替える）．

75

シック体）にのみ有効である．これら 4オプションのうち複数が同時に指定された場合の動作につい
ては全く考慮していない．

13.6.2 多ウェイト用プリセットの一覧
bizud, haranoaji, morisawa-pro, morisawa-pr6n以外はフォントの指定は（ファイル名でなく）フォ

ント名で行われる．以下の表において，*つきのフォント (e.g., KozGo…-Regular)は，deluxeオプショ
ン指定時にゴシック体中字として用いられるものを示している．

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts.
kozuka-pr6 Kozuka Pr6 (Adobe-Japan1-6) fonts.
kozuka-pr6n Kozuka Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

小塚 Pro書体・Pr6N書体は Adobe InDesign等の Adobe製品にバンドルされている．「小塚丸ゴ
シック」は存在しないので，便宜的に小塚ゴシック Hによって代用している．

family series kozuka-pro kozuka-pr6 kozuka-pr6n

light KozMinPro-Light KozMinProVI-Light KozMinPr6N-Light
明朝 medium KozMinPro-Regular KozMinProVI-Regular KozMinPr6N-Regular

bold KozMinPro-Bold KozMinProVI-Bold KozMinPr6N-Bold

KozGoPro-Regular* KozGoProVI-Regular* KozGoPr6N-Regular*
medium KozGoPro-Medium KozGoProVI-Medium KozGoPr6N-Medium

ゴシック
bold KozGoPro-Bold KozGoProVI-Bold KozGoPr6N-Bold
extra bold KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

丸ゴシック KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

hiragino-pro Hiragino Pro (Adobe-Japan1-5) fonts.
hiragino-pron Hiragino ProN (Adobe-Japan1-5, JIS04-savvy) fonts.

極太ゴシック体として用いるヒラギノ角ゴ W8 は，Adobe-Japan1-3 の範囲しかカバーしていな
い Std/StdNフォントであり，その他は Adobe-Japan1-5対応である．
なお，明朝体細字として用いるヒラギノ明朝体W2は OS Xにはバンドルされておらず，別途購
入する必要がある．

family series hiragino-pro hiragino-pron

light Hiragino Mincho Pro W2 Hiragino Mincho ProN W2
明朝 medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3

bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6

Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic ProN W3*
medium Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6

ゴシック
bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
extra bold Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

丸ゴシック Hiragino Maru Gothic Pro W4 Hiragino Maru Gothic ProN W4

bizud BIZ UD fonts (by Morisawa Inc.) bundled with Windows 10 October 2018 Update.

76

family series

明朝 BIZ-UDMinchoM.ttc

medium BIZ-UDGothicR.ttc

ゴシック bold BIZ-UDGothicB.ttc

extra bold BIZ-UDGothicB.ttc

丸ゴシック BIZ-UDGothicB.ttc

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.
morisawa-pr6n Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

family series morisawa-pro morisawa-pr6n

medium A-OTF-RyuminPro-Light.otf A-OTF-RyuminPr6N-Light.otf
明朝 bold A-OTF-FutoMinA101Pro-Bold.otf A-OTF-FutoMinA101Pr6N-Bold.otf

medium A-OTF-GothicBBBPro-Medium.otf A-OTF-GothicBBBPr6N-Medium.otf

ゴシック bold A-OTF-FutoGoB101Pro-Bold.otf A-OTF-FutoGoB101Pr6N-Bold.otf

extra bold A-OTF-MidashiGoPro-MB31.otf A-OTF-MidashiGoPr6N-MB31.otf

丸ゴシック A-OTF-Jun101Pro-Light.otf A-OTF-ShinMGoPr6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.
yu-win10 Yu fonts bundled with Windows 10.
yu-osx Yu fonts bundled with OSX Mavericks.

family series yu-win yu-win10 yu-osx

light YuMincho-Light YuMincho-Light (YuMincho Medium)
明朝 medium YuMincho-Regular YuMincho-Regular YuMincho Medium

bold YuMincho-Demibold YuMincho-Demibold YuMincho Demibold

YuGothic-Regular* YuGothic-Regular* YuGothic Medium*
medium YuGothic-Regular YuGothic-Medium YuGothic Medium

ゴシック bold YuGothic-Bold YuGothic-Bold YuGothic Bold
extra bold YuGothic-Bold YuGothic-Bold YuGothic Bold

丸ゴシック YuGothic-Bold YuGothic-Bold YuGothic Bold

moga-mobo MogaMincho, MogaGothic, and MoboGothic.
moga-mobo-ex MogaExMincho, MogaExGothic, and MoboExGothic. これらのフォントは http://

yozvox.web.fc2.com/からダウンロードできる．

family series default, 90jis option jis2004 option

medium Moga90Mincho MogaMincho
明朝 bold Moga90Mincho Bold MogaMincho Bold

medium Moga90Gothic MogaGothic
ゴシック bold Moga90Gothic Bold MogaGothic Bold

extra bold Moga90Gothic Bold MogaGothic Bold

丸ゴシック Mobo90Gothic MoboGothic

moga-mobo-exオプション指定時には MogaEx90Mincho などの Ex が名前についたフォントが使
われる．

77

http://yozvox.web.fc2.com/
http://yozvox.web.fc2.com/

ume Ume Mincho and Ume Gothic. これらのフォントは https://ja.osdn.net/projects/ume-font/

wiki/FrontPageからダウンロードできる．

family series default

medium Ume Mincho
明朝 bold Ume Mincho

Ume Gothic*
medium Ume Gothic O5

ゴシック bold Ume Gothic O5
extra bold Ume Gothic O5

丸ゴシック Ume Gothic O5

sourcehan Source Han Serif and Source Han Sans fonts (Language-specific OTF or OTC)
sourcehan-jp Source Han Serif JP and Source Han Sans JP fonts (Region-specific Subset OTF)

family series sourcehan sourcehan-jp

light Source Han Serif Light Source Han Serif JP Light
明朝 medium Source Han Serif Regular Source Han Serif JP Regular

bold Source Han Serif Bold Source Han Serif JP Bold

Source Han Sans Regular* Source Han Sans JP Regular*
medium Source Han Sans Medium Source Han Sans JP Medium

ゴシック
bold Source Han Sans Bold Source Han Sans JP Bold
extra bold Source Han Sans Heavy Source Han Sans JP Heavy

丸ゴシック Source Han Sans Medium Source Han Sans JP Medium

noto-otc Noto Serif CJK and Noto Sans CJK fonts (OTC)
noto-otf, noto Noto Serif CJK and Noto Sans CJK fonts (Language-specific OTF)
noto-jp Noto Serif CJK and Noto Sans CJK fonts (Region-specific subset OTF)

family series noto-otc noto-otf, noto noto-jp

light Noto Serif CJK Light Noto Serif CJK JP Light Noto Serif JP Light
明朝 medium Noto Serif CJK Regular Noto Serif CJK JP Regular Noto Serif JP Regular

bold Noto Serif CJK Bold Noto Serif CJK JP Bold Noto Serif JP Bold

Noto Sans CJK Regular* Noto Sans CJK JP Regular* Noto Sans JP Regular*
medium Noto Sans CJK Medium Noto Sans CJK JP Medium Noto Sans JP Medium

ゴシック
bold Noto Sans CJK Bold Noto Sans CJK JP Bold Noto Sans JP Bold
extra bold Noto Sans CJK Black Noto Sans CJK JP Black Noto Sans JP Black

丸ゴシック Noto Sans CJK Medium Noto Sans CJK JP Medium Noto Sans JP Medium

haranoaji Harano Aji Fonts. これらのフォントは https://github.com/trueroad/HaranoAjiFontsか
らダウンロードできる．「原ノ味丸ゴシック」は存在しないので，便宜的に原ノ味角ゴシック
Heavyによって代用している．

78

https://ja.osdn.net/projects/ume-font/wiki/FrontPage
https://ja.osdn.net/projects/ume-font/wiki/FrontPage
https://github.com/trueroad/HaranoAjiFonts

family series haranoaji

light HaranoAjiMincho-Light.otf
明朝 medium HaranoAjiMincho-Regular.otf

bold HaranoAjiMincho-Bold.otf

HaranoAjiGothic-Regular.otf*
medium HaranoAjiGothic-Medium.otf

ゴシック
bold HaranoAjiGothic-Bold.otf
extra bold HaranoAjiGothic-Heavy.otf

丸ゴシック HaranoAjiGothic-Medium.otf

13.6.3 単ウェイト用プリセット一覧
次に，単ウェイト用の設定を述べる．この 4設定では明朝体太字・丸ゴシック体はゴシック体と同

じフォントが用いられる．

noembed ipa ipaex ms

明朝 Ryumin-Light（非埋込） IPA明朝 IPAex明朝 MS明朝
ゴシック GothicBBB-Medium（非埋込） IPAゴシック IPAexゴシック MSゴシック

13.6.4 HGフォントを使うプリセット
すぐ前に書いた単ウェイト用設定を，Microsoft Office等に付属する HGフォントを使って多ウェイ

ト化した設定もある．以下の表では，*付きのフォント（例：IPAゴシック*）は jis2004と nodeluxe

のいずれかのオプションが有効になっているときに使われる．

family series ipa-hg ipaex-hg ms-hg

medium IPA明朝 IPAex明朝 MS明朝
明朝 bold HG明朝 E HG明朝 E HG明朝 E

IPAゴシック* IPAexゴシック* MSゴシック*
medium HGゴシックM HGゴシックM HGゴシックM

ゴシック bold HGゴシック E HGゴシック E HGゴシック E

extra bold HG創英角ゴシック UB HG創英角ゴシック UB HG創英角ゴシック UB

丸ゴシック HG丸ゴシックM-PRO HG丸ゴシックM-PRO HG丸ゴシックM-PRO

なお，HG明朝 E・HGゴシック E・HG創英角ゴシック UB・HG丸ゴシック体 PROの 4つについ
ては，内部で

標準 フォント名（HGMinchoEなど）
jis90, 90jis指定時 ファイル名 (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf)
jis2004, 2004jis指定時 ファイル名 (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf)

として指定を行っているので注意すること．

13.6.5 新たなプリセットの定義
バージョン 20170904.0 以降では，自分で新たなプリセットを定義することが出来るようになった．

以下に説明する 2命令はプリアンブルでしか実行できない．

79

\ltjnewpreset{〈name〉}{〈specification〉}
新たに 〈name〉 という名称のプリセットを定義する．この名称は，すでに定義されているプリ
セット名や，13.6.1で定義されているオプション，さらに次の 13個と重複してはならない．

mc mc-l mc-m mc-b mc-bx gt gt-u gt-d gt-m gt-b gt-bx gt-eb mg-m

〈specification〉 は，プリセット名や以下のキー達のコンマ区切りリストを指定する：
mc-l=〈font〉 明朝体細字 (\mcfamily\ltseries)
mc-m=〈font〉 明朝体中字 (\mcfamily\mdseries)
mc-b=〈font〉 明朝体太字 (\mcfamily\bfseries)
mc-bx=〈font〉 mc-b=〈font〉 と同義．
gt-u=〈font〉 deluxeオプション未指定時のゴシック体 (\gtfamily)・明朝体太字
gt-d=〈font〉 deluxeオプション指定時のゴシック体中字 (\gtfamily\mdseries)
gt-m=〈font〉 deluxe オプションの指定の有無に関係なくゴシック体中字 (\gtfamily\mdseries)
を指定する．「gt-u=〈font〉, gt-d〈font〉」と同義．

gt-b=〈font〉 ゴシック体太字 (\gtfamily\bfseries)
なお，パッケージ読み込み時に boldオプションが指定された場合は，mc-b=〈font〉 を指定し
たことにもなる．

gt-bx=〈font〉 gt-b=〈font〉 と同義．
gt-eb=〈font〉 ゴシック体太字 (\gtfamily\ebseries)
mg-m=〈font〉 丸ゴシック体 (\mgfamily)
mc=〈font〉 明朝体の細字・中字・太字全部を設定．以下を指定したことと同じである：

mc-l=〈font〉, mc-m=〈font〉, mc-b=〈font〉
gt=〈font〉 ゴシック体の中字・太字・極太全部を設定．以下を指定したことと同じである：

gt-u=〈font〉, gt-d=〈font〉, gt-b=〈font〉, gt-eb=〈font〉
\ltjnewpreset*{〈name〉}{〈specification〉}

\ltjnewpreset とほぼ同じであるが，こちらはすでに定義されているプリセット名を 〈name〉 に
指定した場合にはエラーを出さずに定義を置き換える．

\ltjapplypreset{〈name〉}
〈name〉 で指定されたプリセットを使って和文フォントを設定する．

なお，\ltjnewpresetの第二引数 〈specification〉 に含まれるプリセット名は \ltjnewpresetの時点
で定義されている必要はなく，\ltjapplypreset で実際に使うときに定義されていれば良い．そのた
め，次のような記述も可能である：

\ltjnewpreset{hoge}{piyo,mc-b=HiraMinProN-W6}

\ltjnewpreset{piyo}{mg-m=HiraMaruProN-W4}

\ltjapplypreset{hoge}

■注意 \ltjnewpresetで定義したプリセットには以下の制限がある．

• 非埋め込みのフォントを指定することはできない．
• ipa-hgなどのいくつかのプリセットでは「90jis, jis2004が指定されているか否かでフォントの
指定を変える」処理が行われていたが，\ltjnewpreset で定義したプリセットではこの処理は働
かない．HGフォントやモガ明朝などを使うプリセットを定義する場合には注意すること．

80

第 III部

実装
14 パラメータの保持

14.1 LuaTEX-jaで用いられるレジスタと whatsitノード

以下は LuaTEX-ja で用いられる寸法レジスタ (dimension)，属性レジスタ (attribute) のリストで
ある．

\jQ (dimension) \jQは写真植字で用いられた 1Q = 0.25mm（「級」とも書かれる）を格納している．
したがって，この寸法レジスタの値を変更してはならない．
なお，TEX では長さはスケールド・ポイント (2−16 pt) を最小単位としており，実際の値は
46616 sp ' 0.249994662mmである*40．そのため，次のように若干の誤差が出ることは気をつけ
てほしい．

 \dimen0=1000\jQ \the\dimen0, % ==> 46616000 sp

 \dimen0=250mm \the\dimen0 % ==> 46616995 sp
711.30371pt, 711.3189pt

\jH (dimension) 同じく写真植字で用いられていた単位として「歯」があり，これも 0.25mmと等し
い．この \jHは \jQと同じ寸法レジスタを指す．

\ltj@dimen@zw (dimension) 現在の和文フォントの「全角幅」を保持する一時レジスタ．\zw命令は，
このレジスタを適切な値に設定した後，「このレジスタ自体を返す」．

\ltj@dimen@zh (dimension) 現在の和文フォントの「全角高さ」（通常，高さと深さの和）を保持す
る一時レジスタ．\zh 命令は，このレジスタを適切な値に設定した後，「このレジスタ自体を
返す」．

\jfam (attribute) 数式用の和文フォントファミリの現在の番号．
\ltj@curjfnt (attribute) 基本的には現在の横組用和文フォントのフォント番号を格納しているが，

LaTEX 下で使用する場合は（−2 以下の）負数となることがある．負数の場合は「横組用和文
フォントは実際には読み込まれておらず，そのフォントサイズと JFM だけが LuaTEX-ja が把
握している」状態を表す．

\ltj@curtfnt (attribute) 縦組用和文フォントに関する \ltj@curjfntと同様の値．
\ltj@charclass (attribute) JAchar の文字クラス．JAchar が格納された glyph node でのみ使わ

れる．
\ltj@yablshift (attribute) スケールド・ポイント (2−16 pt)を単位とした欧文フォントのベースライン

の移動量．この属性が「未設定」(-"7FFFFFFF)のときは 0であるとみなされる．\ltj@ykblshift
他も同様．

\ltj@ykblshift (attribute) スケールド・ポイント (2−16 pt) を単位とした和文フォントのベースライ
ンの移動量．

\ltj@tablshift (attribute)

*40 0.25mm ' 46616.99527 sp なので 46617 sp ' 0.250000025mm の方が近いが，TEX で「\dimen0=0.25mm」とすると，
\dimen0の値は 46616 spとなる．

81

\ltj@tkblshift (attribute)
\ltj@autospc (attribute) そのノードで �kanjiskip � の自動挿入が許されるかどうか．0は「許可しない」，

0以外の値（「未設定」も含む）は「許可する」．
\ltj@autoxspc (attribute) そのノードで �xkanjiskip � の自動挿入が許されるかどうか．0 は「許可しな

い」，0以外の値（「未設定」も含む）は「許可する」．
\ltj@icflag (attribute) ノードの「種類」を区別するための属性．以下のうちのひとつが値として割

り当てられる：
italic (1) イタリック補正 (\/) によるカーン，または luaotfload によって挿入されたフォント
のカーニング情報由来のカーン．これらのカーンは通常の \kern とは異なり，JAglue の
挿入処理においては透過する．

packed (2)
kinsoku (3) 禁則処理のために挿入されたペナルティ．
from jfm–(from jfm + 63) (4–67) JFM由来のグルー／カーン．
kanji skip (68), kanji skip jfm (69) 和文間空白 �kanjiskip � を表すグルー．
xkanji skip (70), xkanji skip jfm (71) 和欧文間空白 �xkanjiskip� を表すグルー．
processed (73) LuaTEX-jaの内部処理によって既に処理されたノード．
ic processed (74) イタリック補正に由来するグルーであって，既に JAglue挿入処理にかかっ
たもの．

boxbdd (75) hboxか段落の最初か最後に挿入されたグルー／カーン．
special jaglue (76) \insert[x]kanjiskip由来のグルー．
また，挿入処理の結果であるリストの最初のノードでは， \ltj@icflag の値に pro-

cessed begin flag (4096) が追加される．これによって，\unhbox が連続した場合でも「ボック
スの境界」が識別できるようになっている．

\ltj@kcat𝑖 (attribute) 𝑖 は 7より小さい自然数．これら 7つの属性レジスタは，どの文字ブロックが
JAcharのブロックとして扱われるかを示すビットベクトルを格納する．

\ltj@dir (attribute) direction whatsit（後述）において組方向を示すために，あるいは dir box の組
方向を用いる．direction whatsitにおいては値は

dir dtou (1), dir tate (3), dir yoko (4), dir utod (11)
のいずれかであり，dir box ではこれらに次を加えた値をとる（22章参照）．
dir node auto (128) 異なる組方向に配置するために自動的に作られたボックス．
dir node manual (256) \ltjsetwd によって「ボックスの本来の組方向とは異なる組方向で
の寸法」を設定したときに，それを記録するためのボックス．

TEX側から見える値，つまり \the\ltj@dirの値は常に 0である．
\ltjlineendcomment (counter) LuaTEX-ja は JAchar で入力行が終了した場合，その直後にコメント

文字をおくことで余計な空白が挿入されることを防いでいる．\ltjlineendcomment はその際
のコメント文字の Unicodeにおける符号位置を指定する（詳細は 15.2節を参照）．
LuaTEX-ja における既定値は "FFFFF = 1048575 であり，ユーザは内部動作を熟知していない
限りこのカウンタの値を変更してはならない．\ltjlineendcomment の値が Unicode の範囲外
（負や，"10FFFF = 1114111を超えた場合）にくることは想定されていない．

さらに，LuaTEX-jaはいくつかの user-defined whatsit nodeを内部処理に用いる．direction whatsit

82

はノードリストを格納するが，それ以外の whatsit ノードの type は 100 であり，ノードは自然数を
格納している．user-defined whatsitを識別するための user idは luatexbase.newuserwhatsitidに
より確保されており，下の見出しは単なる識別用でしかない．

inhibitglue \inhibitglue が指定されたことを示すノード．これらのノードの value フィールドは
意味を持たない．

stack marker LuaTEX-ja のスタックシステム（次の節を参照）のためのノード．これらのノードの
valueフィールドは現在のグループネストレベルを表す．

char by cid luaotfload による処理が適用されない JAchar のためのノードで，value フィールドに
文字コードが格納されている．この種類のノードはそれぞれが luaotfload のコールバックの処理
の後で glyph node に変換される．\CID, \UTFでこの種類のノードが利用されている．

replace vs 上の char by cid と同様に，これらのノードは luaotfload のコールバックによる処理が適
用されない ALcharのためものである．

begin par「段落の開始」を意味するノード．list環境，itemize環境などにおいて，\item で始ま
る各項目は……

direction

これらの whatsitノードは JAglueの挿入処理の間に取り除かれる．

14.2 LuaTEX-jaのスタックシステム

■背景 LuaTEX-ja は独自のスタックシステムを持ち，LuaTEX-ja のほとんどのパラメータはこれを
用いて保持されている．その理由を明らかにするために，�kanjiskip � パラメータがスキップレジスタで
保持されているとし，以下のコードを考えてみよう：

 \ltjsetparameter{kanjiskip=0pt}ふがふが.%

 \setbox0=\hbox{%

 \ltjsetparameter{kanjiskip=5pt}ほげほげ}

 \box0.ぴよぴよ\par

ふがふが.ほ げ ほ げ.ぴよぴよ

9.1節で述べたように，ある hboxの中で効力を持つ �kanjiskip� の値は最後に現れた値のみであり，し
たがってボックス全体に適用される �kanjiskip� は 5 ptであるべきである．しかし，LuaTEXの実装を観
察すると，この 5 ptという長さはどのコールバックからも知ることはできないことがわかる．LuaTEX
のソースファイルの 1つ tex/packaging.wの中に，以下のコードがある：

 void package(int c)

 {

 scaled h; /* height of box */

 halfword p; /* first node in a box */

 scaled d; /* max depth */

 int grp;

 grp = cur_group;

 d = box_max_depth;

 unsave();

 save_ptr -= 4;

 if (cur_list.mode_field == -hmode) {

 cur_box = filtered_hpack(cur_list.head_field,

83

 cur_list.tail_field, saved_value(1),

 saved_level(1), grp, saved_level(2));

 subtype(cur_box) = HLIST_SUBTYPE_HBOX;

unsave()が filtered hpack()（これは hpack filterコールバックが実行されるところである）の前
に実行されていることに注意する．したがって，上記ソース中で 5 ptは unsave() のところで捨てら
れ，hpack filterコールバックからはアクセスすることができない．

■解決法 スタックシステムのコードは Dev-luatex メーリングリストのある投稿*41をベースにして
いる．
情報を保持するために，2 つの TEX の整数レジスタを用いている：\ltj@@stack にスタックレベ

ル，\ltj@@group@level に最後の代入がなされた時点での TEX のグループレベルを保持している．
パラメータは charprop stack table という名前のひとつの大きなテーブルに格納される．ここで，
charprop stack table[𝑖] はスタックレベル 𝑖 のデータを格納している．もし新しいスタックレベル
が \ltjsetparameterによって生成されたら，前のレベルの全てのデータがコピーされる．
上の「背景」で述べた問題を解決するために，LuaTEX-jaでは次の手法を用いる：スタックレベルが

増加するするとき，type, subtype, valueがそれぞれ 44 (user defined), stack marker，そして現在のグ
ループレベルである whatsit ノードを現在のリストに付け加える（このノードを stack flag とする）．
これにより，ある hbox の中で代入がなされたかどうかを知ることが可能となる．スタックレベルを
𝑠，その hbox groupの直後の TEXのグループレベルを 𝑡 とすると：

• もしその hboxの中身を表すリストの中に stack flag ノードがなければ，hboxの中では代入は起
こらなかったということになる．したがって，その hbox の終わりにおけるパラメータの値はス
タックレベル 𝑠 に格納されている．

• もし値が 𝑡 +1の stack flag ノードがあれば，その hboxの中で代入が起こったことになる．した
がって，hboxの終わりにおけるパラメータの値はスタックレベル 𝑠 + 1に格納されている．

• もし stack flag ノードがあるがそれらの値が全て 𝑡+1より大きい場合，そのボックスの中で代入
が起こったが，それは「より内部の」グループで起こったということになる．したがって，hbox
の終わりでのパラメータの値はスタックレベル 𝑠 に格納されている．

このトリックを正しく働かせるためには，\ltj@@stack と \ltj@@group@level への代入は
\globaldefs の値によらず常にローカルでなければならないことに注意する．この問題は
\directlua{tex.globaldefs=0}（この代入は常にローカル）を用いることで解決している．

14.3 スタックシステムで使用される関数

本節では，ユーザが LuaTEX-ja のスタックシステムを使用して，TEX のグルーピングに従うような
独自のデータを取り扱う方法を述べる．
スタックに値を設定するには，以下の Lua関数を呼び出せば良い：

luatexja.stack.set_stack_table(<any> index, <any> data)

直感的には，スタックテーブル中のインデックス index の値を dataにする，という意味である．index
の値としては nilと NaN以外の任意の値を使えるが，自然数は LuaTEX-jaが使用する（将来の拡張用

*41 [Dev-luatex] tex.currentgrouplevel: Jonathan Sauerによる 2008/8/19の投稿．

84

 \protected\def\ltj@setpar@global{%

 \relax\ifnum\globaldefs>0\directlua{luatexja.isglobal='global'}%

 \else\directlua{luatexja.isglobal=''}\fi

 }

 \protected\def\ltjsetparameter#1{%

 \ltj@setpar@global\setkeys[ltj]{japaram}{#1}\ignorespaces}

 \protected\def\ltjglobalsetparameter#1{%

 \relax\ifnum\globaldefs<0\directlua{luatexja.isglobal=''}%

 \else\directlua{luatexja.isglobal='global'}\fi%

 \setkeys[ltj]{japaram}{#1}\ignorespaces}

図 20. パラメータ設定命令の定義

も含む）ので，ユーザが使用する場合は負の整数値か文字列の値にすることが望ましい．また，ロー
カルに設定されるかグローバルに設定されるかは，luatexja.isglobal の値に依存する（グローバル
に設定されるのは，luatexja.isglobal == 'global'であるちょうどその時）．
スタックの値は，

luatexja.stack.get_stack_table(<any> index, <any> default, <number> level)

の戻り値で取得できる．level はスタックレベルであり，通常は \ltj@@stack の値を指定することに
なるだろう．default はレベル level のスタックに値が設定されていなかった場合に返すデフォルト値
である．

14.4 パラメータの拡張

ここでは，luatexja-adjust で行なっているように，\ltjsetparameter, \ltjgetparameter に指定可
能なキーを追加する方法を述べる．

■パラメータの設定 \ltjsetparameterと，\ltjglobalsetparameterの定義は図 20 �� ののようになっ
ている．本質的なのは最後の \setkeysで，これは xkeyvalパッケージの提供する命令である．
このため，\ltjsetparameter に指定可能なパラメータを追加するには，〈prefix〉 を ltj，〈family〉

を japaramとしたキーを

\define@key[ltj]{japaram}{...}{...}

のように定義すれば良いだけである．なお，パラメータ指定がグローバルかローカルかどうかを示す
luatexja.isglobalが，

luatexja.isglobal =

{
'global' （パラメータ設定はグローバル），
'' （パラメータ設定はローカル）．

として自動的にセットされる*42．

■パラメータの取得 一方，\ltjgetparameter は Lua スクリプトによって実装されている．値を取
得するのに追加引数の要らないパラメータについては，luatexja.unary_pars内に処理内容を記述し
た関数を定義すれば良い．例えば，Luaスクリプトで

*42 命令が \ltjglobalsetparameterかどうかだけではなく，実行時の \globaldefsの値にも依存して定まる．

85

 function luatexja.unary_pars.hoge (t)

 return 42

 end

を実行すると，\ltjgetparameter{hoge}は 42という文字列を返す．関数 luatexja.unary_pars.hoge

の引数 𝑡 は，14.2節で述べた LuaTEX-jaのスタックシステムにおけるスタックレベルである．戻り値
はいかなる値であっても，最終的には文字列として出力されることに注意．
一方，追加引数（数値しか許容しない）が必要なパラメータについては，まず Luaスクリプトで処

理内容の本体を記述しておく：

 function luatexja.binary_pars.fuga (c, t)

 return tostring(c) .. ', ' .. tostring(42)

 end

引数 𝑡 は，先に述べた通りのスタックレベルである．一方，引数 𝑐 は \ltjgetparameter の第 2引数
を表す数値である．しかしこれだけでは駄目で，

\ltj@@decl@array@param{fuga}

を実行し，TEXインターフェース側に「\ltjgetparameter{fuga}は追加引数が必要」ということを通
知する必要がある．

15 和文文字直後の改行

15.1 参考：pTEXの動作

欧文では文章の改行は単語間でしか行わない．そのため，TEXでは，（文字の直後の）改行は空白文
字と同じ扱いとして扱われる．一方，和文ではほとんどどこでも改行が可能なため，pTEXでは和文文
字の直後の改行は単純に無視されるようになっている．
このような動作は，pTEX が TEX からエンジンとして拡張されたことによって可能になったことで

ある．pTEXの入力処理部は，TEXにおけるそれと同じように，有限オートマトンとして記述すること
ができ，以下に述べるような 4状態を持っている．

• State 𝑁 : 行の開始．
• State 𝑆 : 空白読み飛ばし．
• State 𝑀 : 行中．
• State 𝐾 : 行中（和文文字の後）．

また，状態遷移は，図 21�� のようになっており，図中の数字はカテゴリーコードを表している．最初
の 3 状態は TEX の入力処理部と同じであり，図中から状態 𝐾 と「J」と書かれた矢印を取り除けば，
TEXの入力処理部と同じものになる．
この図から分かることは，

行が和文文字（とグループ境界文字）で終わっていれば，改行は無視される

ということである．

86

start 𝑵

𝑴

𝑺

𝑲

scan a c.s.

G, O 10

G, O

1010

(∗)

(∗)

5 [␣]

G, O

55 [\par]

J

J

O

10

G, J

J

5

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.
5 end-of-line (usually ^^J).
10 space (usually ␣).
O other characters, whose category code is

in {3, 4, 6, 7, 8, 11, 12, 13}.
[␣], [\par] emits a space, or \par.

• We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also
ignored the input like “^^A” or “^^df”.

• When a character whose category code is 0 (escape character) is seen by TEX, the input processor scans a
control sequence (scan a c.s.). These paths are not shown in the above diagram.
After that, the state is changed to State 𝑆 (skipping blanks) in most cases, but to State 𝑀 (middle of line)
sometimes.

図 21. pTEX の入力処理部の状態遷移

15.2 LuaTEX-jaの動作

LuaTEX の入力処理部は TEX のそれと全く同じであり，コールバックによりユーザがカスタマイズ
することはできない．このため，改行抑制の目的でユーザが利用できそうなコールバックとしては，
process_input_bufferや token_filterに限られてしまう．しかし，TEXの入力処理部をよく見ると，
後者も役には経たないことが分かる：改行文字は，入力処理部によってトークン化される時に，カテ
ゴリーコード 10 の 32 番文字へと置き換えられてしまうため，token_filter で非標準なトークン読
み出しを行おうとしても，空白文字由来のトークンと，改行文字由来のトークンは区別できないのだ．
すると，我々のとれる道は，process_input_bufferを用いて LuaTEXの入力処理部に引き渡される

前に入力文字列を編集するというものしかない．以上を踏まえ，LuaTEX-ja における「和文文字直後
の改行抑制」の処理は，次のようになっている：

各入力行に対し，その入力行が読まれる前の内部状態で以下の 3 条件が満たされている場合，
LuaTEX-ja は \ltjlineendcomment 番の文字*43を末尾に追加する．よって，その場合に改行は空
白とは見做されないこととなる．

1. \endlinecharの文字*44のカテゴリーコードが 5 (end-of-line)である．
2. \ltjlineendcommentのカテゴリーコードが 14 (comment)である．
3. 入力行は次の「正規表現」にマッチしている：

(any char)∗
(
JAchar ∩

(
{catcode = 11} ∪ {catcode = 12}

)) (
{catcode = 1} ∪ {catcode = 2}

)∗
*43 \ltjlineendcomment の既定値は"FFFFF であるので，既定では U+FFFFF が使われることになる．この文字はコメント文
字として扱われるように LuaTEX-ja内部で設定をしている．

*44 普通は，改行文字（文字コード 13番）である．

87

この仕様は，前節で述べた pTEX の仕様にできるだけ近づけたものとなっている．条件 1. は，
lstlisting系環境などの日本語対応マクロを書かなくてすませるためのものである．
しかしながら，pTEXと完全に同じ挙動が実現できたわけではない．次のように，JAcharの範囲を

変更したちょうどその行においては挙動が異なる：

 \fontspec[Ligatures=TeX]{TeX Gyre Termes}

 \ltjsetparameter{autoxspacing=false}

 \ltjsetparameter{jacharrange={-6}}xあ
 y\ltjsetparameter{jacharrange={+6}}zい
 u

x�yzい u

上ソース中の「あ」は ALchar（欧文扱い）であり．ここで使用している欧文フォント TEX Gyre
Termes は「あ」を含まない．よって，出力に「あ」は現れないことは不思議ではない．それでも，
pTEX とまったく同じ挙動を示すならば，出力は「x yzいu」となるはずである．しかし，実際には上
のように異なる挙動となっているが，それは以下の理由による：

• 3行目を process input bufferで処理する時点では，「あ」は JAchar（和文扱い）である．よっ
て 3 行目は JAchar で終わることになり，\ltjlineendcomment番のコメント文字が追加される．
よって，直後の改行文字は無視されることになり，空白は入らない．

• 4行目を process input bufferで処理する時点では，「い」は ALcharである．よって 4行目は
ALcharで終わることになり，直後の改行文字は空白に置き換わる．

このため，トラブルを避けるために，JAcharの範囲を \ltjsetparameterで編集した場合，その行は
そこで改行するようにした方がいいだろう．

15.3 濁点・半濁点付き仮名の正規化→ luaotfload v3.19以降ではそちらで

TEX Live 2016以降の (u)pTEXでは，合成用濁点 (U+3099)・合成用半濁点 (U+309A)を用いて表現され
た平仮名・片仮名を合成済み文字に変換するという処理を行っている．この処理を行っている要因と
しては，

• 無用なトラブルを避けるため．濁点・半濁点付きの仮名文字が「合成用濁点・半濁点を使って入
力されているか」「最初から合成済み文字で入力されているか」を見た目から判別することは難
しい．

• pTEX との互換性のため．pTEX は内部コードが JIS X 0208 の範囲に限られるため，合成用濁点・
半濁点は利用できない．そのため上記の変換処理はさらに前から行われていた．

LuaTEX(-ja) では入力の変換は基本的に行わず，文字の合成は使用しているフォントの OpenType
機能に委ねるという立場であったが，luaotfload v3.19以降では，標準で NFCへの Unicode正規化を
行っている．そのため，バージョン 20230409.0以降では，LuaTEX-jaによる自前の変換*45は行わない
ようにしている．

*45 バージョン 20220103.0で実装した．

88

16 JFMグルーの挿入， �kanjiskip� と �xkanjiskip�

16.1 概要

LuaTEX-jaにおける JAglueの挿入方法は，pTEXのそれとは全く異なる．pTEXでは次のような仕様
であった：

• JFM グルーの挿入は，和文文字を表すトークンを元に水平リストに（文字を表す）〈char node〉
を追加する過程で行われる．

• �xkanjiskip� の挿入は，hboxへのパッケージングや行分割前に行われる．
• �kanjiskip� はノードとしては挿入されない．パッケージングや行分割の計算時に「和文文字を表す

2つの 〈char node〉 の間には �kanjiskip� がある」ものとみなされる．

しかし，LuaTEX-ja では，hbox へのパッケージングや行分割前に全ての JAglue，即ち JFM グルー・
�xkanjiskip�・ �kanjiskip � の 3 種類を一度に挿入することになっている．これは，LuaTEX において欧文の
合字・カーニング処理がノードベースになったことに対応する変更である．

LuaTEX-jaにおける JAglue挿入処理では，次節で定義する「クラスタ」を単位にして行われる．大
雑把にいうと，「クラスタ」は文字とそれに付随するノード達（アクセント位置補正用のカーンや，イ
タリック補正）をまとめたものであり，2つのクラスタの間には，ペナルティ，\vadjust，whatsitな
ど，行組版には関係しないものがある．

16.2 「クラスタ」の定義

定義 1. クラスタは以下の形のうちのどれかひとつをとるノードのリストである：

1. その \ltj@icflag の値が [3, 15) に入るノードのリスト．これらのノードはある既にパッケー
ジングされた hbox から \unhbox でアンパックされたものである．この場合，クラスタの id は
id pbox である．

2. インライン数式でその境界に 2つの math node を含むもの．この場合，クラスタの id は id math

である．
3. JAcharを表す glyph node 𝑝 とそれに関係するノード：

(a) 𝑝 のイタリック補正のためのカーン．
(b) \accentによる 𝑝 に付随したアクセント．
(c) OpenType の palt機能などに由来する，𝑝 の位置補正を行うための 𝑝 の直前/直後に配置さ
れたカーン．これらの subtypeは 0．

(b)︷ ︸︸ ︷
kern

subtype = 2 −→


glyph
accent

hbox
accent (shifted vert.)


−→ kern

subtype = 2 −→
glyph
𝑝
−→

(a)︷ ︸︸ ︷
kern

italic corr.

この場合の id は id jglyph である．
4. ALcharを表す glyph node，\accentによるアクセント位置補正用のカーン (subtypeが 2)，そし

89

てイタリック補正・カーニングによって挿入されたカーン達が連続したもの．この場合の id は
id glyph である．

5. 水平ボックス (hbox)，垂直ボックス，罫線 (\vrule)，そして unset node．クラスタの id は垂直
に移動していない hboxならば id hlist，そうでなければ id box like となる．

6. グルー，subtypeが 2 (accent)ではないカーン，そして discretionary break．その id of the cluster
はそれぞれ id glue, id kern，そして id disc である．

以下では Np, Nq, Nr でクラスタを表す．

■id の意味 Np.id の意味を述べるとともに，「先頭の文字」を表す glyph node Np.head と，「最後
の文字」を表す glyph node Np.tail を次のように定義する．直感的に言うと，Np は Np.head で始ま
り Np.tail で終わるような単語，と見做すことができる．これら Np.head, Np.tail は説明用に準備し
た概念であって，実際の Luaコード中にそのように書かれているわけではないことに注意．

id jglyph JAchar（和文文字）．
Np.head, Np.tail は，その JAcharを表している glyph node そのものである．

id glyph JAchar（和文文字）以外のものを表す glyph node 𝑝．
多くの場合，𝑝 は ALchar（欧文文字）を格納しているが，「ffi」などの合字によって作られた
glyph node である可能性もある．前者の場合，Np.head,Np.tail = 𝑝 である．一方，後者の場合，

• Np.head は，合字の構成要素の先頭→（その glyph node における）合字の構成要素の先頭
→……と再帰的に検索していってたどり着いた glyph node である．

• Np.last は，同様に末尾→末尾→と検索してたどり着いた glyph node である．
id math インライン数式．

便宜的に，Np.head, Np.tail ともに「文字コード −1の欧文文字」とおく．
id hlist 縦方向にシフトされていない hbox．

この場合，Np.head, Np.tail はそれぞれ 𝑝 の内容を表すリストの，先頭・末尾のノードである．

• 状況によっては，TEXソースで言うと

\hbox{\hbox{abc}...\hbox{\lower1pt\hbox{xyz}}}

のように，𝑝 の内容が別の hbox で開始・終了している可能性も十分あり得る．そのよう
な場合，Np.head, Np.tail の算出は，垂直方向にシフトされていない hbox の場合だけ内部
を再帰的に探索する．例えば上の例では，Np.head は文字「a」を表すノードであり，一方
Np.tail は垂直方向にシフトされた hbox，\lower1pt\hbox{xyz}に対応するノードである．

• また，先頭にアクセント付きの文字がきたり，末尾にイタリック補正用のカーンが来ること
もあり得る．この場合は，クラスタの定義のところにもあったように，それらは無視して算
出を行う．

• 最初・最後のノードが合字によって作られた glyph node のときは，それぞれに対して
id glyph と同様に再帰的に構成要素をたどっていく．

id pbox「既に処理された」ノードのリストであり，これらのノードが二度処理を受けないためにま
とめて 1 つのクラスタとして取り扱うだけである．id hlist と同じ方法で Np.head, Np.tail を算
出する，

id disc discretionary break (\discretionary{pre}{post}{nobreak}).

90

id hlist と同じ方法で Np.head, Np.tail を算出するが，第 3 引数の nobreak（行分割が行われな
い時の内容）を使う．言い換えれば，ここで行分割が発生した時の状況は全く考慮に入れない．

id box like id hlist とならない boxや，rule．
この場合は，Np.head, Np.tail のデータは利用されないので，2 つの算出は無意味である．敢え
て明示するならば，Np.head, Np.tail は共に nil値である．

他 以上にない id に対しても，Np.head, Np.tail の算出は無意味．

■クラスタの別の分類 さらに，JFMグルー挿入処理の実際の説明により便利なように，id とは別の
クラスタの分類を行っておく．挿入処理では 2つの隣り合ったクラスタの間に空白等の実際の挿入を
行うことは前に書いたが，ここでの説明では，問題にしているクラスタ Np は「後ろ側」のクラスタ
であるとする．「前側」のクラスタについては，以下の説明で head が last に置き換わることに注意す
ること．

和文 A リスト中に直接出現している JAchar．id が id jglyph であるか，
id が id pbox であって Np.head が JAcharであるとき．

和文 B リスト中の hboxの中身の先頭として出現した JAchar．和文 Aとの違いは，これの前に JFM
グルーの挿入が行われない（�xkanjiskip �, �kanjiskip� は入り得る）ことである．
id が id hlist か id disc であって Np.head が JAcharであるとき．

欧文 リスト中に直接／ hbox の中身として出現している「JAchar 以外の文字」．次の 3 つの場合が
該当：

• id が id glyph である．
• id が id math である（つまりこのクラスタは 1つの文中数式をなす）．
• id が id pbox か id hlist か id disc であって，Np.head が ALchar．

箱 box，またはそれに類似するもの．次の 2つが該当：
• id が id pbox か id hlist か id disc であって，Np.head が glyph node でない．
• id が id box like である．

16.3 段落／ hboxの先頭や末尾

■先頭部の処理 まず，段落／ hboxの一番最初にあるクラスタ Np を探索する．hboxの場合は何の
問題もないが，段落の場合では以下のノード達を事前に読み飛ばしておく：

• \parindent由来の hbox(subtype = 3)
• subtype が 44 (user defined)でないような whatsit

これは，\parindent由来の hboxがクラスタを構成しないようにするためである．
次に，Np の直前に空白 𝑔を必要なら挿入する：

1. この処理が働くような Np は和文 Aである．
2. 問題のリストが字下げありの段落（\parindent由来の hboxあり）の場合は，この空白 𝑔は「文
字コード 'parbdd'の文字」と Np の間に入るグルー／カーンである．

3. そうでないとき（noindent で開始された段落や hbox）は，𝑔は「文字コード 'boxbdd' の文字」

91

と Np の間に入るグルー／カーンである．

ただし，もし 𝑔 が glue であった場合，この挿入によって Np による行分割が新たに可能になるべき
ではない．そこで，以下の場合には，𝑔の直前に \penalty10000を挿入する：

• 問題にしているリストが段落であり，かつ
• Np の前には予めペナルティがなく，𝑔は glue．

■末尾の処理 末尾の処理は，問題のリストが段落のものか hbox のものかによって異なる．後者の
場合は容易い：最後のクラスタを Nq とおくと，Nq と「文字コード 'boxbdd'の文字」の間に入るグ
ルー／カーンを，Nq の直後に挿入するのみである．
一方．前者（段落）の場合は，リストの末尾は常に \penalty10000 と，\parfillskip 由来のグ

ルーが存在する．段落の最後の「通常の JAchar + 句点」が独立した行となるのを防ぐために，
�jcharwidowpenalty� の値の分だけ適切な場所のペナルティを増やす．
ペナルティ量を増やす場所は，head が JAchar であり，かつその文字の �kcatcode� が偶数であるよ

うな最後のクラスタの直前にあるものたちである*46．

16.4 概観と典型例：2つの「和文 A」の場合

先に述べたように，2つの隣り合ったクラスタ，Nq と Np の間には，ペナルティ，\vadjust，whatsit
など，行組版には関係しないものがある．模式的に表すと，

cluster
Nq −→

(a)︷ ︸︸ ︷
penalty
𝑝

−→ · · · −→ whatsit −→ cluster
Np

のようになっている．間の (a) に相当する部分には，何のノードもない場合ももちろんあり得る．そ
うして，JFMグルー挿入後には，この 2クラスタ間は次のようになる：

cluster
Nq −→

(a)︷ ︸︸ ︷
penalty
𝑝 + 𝑥 −→ · · · −→ whatsit −→

glue or kern
右空白

−→ cluster
Np

以後，典型的な例として，クラスタ Nq と Np が共に和文 Aである場合を見ていこう，この場合が
全ての場合の基本となる．

■カーニングの算出（横組） クラスタ Np の先頭が subtype 0のカーン 𝑘 である場合，𝑘 は次の 2つ
を合計した量である：

• Nq.last, Np.head という 2つの JAcharの間に入るカーニング
• OpenTypeの palt機能などによる，Np.head の位置補正

例えば

\jfont\KMPK = KozMinPr6N-Regular.otf:jfm=prop;+palt;+kern at 10pt

\KMPK アイ

*46 大雑把に言えば， �kcatcode� が奇数であるような JAchar を約物として考えていることになる．�kcatcode� の最下位ビット
はこの �jcharwidowpenalty� 用にのみ利用される．

92

からは，luaotfloadにより次のノード列が得られる：

Nq︷ ︸︸ ︷
kern
−0.4 pt

subtype=0

−→
glyph

\KMPK, ‘ア’ −→
kern
−0.5 pt

subtype=0

−→

Np︷ ︸︸ ︷
kern
−1.2 pt

subtype=0

−→
glyph

\KMPK, ‘イ’ −→
kern
−0.6 pt

subtype=0

(1)

ここで，subtypeの値が 0であるカーンは行分割でも除去されない．また 3つ目のカーン −1.2 ptは，
カーニング −0.9 ptと「イ」の位置補正 −0.3 ptの和である．「ア」「イ」間で行分割が起こる場合，前
者 −0.9 pt分はなくなってほしいが，後者 −0.3 pt分は残ることが望ましい．
そのため，LuaTEX-jaでは (1)というノード列を

Nq︷ ︸︸ ︷
kern
−0.4 pt

subtype=0

−→
glyph

\KMPK, ‘ア’ −→
kern
−0.5 pt

subtype=0

(∗)
−→

Np︷ ︸︸ ︷
kern
−0.9 pt

subtype=1

−→ kern
−0.3 pt

subtype=0

−→
glyph

\KMPK, ‘イ’ −→
kern
−0.6 pt

subtype=0

と変換し，(∗) の箇所に JFMグルーを挿入することになる．

■カーニングの算出（縦組） luaotfloadパッケージは，vpal, vkrnなどの縦組時に用いられる Open-
Type機能を glyph node の yoffsetフィールド（17.1小節を参照）の値を増減することで「実装」し
ている．これも，例えば

\tate

\tfont\KMVPK = KozMinPr6N-Regular.otf:jfm=propv;+vpal;+vkrn at 10pt

\KMVPK アノ

からは，次のノード列が得られる：

Nq︷ ︸︸ ︷
glyph

\KMVPK, ‘ア’
yoffset=1.2 pt

−→

Np︷ ︸︸ ︷
glyph

\KMVPK, ‘ノ’
yoffset=1.3 pt

(2)

各 glyph node の yoffsetの値は

(i) OpenTypeの vpal, vhal機能によるグリフ高さの補正（狭める方向が正）
(ii) OpenTypeの vkrn, vapk機能によって入るカーニング（詰める方向が正）

(iii) その他

の 3種類に分かれる．例えば，(2)における 1つ目のノード「ア」の yoffsetの値は

(i) 0.6 pt (ii) 0.7 pt（「ア」「イ」間のカーニング） (iii)上に 0.1 ptずらす（vpal機能由来）

の和である．LuaTEX-jaは (i), (ii)の補正量を認識し，正しい位置になるように調整する．

■「右空白」の算出 次に，「右空白」にあたる量を算出する．通常はこれが，隣り合った 2 つの
JAchar間に入る空白量となる．

JFM由来 [M] JFM の文字クラス指定によって入る空白を以下によって求める．この段階で空白量が
未定義（未指定）だった場合，デフォルト値 �kanjiskip � を採用することとなるので，次へ．

93

1. もし両クラスタの間で \inhibitglue が実行されていた場合（証として whatsit ノードが自
動挿入される），代わりに �kanjiskip� が挿入されることとなる．次へ．

2. Nq と Np が同じ JFM・同じ jfmvarキー・同じサイズの和文フォントであったならば，共通
に使っている JFM内で挿入される空白（グルーかカーン）が決まっているか調べ，決まって
いればそれを採用．

3. 1.でも 2.でもない場合は，JFM・jfmvar・サイズの 3つ組は Nq と Np で異なる．この場合，
まず

𝑔𝑏 := (Nq と「使用フォントが Nq のそれと同じで，
文字コードが Np のそれの文字」との間に入るグルー／カーン)

𝑔𝑎 := (「使用フォントが Np のそれと同じで，
文字コードが Nq のそれの文字」と Np との間に入るグルー／カーン)

として，前側の文字の JFM を使った時の空白（グルー／カーン）と，後側の文字の JFM を
使った時のそれを求める．
gb, gaそれぞれに対する 〈ratio〉 の値を 𝑑𝑏 , 𝑑𝑎 とする．

• gaと gbの両方が未定義であるならば，JFM由来のグルーは挿入されず，�kanjiskip � を採
用することとなる．どちらか片方のみが未定義であるならば，次のステップでその未定
義の方は長さ 0の kernで，〈ratio〉 の値は 0であるかのように扱われる．

• �diffrentjfm� の値が pleft, pright, paverageのとき，〈ratio〉 の指定に従って比例配分を行
う．JFM由来のグルー／カーンは以下の値となる：

𝑓

(
1 − 𝑑𝑏
2

gb + 1 + 𝑑𝑏
2

ga,
1 − 𝑑𝑎
2

gb + 1 + 𝑑𝑎
2

ga
)

ここで．𝑓 (𝑥,𝑦) は

𝑓 (𝑥,𝑦) =


𝑥 (diffrentjfm = pleft),
𝑦 (diffrentjfm = pright),
𝑥 + 𝑦
2

(diffrentjfm = paverage).

• �differentjfm� がそれ以外の値の時は，〈ratio〉 の値は無視され，JFM 由来のグルー／カー
ンは以下の値となる：

𝑓 (gb, ga)

ここで．𝑓 (𝑥,𝑦) は

𝑓 (𝑥,𝑦) =


min(𝑥,𝑦) (diffrentjfm = small),
max(𝑥,𝑦) (diffrentjfm = large),
𝑥 + 𝑦
2

(diffrentjfm = average),

𝑥 + 𝑦 (diffrentjfm = both).

例えば，

\jfont\foo=psft:Ryumin-Light:jfm=ujis;-kern

\jfont\bar=psft:GothicBBB-Medium:jfm=ujis;-kern

\jfont\baz=psft:GothicBBB-Medium:jfm=ujis;jfmvar=piyo;-kern

94

という 3フォントを考え，

𝑝︷ ︸︸ ︷
glyph

\foo, ‘あ’ −→

𝑞︷ ︸︸ ︷
glyph

\bar, ‘い’ −→

𝑟︷ ︸︸ ︷
glyph

\baz, ‘う’

という 3 ノードを考える（それぞれ単独でクラスタをなす）．この場合，𝑝 と 𝑞 の間は，実フォ
ントが異なるにもかかわらず 2. の状況となる一方で，𝑞 と 𝑟 の間は（実フォントが同じなのに）
jfmvarキーの内容が異なるので 3.の状況となる．
なお，JFMで kanjiskip natural, kanjiskip stretch, kanjiskip shrinkキーが指定されていた
場合は，……

�kanjiskip� [K] 上の [M]において空白が定まらなかった場合，以下で定めた量「右空白」として採用
する．この段階においては，\inhibitglue は効力を持たないため，結果として，2 つの JAchar
間には常に何らかのグルー／カーンが挿入されることとなる．

1. 両クラスタ（厳密には Nq.tail，Np.head）の中身の文字コードに対する �autospacing � パラ
メータが両方とも falseだった場合は，長さ 0の glueとする．

2. ユーザ側から見た �kanjiskip � パラメータの自然長が \maxdimen = (230 − 1) sp でなければ，
�kanjiskip � パラメータの値を持つ glueを採用する．

3. 2.でない場合は，Nq, Np で使われている JFMに指定されている �kanjiskip� の値を用いる．ど
ちらか片方のクラスタだけが JAchar（和文 A・和文 B）のときは，そちらのクラスタで使わ
れている JFM 由来の値だけを用いる．もし両者で使われている JFM が異なった場合は，上
の [M] 3.と同様の方法を用いて調整する．

■禁則用ペナルティの挿入 まず，

𝑎 := (Nq*47の文字に対する �postbreakpenalty � の値) + (Np*48の文字に対する �prebreakpenalty � の値)

とおく．ペナルティは通常 [−10000, 10000] の整数値をとり，また ±10000は正負の無限大を意味する
ことになっているが，この 𝑎 の算出では単純な整数の加減算を行う．
𝑎 は禁則処理用に Nq と Np の間に加えられるべきペナルティ量である．

P-normal [PN] Nq と Np の間の (a) 部分にペナルティ (penalty node) があれば処理は簡単である：
それらの各ノードにおいて，ペナルティ値を（±10000を無限大として扱いつつ）𝑎 だけ増加させ
ればよい．また，10000 + (−10000) = 0としている．
少々困るのは，(a)部分にペナルティが存在していない場合である．直感的に，補正すべき量 𝑎 が
0 でないとき，その値をもつ penalty node を作って「右空白」の（もし未定義なら Np の）直前
に挿入……ということになるが，実際には僅かにこれより複雑である．

•「右空白」がカーンであるとき，それは「Nq と Np の間で改行は許されない」ことを意図し
ている．そのため，この場合は 𝑎 ≠ 0であってもペナルティの挿入はしない．

• そうでないないときは，𝑎 ≠ 0ならば penalty node を作って挿入する．

*48 厳密にはそれぞれ Nq.tail，Np.head．

95

表 19. JFMグルーの概要

Np ↓ 和文 A 和文 B 欧文 箱 glue kern

和文 A
M→ K

PN

OA → K

PN

NA → X

PN

OA

PA

OA

PN

OA

PS

和文 B
OB → K

PA

K

PS

X

PS

欧文 NB → X

PA

X

PS

箱 OB

PA

glue
OB

PN

kern
OB

PS

上の表において， M→ K

PN
は次の意味である：

1.「右空白」を決めるために，LuaTEX-jaはまず「JFM由来 [M]」の方法を試みる．これが失敗
したら，LuaTEX-jaは「 �kanjiskip� [K]」の方法を試みる．

2. LuaTEX-ja は 2 つのクラスタの間の禁則処理用のペナルティを設定するために「P-

normal [PN]」の方法を採用する．

16.5 その他の場合

本節の内容は表 19 �� にまとめてある．

■和文 A と欧文の間 Nq が和文 A で，Np が欧文の場合，JFM グルー挿入処理は次のようにして行
われる．

•「右空白」については，まず以下に述べる欧文境界 B [NB]により空白を決定しようと試みる．そ
れが失敗した場合は，�xkanjiskip� [X]によって定める．

• 禁則用ペナルティも，以前述べた P-normal [PN]と同じである．

欧文境界 B [NB] 以下で求めた量を「右空白」として採用する．この処理は JFM-origin [M] の変種と
考えて良く，典型例は「和文の閉じ括弧と欧文文字の間に入る半角アキ」である．

1. もし両クラスタの間で \inhibitglue が実行されていた場合（証として whatsit ノードが自
動挿入される），未定義．

2. そうでなければ，Nq と「文字コードが 𝑥 の文字」との間に入るグルー／カーンとする．こ
の 𝑥 は次の場合分けによる：

• Np.id が id math のとき（つまりクラスタ Np が文中数式を表す）ときは，𝑥 = −1．
• Np の中身の中身の文字コードについて，「直前への �xkanjiskip � の挿入」が禁止されてい
る（つまり， �jaxspmode� (or �alxspmode �)パラメータが偶数）ときは，𝑥 = 'nox alchar'．

96

• 以上のいずれでもないときは，𝑥 = 'alchar'．
�xkanjiskip � [X] この段階では，�kanjiskip � [K]のときと同じように，以下で定めた量を「右空白」とし

て採用する．\inhibitglueは効力を持たない．
1. 以下のいずれかの場合は， �xkanjiskip� の挿入は抑止される．しかし，実際には行分割を許容
するために，長さ 0の glueを採用する：

• 両クラスタにおいて，それらの中身の文字コードに対する �autoxspacing � パラメータが共
に falseである．

• Nq の中身の文字コードについて，「直後への �xkanjiskip � の挿入」が禁止されている（つ
まり， �jaxspmode� (or �alxspmode �)パラメータが 2以上）．

• Np の中身の文字コードについて，「直前への �xkanjiskip� の挿入」が禁止されている（つ
まり， �jaxspmode� (or �alxspmode �)パラメータが偶数）．

2. ユーザ側から見た �xkanjiskip� パラメータの自然長が \maxdimen = (230 − 1) sp でなければ，
�xkanjiskip � パラメータの値を持つ glueを採用する．

3. 2.でない場合は，Nq, Np（和文 A/和文 Bなのは片方だけ）で使われている JFMに指定され
ている �xkanjiskip� の値を用いる．

■欧文と和文 A の間 Nq が欧文で，Np が和文 A の場合，JFM グルー挿入処理は上の場合とほぼ同
じである．和文 Aのクラスタが逆になるので，欧文境界 B [NB]の部分が変わるだけである．

•「右空白」については，まず以下に述べる欧文境界 A [OA]により空白を決定しようと試みる．そ
れが失敗した場合は，�xkanjiskip� [X]によって定める．

• 禁則用ペナルティは，以前述べた P-normal [PN]と同じである．

欧文境界 A [NA] これは欧文境界 B [NB]で Np と Nq の役割が交換されたものと思えば良い．この処
理で定まる空白の典型例は，欧文文字と和文の開き括弧との間に入る半角アキである．

1. もし両クラスタの間で \inhibitglue が実行されていた場合（証として whatsit ノードが自
動挿入される），未定義．

2. そうでなければ，「文字コードが 𝑥 の文字」と Np との間に入るグルー／カーンと定める．𝑥 は
Nq から欧文境界 B [NB]におけるそれと同じ方法で定めるが，'nox alchar'か'alchar'は

Nq の中身の文字コードについて，「直後への �xkanjiskip � の挿入」が禁止されている（つ
まり， �jaxspmode� (or �alxspmode �)パラメータが 2以上）．

か否かで判断する．

■和文 A と箱・グルー・カーンの間 Nq が和文 A で，Np が箱・グルー・カーンのいずれかであっ
た場合，両者の間に挿入される JFMグルーについては同じ処理である．しかし，そこでの行分割に対
する仕様が異なるので，ペナルティの挿入処理は若干異なったものとなっている．

•「右空白」については，以下に述べる Boundary-B [OB]により空白を決定しようと試みる．それが
失敗した場合は，「右空白」は挿入されない．

• 禁則用ペナルティの処理は，後ろのクラスタ Np の種類によって異なる．なお，Np.head は無意
味であるから，「Np.head に対する �prebreakpenalty� の値」は 0とみなされる．言い換えれば，

𝑎 := (Nq の文字に対する �postbreakpenalty � の値).
97

箱 Np が箱であった場合は，両クラスタの間での行分割は（明示的に両クラスタの間に
\penalty10000 があった場合を除き）いつも許容される．そのため，ペナルティ処理は，
後に述べる P-allow [PA]が P-normal [PN]の代わりに用いられる．

グルー Np がグルーの場合，ペナルティ処理は P-normal [PN]を用いる．
カーン Npがカーンであった場合は，両クラスタの間での行分割は（明示的に両クラスタの間にペ
ナルティがあった場合を除き）許容されない．ペナルティ処理は，後に述べる P-suppress [PS]

を使う．
これらの P-normal [PN]，P-allow [PA]，P-suppress [PS]の違いは，Nq と Np の間（以前の図だと
(a)の部分）にペナルティが存在しない場合にのみ存在する．

Boundary-B [OB] この処理は欧文境界 B [NB] と同様であり，𝑥 が次によって決まることのみが異
なる：

• Np がグルーやカーンのときは，𝑥 = 'glue'．
• そうでない（Np が箱）ときは，𝑥 = 'jcharbdd'．

P-allow [PA] Nq と Np の間の (a)部分にペナルティがあれば，P-normal [PN]と同様に，それらの各
ノードにおいてペナルティ値を 𝑎 だけ増加させる．
(a)部分にペナルティが存在していない場合，LuaTEX-ja は Nq と Np の間の行分割を可能にしよ
うとする．そのために，以下のいずれかの場合に 𝑎 をもつ penalty node を作って「右空白」の
（もし未定義なら Np の）直前に挿入する：

•「右空白」がグルーでない（カーンか未定義）であるとき．
• 𝑎 ≠ 0のときは，「右空白」がグルーであっても penalty node を作る．

P-suppress [PS] Nq と Np の間の (a) 部分にペナルティがあれば，P-normal [PN] と同様に，それら
の各ノードにおいてペナルティ値を 𝑎 だけ増加させる．
(a) 部分にペナルティが存在していない場合，Nq と Np の間の行分割は元々不可能のはずだった
のであるが，LuaTEX-jaはそれをわざわざ行分割可能にはしない．そのため，「右空白」が glueで
あれば，その直前に \penalty10000を挿入する．

■箱・グルー・カーンと和文 A の間 Np が箱・グルー・カーンのいずれかで，Np が和文 A であっ
た場合は，すぐ上の（Nq と Np の順序が逆になっている）場合と同じである．

•「右空白」については，以下に述べる Boundary-A [OA]により空白を決定しようと試みる．それが
失敗した場合は，「右空白」は挿入されない．

• 禁則用ペナルティの処理は，Nq の種類によって異なる．Nq.tail は無意味なので，

𝑎 := (Np の文字に対する �prebreakpenalty � の値).

箱 Nq が箱の場合は，P-allow [PA]を用いる．
グルー Nq がグルーの場合は，P-normal [PN]を用いる．
カーン Nq がカーンの場合は，P-suppress [PS]を用いる．

Boundary-A [OA] この処理は欧文境界 A [NA] と同様であり，𝑥 が次によって決まることのみが異
なる：

• Nq がグルーやカーンのときは，𝑥 = 'glue'．
• そうでない（Nq が箱）ときは，𝑥 = 'jcharbdd'．

98

■和文 Aと和文 Bの違い 先に述べたように，和文 Bは hboxの中身の先頭（or 末尾）として出現
している JAcharである．リスト内に直接ノードとして現れている JAchar（和文 A）との違いは，

• 和文 B に対しては，JFM の文字クラス指定から定まる空白（JFM 由来 [M]，Boundary-A [OA] な
ど）の挿入は行われない．例えば，
– 片方が和文 A，もう片方が和文 Bのクラスタの場合，Boundary-A [OA]または Boundary-B [OB]

の挿入を試み，それがダメなら �kanjiskip� [K]の挿入を行う．
– 和文 Bの 2つのクラスタの間には， �kanjiskip � [K]が自動的に入る．

• 和文 Bと箱・グルー・カーンが隣接したとき（どちらが前かは関係ない），間に JFMグルー・ペ
ナルティの挿入は一切しない．

• 和文 B と和文 B，また和文 B と欧文とが隣接した時は，禁則用ペナルティ挿入処理は P-

suppress [PS]が用いられる．
• 和文 Bの文字に対する �prebreakpenalty�, �postbreakpenalty � の値は使われず，0として計算される．

次が具体例である：

 あ．\inhibitglue A\\

 \hbox{あ．}A\\

 あ．A

あ．A
あ．A
あ．A

• 1 行目の \inhibitglueは欧文境界 B [NB] の処理のみを抑止するので，ピリオドと「A」の間に
は �xkanjiskip�（四分アキ）が入ることに注意．

• 2行目のピリオドと「A」の間においては，前者が和文 Bとなる（hboxの中身の末尾として登場
しているから）ので，そもそも欧文境界 B [NB]の処理は行われない．よって， �xkanjiskip � が入る
こととなる．

• 3 行目では，ピリオドの属するクラスタは和文 A である．これによって，ピリオドと「A」の間
には欧文境界 B [NB]由来の半角アキが入ることになる．

17 ベースライン補正の方法

17.1 yoffsetフィールド

�yalbaselineshift� 等のベースライン補正は，基本的には対象となっている glyph node の yoffset

フィールドの値を増減することによって実装されている．なお，yoffset の値は上方向への移動量で
あるのに対し，�yalbaselineshift� などは下方向への移動量である．
さて，yoffset の増減によって見かけのグリフ位置は上下に移動するが，仮想ボディの高さ ℎ，深

さ 𝑑 については

yoffset ≥ 0のとき ℎ = max(height+ yoffset, 0), 𝑑 = max(depth− yoffset, 0),
yoffset < 0のとき ℎ = max(height+ yoffset, 0), 𝑑 = depth.

という仕様になっている．つまり，yoffsetが負（グリフを下ける）の場合に深さは増加しない（表 20 ��

参照）．

99

表 20. yoffset and imaginary body

yoffset 10 pt 5 pt 0 −5 pt −10 pt

仮想ボディ
y

,
H y, H y, H y, H y, H

17.2 ALcharの補正

上記の問題について，ALchar のベースライン補正では「正しい深さ」を持った罫線 (rule) を補う
という対応策をとった．この罫線による補正は，id が id glyph であるクラスタ単位，大雑把に言え
ば音節単位で行われる．文字列 “Typeset”を

• フォントは Latin Modern Roman (lmroman10-regular.otf) 10 pt
• �yalbaselineshift� は 5 pt

という状況で組んだ場合を例にとって説明しよう．
LuaTEX・luaotfloadによるカーニング・ハイフネーションが終わった段階では，……

18 listingsパッケージへの対応
listingsパッケージが，そのままでは日本語をまともに出力できないことはよく知られている．きち

んと整形して出力するために，listingsパッケージは内部で「ほとんどの文字」をアクティブにし，各
文字に対してその文字の出力命令を割り当てている ([2])．しかし，そこでアクティブにする文字の中
に，和文文字がないためである．pTEX系列では，和文文字をアクティブにする手法がなく，jlisting.sty
というパッチ ([4])を用いることで無理やり解決していた．

LuaTEX-jaでは，process_input_bufferコールバックを利用することで，「各行に出現する U+0080

以降の文字に対して，それらの出力命令を前置する」という方法をとっている．出力命令としては，
アクティブ文字化した \ltjlineendcommentを用いている．これにより，（入力には使用されていない
かもしれない）和文文字をもすべてアクティブ化する手間もなく，見通しが良い実装になっている．

LuaTEX-jaで利用される listingsパッケージへのパッチ lltjp-listingsは，listingsと LuaTEX-jaを読み
込んでおけば，\begin{document} の箇所において自動的に読み込まれるので，通常はあまり意識す
る必要はない．

18.1 注意

■異体字セレクタの扱い lstlisting環境などの内部にある異体字セレクタを扱うため，lltjp-listings
では vsraw と vscmd という 2つのキーを追加した．しかし，lltjp-listings が実際に読み込まれるのは
\begin{document}のところであるので，プリアンブル内ではこれらの追加キーは使用できない．
vsrawは，ブール値の値をとるキーであり，標準では falseである．

• trueの場合は，異体字セレクタは「直前の文字に続けて」出力されるため，例えば以下の例（左
側は入力，右側はその出力）のようになる．

100

 \begin{lstlisting}[vsraw=true]

 葛0E0
100城市，葛0E0

101飾区，葛西
 \end{lstlisting}

 葛城市，葛飾区，葛西

• falseの場合は，異体字セレクタは適当な命令によって「見える形で」出力される．どのような形
で出力されるかを規定するのが vscmd キーであり，lltjp-listings の標準設定では以下の例の右側
のように出力される．

 \begin{lstlisting}[vsraw=false,

 vscmd=\ltjlistingsvsstdcmd]

 葛0E0
100城市，葛0E0

101飾区，葛西
 \end{lstlisting}

 葛 VS
17城市，葛 VS

18飾区，葛西

ちなみに，本ドキュメントでは次のようにしている：

 \def\IVSA#1#2#3#4#5{%

 \hbox to1em{\hss\textcolor{blue}{\raisebox{3.5pt}{\normalfont\ttfamily%

 \fboxsep=0.5pt\fbox{\hbox to0.75em{\hss\tiny \oalign{0#1#2\crcr#3#4#5\crcr}\hss}}}}\hss}%

 }

 {\catcode`\%=11

 \gdef\IVSB#1{\expandafter\IVSA\directlua{

 local cat_str = luatexbase.catcodetables['string']

 tex.sprint(cat_str, string.format('%X', 0xE00EF+#1))

 }}}

 \lstset{vscmd=\IVSB}

既定の出力命令を復活させたい場合は vscmd=\ltjlistingsvsstdcmdとすれば良い．

■doubleletterspaceキー listingsパッケージで列揃えが [c]fixed となっている場合でも，場合に
よっては文字が縦に揃わない場合もある．例を以下に示そう．これは強調するために basewidth=2em

を設定している．

 : H :

 : H H H H :

1行目と 2行目の「H」の位置が揃っていないが，これは出力単位ごとに，先頭・末尾・各文字間に同
じ量の空白を挿入することによる．
lltjp-listingでは，このような症状を改善させるために doubleletterspaceキーを追加した（標準で

は互換性のために無効になっている）．このキーを有効にすると，出力単位中の各文字間の空白を 2
倍にすることで文字を揃いやすくしている．上と同じものを doubleletterspaceキーを有効にして組
んだものが以下であり，きちんと「H」の位置が揃っていることが分かる．

 : H :

 : H H H H :

18.2 文字種

listingsパッケージの内部では，大雑把に言うと

1. 識別子として使える文字 (“letter”, “digit”)たちを集める．
101

2. letterでも digitでもない文字が現れた時に，収集した文字列を（必要なら修飾して）出力する．
3. 今度は逆に，letterでない文字たちを letterが現れるまで集める．
4. letterが出現したら集めた文字列を出力する．
5. 1.に戻る．

という処理が行われている．これにより，識別子の途中では行分割が行われないようになっている．
直前の文字が識別子として使えるか否かは \lst@ifletterというフラグに格納されている．
さて，日本語の処理である．殆どの和文文字の前後では行分割が可能であるが，その一方で括弧類

や音引きなどでは禁則処理が必要なことから，lltjp-listingsでは，直前が和文文字であるかを示すフラ
グ \lst@ifkanjiを新たに導入した．以降，説明のために以下のように文字を分類する：

Letter Other Kanji Open Close

\lst@ifletter T F T F T
\lst@ifkanji F F T T F
意図 識別子中の文字 その他欧文文字 殆どの和文文字 開き括弧類 閉じ括弧類

なお，本来の listingsパッケージでの分類 “digit”は，出現状況によって，上の表の Letterと Otherの
どちらにもなりうる．また，Kanji と Close は \lst@ifletter と \lst@ifkanji の値が一致している
が，これは間違いではない．
例えば，Letter の直後に Open が来た場合を考える．文字種 Open は和文開き括弧類を想定してい

るので，Letter の直後では行分割が可能であることが望ましい．そのため，この場合では，すでに収
集されている文字列を出力することで行分割を許容するようにした．
同じように，5 × 5 = 25通り全てについて書くと，次のようになる：

後側文字種

Letter Other Kanji Open Close

直 Letter 収集 出力 収集
前 Other 出力 収集 出力 収集
文 Kanji 出力 収集
字 Open 収集
種 Close 出力 収集

上の表において，

•「出力」は，それまでに集めた文字列を出力（≒ここで行分割可能）を意味する．
•「収集」は，後側の文字を，現在収集された文字列に追加（行分割不可）を意味する．

U+0080以降の異体字セレクタ以外の各文字が Letter, Other, Kanji, Open, Closeのどれに属するかは
次によって決まる：

•（U+0080以降の）ALcharは，すべて Letter扱いである．
• JAcharについては，以下の順序に従って文字種を決める：

1. �prebreakpenalty� が 0以上の文字は Open扱いである．
2. �postbreakpenalty � が 0以上の文字は Close扱いである．
3. 上の 3条件のどちらにも当てはまらなかった文字は，Kanji扱いである．

102

なお，半角カナ (U+FF61–U+FF9F) 以外の JAchar は欧文文字 2 文字分の幅をとるものとみなされ
る．半角カナは欧文文字 1文字分の幅となる．
これらの文字種決定は，実際に lstlisting環境などの内部で文字が出てくるたびに行われる．

19 和文の行長補正方法
luatexja-adjustで提供される優先順位付きの行長調整の詳細を大まかに述べると，次のようになる．

•（lineend=extendedの場合）JAglueの挿入処理のところで，……
• 通常の TEX の行分割方法に従って，段落を行分割する．この段階では，行長に半端が出た場合，
その半端分は JAglue（ �xkanjiskip�， �kanjiskip�，JFM グルー）とそれ以外のグルーの全てで（優先
順位なく）負担される．

• その後，post linebreak filter callback を使い，段落中の各行ごとに，行末文字の位置を調整
（lineend=true の場合）したり，優先度付きの行長調整を実現するためにグルーの伸縮度を調整
する．その処理においては，グルーの自然長と JAglue 以外のグルーの伸び量・縮み量は変更せ
ず，必要に応じて JAglueの伸び量・縮み量のみを変更する設計とした．

この章の残りでは各処理について解説する．

■準備：合計伸縮量の計算 グルーの伸縮度（plusや minusで指定されている値）には，有限値の他
に，fi，fil，fill，filll という 4 つの無限大レベル（後ろの方ほど大きい）がある．行の調整に
fiなどの無限大レベルの伸縮度が用いられている行では，「行末文字の位置調整」のみ行い，「グルー
の調整」は行わない．
まず，段落中の行中のグルーを

• JAglueではないグルー
• JFMグルー（優先度*49別にまとめられる）
• 和欧文間空白 (�xkanjiskip�)
• 和文間空白 (�kanjiskip �)

の 1 + 1 + 8 + 1 = 10つに類別する．そして許容されている伸び量（stretchの値）の合計を無限のレ
ベルごとに

𝑇 +
𝑙
:=

∑︁
stretch order(𝑝) = 𝑙

stretch(𝑝), 𝑙 ∈ {(finite), fi, fil, fill, filll}

と計算する．さらに，

𝑇 + := 𝑇 +𝐿+, 𝐿+ = max{𝑙 ∈ {(finite), fi, fil, fill, filll} : 𝑇 +
𝑙
≠ 0}

とおく．有限の伸び量については，上記の 8 種類の類別ごとにも合計を計算する．さらに縮み量
（shrinkの値）についても同様の処理を行い，𝑇 − を計算する．
また，行長から自然長を引いた値を total とおく．

*49 8.5 節にあるように，各 JFM グルーには −4 から 3 までの優先度がついている．場合によっては伸びと縮みで異なる優
先度が付いているかもしれない．

103

19.1 行末文字の位置調整（行分割後の場合）

行末が JAcharであり，この文字の属する文字クラスでは

end adjust = {𝑎1, 𝑎2, ..., 𝑎𝑛}

であったとする．このとき，以下の条件を満たした場合，この文字クラスに対する end adjust の値
のいずれかだけこの文字の位置を移動させる．

最終行以外 行長調整に無限大の伸縮度が用いられていない．すなわち，total > 0ならば 𝐿+ = (finite)
であり，total > 0ならば 𝐿− = (finite) である．

最終行 行長調整に無限大に伸び縮みするグルーが用いられたなら，それは \parfillskip のみであ
り，かつ，次の不等式が成立する：

min{0, 𝑎1}\zw ≤ (\parfillskipの実際の長さ) ≤ max{0, 𝑎𝑛}\zw

各 1 ≤ 𝑖 ≤ 𝑛 に対して，「行末に 𝑎𝑖 全角だけのカーンを追加した時の，glue set の値」を 𝑏𝑖 とおく．
式で書くと，

𝑏𝑖 =


|total − 𝑎𝑖\zw|

𝑇 +
(total − 𝑎𝑖\zw ≥ 0),

|total − 𝑎𝑖\zw|
𝑇 −

(total − 𝑎𝑖\zw < 0).

𝑏𝑖 達の最小値を与えるような 𝑖 を 𝑗 としたとき*50，行末に大きさ 𝑎 𝑗 のカーンを追加する．total から
𝑎 𝑗 全角の大きさだけ引いておく．

19.2 行末文字の位置調整（行分割での考慮）

lineend=extendedが指定されている場合，TEX による行分割が行われる前に各 JAchar の直後に，
その文字が行末に来たときの位置補正用のノードを挿入していく．

16 章の用語を使って述べる．前側のクラスタ Nq が「和文 A」「和文 B」であり，JFM によって
end adjustの値が

end adjust = {𝑎1, 𝑎2, ..., 𝑎𝑛}

であったとする．このとき，次のクラスタ Np の直前に以下のノード列を挿入する．JAglueの挿入過
程で禁則処理のために「Nq と Np の間のペナルティ値を増やす」ことが行われることがあるが，以
下で述べられている (𝑛 + 1) 個のペナルティはみなその処理対象になっている．

kern
𝑎1\zw

−→ penalty
0

−→ kern
(𝑎2 − 𝑎1)\zw −→

penalty
0

−→ kern
(𝑎3 − 𝑎2)\zw

−→ · · · −→ penalty
0

−→ kern
(𝑎𝑛 − 𝑎𝑛−1)\zw −→

penalty
0

−→ kern
−𝑎𝑛\zw −→

penalty
10000

𝑛 個あるペナルティの箇所が改行可能箇所である．いずれかで改行された場合は，その前にあるカー
ン（𝑛 箇所のうちどこで改行しても，合計の長さは 𝑎𝑖 の形）は行末に残るが，後ろのペナルティ・

*50 そのような 𝑖 が 2つ以上あるときは， |total − 𝑎𝑖 · \zw| , |𝑎𝑖 | , 𝑎𝑖 の順で比較して一番小さくなるものが選ばれる．

104

カーンは除去される．なお，𝑎1 = 0のときは最初の幅が 𝑎1\zwのカーンは不要なので挿入されず，さ
らにかつ 𝑛 = 1であった場合は後ろのペナルティも挿入されない．
なお，段落の末尾には \penalty10000と \parfillskip由来のグルーが自動的に入るが，これらと

の兼ね合いのため最後のクラスタについては上記のノード挿入処理は行われない．段落最終行の行末
文字の位置調整は，すでに述べた「行分割後の場合」における最終行の処理を流用しているが，その
ままでは「段落末尾をぶら下げ組 (𝑎1 = −0.5)にする」ことができない*51ため，

• 段落末尾の \penalty10000\parfillskipの直前に，𝑎1\zwのカーンを挿入する
• 行分割後，行末文字の位置調整を行う前に，そのカーンを削除する

という前処理を追加している．

19.3 グルーの調整

|total| の分だけが，行中のグルーの伸び量，あるいは縮み量に応じて負担されることになる．以
下，total ≥ 0であると仮定して話を進めるが，負のときも同様である．luatexja-adjustの初期値では
以下の順に伸び量を負担するようになっており，（優先度 −4 の JFM グルーは例外として）できるだ
け �kanjiskip� を自然長のままにすることを試みている．この順番は �stretch priority �（縮み量については
�shrink priority �）パラメータで変更可能である．

(A) JAglue以外のグルー
(B) 優先度 3の JFMグルー
(C) 優先度 2の JFMグルー
(D) 優先度 1の JFMグルー
(E) 優先度 0の JFMグルー
(F) 優先度 −1の JFMグルー
(G) 優先度 −2の JFMグルー
(H) �xkanjiskip�

(I) 優先度 −3の JFMグルー
(J) �kanjiskip�

(K) 優先度 −4の JFMグルー

1. 行末の JAchar を移動したことで total = 0 となれば，調整の必要はなく，行が格納されている
hboxの glue set, glue sign, glue orderを再計算すればよい．以降，total ≠ 0と仮定する．

2. total が「JAglue以外のグルーの伸び量の合計」（以下，(A)の伸び量の合計，と称す）よりも小さ
ければ，それらのグルーに total を負担させ，JAglue達自身は自然長で組むことができる．よっ
て，以下の処理を行う：
(1) 各 JAglueの伸び量を 0とする．
(2) 行が格納されている hboxの glue set, glue sign, glue orderを再計算する．これによって，

total は JAglue以外のグルーによって負担される．

*51 通常時は \parfillskipの内容は 0pt plus 1filであるため，負の長さになることはない．これに伴って，「段落末尾は
ぶら下げ組が望ましい」状況であっても，実際には末尾の句点（とその前の数文字）がまとめて次の行に追い出されて
しまう．

105

3. total が「(A)の伸び量の合計」以上ならば，(A)–(K)のどこまで負担すれば total 以上になるかを
計算する．例えば，

total = ((A)–(B)の伸び量の合計) + 𝑝 · ((C)の伸び量の合計), 0 ≤ 𝑝 < 1

であった場合，各グルーは次のように組まれる：
• (A), (B)に属するグルーは各グルーで許された伸び量まで伸ばす．
• (C)に属するグルーはそれぞれ 𝑝 × (伸び量) だけ伸びる．
• (D)–(K)に属するグルーは自然長のまま．

実際には，前に述べた「設計」に従い，次のように処理している：
(1) (C)に属するグルーの伸び量を 𝑝 倍する．
(2) (D)–(K)に属するグルーの伸び量を 0とする．
(3) 行が格納されている hboxの glue set, glue sign, glue orderを再計算する．これによって，

total は JAglue以外のグルーによって負担される．
4. total が (A)–(K)の伸び量の合計よりも大きい場合，どうしようもないので^^;何もしない．

20 複数フォントの「合成」（未完）

21 LuaTEX-jaにおけるキャッシュ
luaotfload パッケージが，各 TrueType・OpenType フォントの情報をキャッシュとして保存してい

るのと同様の方法で，LuaTEX-jaもいくつかのキャッシュファイルを作成するようになった．

• 通常，キャッシュは $TEXMFVAR/luatexja/以下に保存され，そこから読み込みが行われる．
•「通常の」テキスト形式のキャッシュ（拡張子は .lua.gz，gzip圧縮されているため）以外にも，
それをバイナリ形式（バイトコード）に変換したものもサポートしている．
– キャッシュを読み込む時，同名のバイナリキャッシュがあれば，テキスト形式のものよりそ
ちらを優先して読み込む．

– テキスト形式のキャッシュが更新/作成される際は，そのバイナリ版も同時に更新される．ま
た，（バイナリ版が見つからず）テキスト形式のキャッシュ側が読み込まれたときは，LuaTEX-
ja はバイナリキャッシュを作成する．未圧縮のテキスト形式のキャッシュ (hoge.lua) は
20200802.0以降では利用しない．

21.1 キャッシュの使用箇所

LuaTEX-jaでは以下のキャッシュを使用している：

ltj-cid-auto-adobe-japan1.{lua.gz,luc}

Ryumin-Lightのような非埋め込みフォントの情報を格納しており，（それらが LuaTEX-jaの標準
和文フォントなので）LuaTEX-ja の読み込み時に自動で読まれる．生成には UniJIS2004-UTF32-

{H,V}, Adobe-Japan1-UCS2という 3つの CMapが必要である．
39ページで述べたように，cidキーを使って非埋め込みの中国語・韓国語フォントを定義する場
合，同様のキャッシュが生成される．キャッシュの名称，必要となる CMap については表 21 �� を

106

表 21. cid key and corresponding files

cid key name of the cache used CMaps

Adobe-Japan1-* ltj-cid-auto-adobe-japan1.{lua.gz,luc} UniJIS2004-UTF32-* Adobe-Japan1-UCS2

Adobe-Korea1-* ltj-cid-auto-adobe-korea1.{lua.gz,luc} UniKS-UTF32-* Adobe-Korea1-UCS2

Adobe-KR-* ltj-cid-auto-adobe-kr.{lua.gz,luc} UniAKR-UTF32-* Adobe-KR-UCS2

Adobe-GB1-* ltj-cid-auto-adobe-gb1.{lua.gz,luc} UniGB-UTF32-* Adobe-GB1-UCS2

Adobe-CNS1-* ltj-cid-auto-adobe-cns1.{lua.gz,luc} UniCNS-UTF32-* Adobe-CNS1-UCS2

参照して欲しい．
ltj-kinsoku default.{lua.gz,luc}

禁則処理，�kansujichar � などの標準設定が格納されたファイルである．
ltj-jisx0208.luc

LuaTEX-ja 配布中の ltj-jisx0208.luaをバイトコード化したものである．これは JIS X 0208 と
Unicodeとの変換テーブルであり，pTEXとの互換目的の文字コード変換命令で用いられる．

ltj-ivd aj1.luc

LuaTEX-ja配布中の ltj-ivd aj1.luaをバイトコード化したものである．これは Unicodeの漢字
異体字データベースの Adobe-Japan1コレクションの内容を格納したテーブルであり，luatexja-otf
パッケージの \CID命令で使われることがある．

extra ***.{lua.gz,luc}

フォント “***”における，グリフ番号から Unicode値への変換テーブル，縦組時のグリフ回転の
有無を格納したテーブル，及び縦組時におけるグリフの原点位置・高さのテーブルを格納して
いる．

21.2 内部命令

LuaTEX-ja におけるキャッシュ管理は，luatexja.base (ltj-base.lua) に実装しており，以下の関
数が公開されている．ここで，〈filename〉 は保存するキャッシュのファイル名を拡張子なしで指定
する．

save cache(〈filename〉, 〈data〉)
nil でない 〈data〉 をキャッシュ 〈filename〉 に保存する．テキスト形式の 〈filename〉.lua.gz*52の
みならず，そのバイナリ形式も作成・更新される．

save cache luc(〈filename〉, 〈data〉[, 〈serialized data〉])
save cacheと同様だが，バイナリキャッシュのみが更新される．第 3引数 〈serialized data〉 が与
えられた場合，それを 〈data〉 の文字列化表現として使用する．そのため，〈serialized data〉 は普
通は指定しないことになるだろう．

load cache(〈filename〉, 〈outdate〉)
キャッシュ 〈filename〉 を読み込む．〈outdate〉 は 1引数（キャッシュの中身）をとる関数であり，
その戻り値は「キャッシュの更新が必要」かどうかを示すブール値でないといけない．

*52 拡張子からわかる通り，実際には gzip圧縮される．

107

load cacheは，まずバイナリキャッシュ 〈filename〉.lucを読みこむ．もしその内容が「新しい」，
つまり 〈outdate〉 の評価結果が false なら load cacheはこのバイナリキャッシュの中身を返す．
もしバイナリキャッシュが見つからなかったか，「古すぎる」ならば（gzip 圧縮された）テキス
ト形式の 〈filename〉.lua.gzを読み込み，〈outdate〉 で再度評価する．
以上より，load cache 自体が nil でない値を返すのは，ちょうど「新しい」キャッシュが見つ
かった場合である．

remove cache(〈filename〉)
キャッシュ 〈filename〉 を削除する．テキスト形式（gzip圧縮されているか否かを問わず）もバイ
ナリ形式もまとめて削除する．

22 縦組の実装
6章の最初でも述べたように，LuaTEX-jaは横組 (TLT)で組んだボックスを回転させる方式で縦組を

実装している．
LuaTEX-jaにおける縦組の実装は pTEXにおける実装 ([8, 9])をベースにしている．

22.1 direction whatsit

direction whatsitとは，direction という特定の user_id を持つ whatsitのことであり，以下のタイ
ミングで作られる．

• 組方向を \tate等で変更したとき．
• \hbox, \vbox, \vtopによる明示的なボックスの開始時．
\hbox{}, \vbox{}といった，
– \tate等によりボックス内部の組方向を変更していない
– ボックスの中身のリストが空である
場合は，LuaTEX の hpack_filter, vpack_filter といった callback に処理が回らない．そこで，
LuaTEX-ja では，\everyhbox, \everyvbox を利用することで各ボックスの先頭に確実に追加する
ようにしている*53．

• \vsplitによって vboxを分割した時の「残り」の先頭．
• LuaTEX-ja読み込み前に作成したボックスの寸法を \ltjsetwd等によって変更した時．
• \insertによる insertionでは，中身の先頭に direction whatsitは作られず，その代わりに中身の
各ボックス・罫線の直前に作られる*54．

なお，\vtop{...} の場合は，先頭に direction whatsit を置くとボックスの高さが常に 0 pt になると
いう問題が発生する．そのため，この場合に限っては vpack時に direction whatsitをリストの 2番目
に移動させている．

direction whatsitはあくまでも組方向処理のための補助的なノードであるので，\unhbox, \unhcopy

*53 問題は \hbox to 25pt{}という状況である．実際のこのボックスの中身は空でない（少なくとも direction whatsitがあ
る）ため，何も対策をしなければ hpack時に Underfill警告が発生してしまうことになる．LuaTEX-jaではそうならない
ように「\hbadness, \vbadnessを一時的に 10000に変更し，hpack, vpack後に元の値に戻す」処理を行っている．

*54 これは，ページ分割の過程で insertion が分割される時，「現在のページで出力される部分」が空となることがあること
による．先頭に whatsitを置くと，最悪でも「現在のページに whatsitが残る」ことになってしまう．

108

によってボックスの中身が展開される時には展開直前に削除される．これは

% yoko direction

\setbox0=\hbox{\tate B}

\noindent % 水平モードに入る．この時点でのリストの中身は空
\unhbox0 A

といった場合に，段落が縦組で組まれたり，あるいは

\setbox0=\hbox{}

\leavevmode \hbox{A}\unhbox0

\setbox1=\lastbox % \box1 はどうなる？

で \box1が \hbox{A}でなく空になってしまうことを防ぐためである．

22.2 dir box

縦中横など異方向のボックスを配置する場合に，周囲の組方向と大きさを整合させるため，LuaTEX-
jaでは \ltj@dirが 128以降の hlist node, vlist node を用いる．これらは pTEXにおける dir node の役
割と同じ果たしており，この文章中では dir box と呼称する．

22.2.1 異方向のボックスの整合
dir box の第一の使用目的は，異方向のボックスの大きさを整合させることである．例えば，

% yoko direction

平成\hbox{\tate 26}年

は段落中で

glyph
‘平’

// glyph
‘成’

//

hbox
width: 10.00003
height: 3.02779
depth: 0.0

//

中身
��

glyph
‘年’

whatsit
\tate

// glyph
‘2’

// glyph
‘6’

109

というリストを作る．その後，この段落が終了したときに，LuaTEX-jaの JAglue挿入処理が行われ

glyph
‘平’

// glue
�xkanjiskip �

// glyph
‘成’

// penalty
0

//

dir box (\yoko)
width: 3.02779
height: 10.00003
depth: 0.0

//

中身
��

penalty
0

// glyph
‘年’

hbox
width: 10.00003
height: 3.02779
depth: 0.0

中身
��

whatsit
\tate

// glyph
‘2’

// glyph
‘6’

のようになる（青字は JAglue，赤字が整合処理のための dir box である）．TEXの \showbox形式で書
けば

.\tenmin 平

.\glue 0.0 plus 0.4 minus 0.4

.\tenmin 成

.\penalty 0

.\hbox(10.00003+0.0)x3.02779, direction TLT

..\hbox(3.02779+0.0)x10.00003, direction TLT

...\whatsit4=[]

...\tenrm 2

...\tenrm 6

.\penalty 0

.\tenmin 年

である．
なお，\raise, \lower, \moveleft, \moveright といったボックス移動命令では．移動を正しく表現

するために段落やボックスの途中でも異方向のボックスは dir box にカプセル化している．例えば

% yoko direction

平成\raise1pt\hbox{\tate 26}年\showlists

は以下のような結果を得る．

（前略）
\tenrm 平
\tenrm 成
\hbox(10.00003+0.0)x3.02779, shifted -1.0, direction TLT

.\hbox(3.02779+0.0)x10.00003, direction TLT

..\whatsit4=[]

..\tenrm 2

..\tenrm 6

\tenrm 年

また，メインの垂直リストに異方向のボックスが追加される場合にも同様に即座に dir box にカプ

110

セル化している．ページ分割のタイミングを正しく TEXが判断するためである．\lastboxによるボッ
クスの取得では，dir box は削除される．

22.2.2 異方向のボックス寸法の格納
第二の使用目的は，現在の組方向がボックス本来の組方向とは異なる状況で，\ltjsetwd によって

ボックス寸法を設定されたことを記録することである．
例えば

 \setbox0=\hbox{\vrule width 10pt height 5pt depth 2pt}

 \setbox1=\hbox{\tate\ltjsetwd0=20pt}

 \wd0=9pt

 \setbox1=\hbox{\dtou\ltjsetwd0=20pt}

 \setbox0=\hbox{\dtou a\box0}

というコードを考える．1行目で \box0には横組の幅 10 pt，高さ 5 pt，深さ 2 ptのボックスが代入さ
れる．よって，

• 縦組下では \box0は幅 7 pt，高さ・深さ 5 ptのボックスとして扱われる．
• \dtou下では \box0は幅 7 pt，高さ 10 pt，深さ 0 ptのボックスとして扱われる．

このとき，\box0の中身は
whatsit
\yoko

// rule

である．
さて，2行目で縦組時の \box0の幅が 20 ptに設定される．この情報が direction whatsit内部のノー

ドリストに，dir box として格納される：

whatsit
\yoko

//

中身
��

rule

dir box (\tate)
width: 20.0
height: 5.0
depth: 5.0

次に，3 行目では横組時の，つまり \box0 本来の組方向での深さが 9 pt に変更される．このとき，
\box0は

• 縦組下では寸法代入が既に行われているので，2行目で作成された dir box の通りに幅 20 pt，高
さ・深さ 5 ptのボックスとして扱われる．

• \dtou下ではまだ寸法代入が行われていないので，\box0の寸法変更に追従し，幅 7 pt，高さ 9 pt，
深さ 0 ptのボックスとして扱われる．

111

表 22. LuaTEX-ja 標準で行われる縦組形への置換

、(U+3001) ↦−→︑ (U+FE11) 。(U+3002) ↦−→︒ (U+FE12) 〖 (U+3016) ↦−→︗ (U+FE17)
〗(U+3017) ↦−→︘ (U+FE18) … (U+2026) ↦−→︙ (U+FE19) ‥ (U+2025) ↦−→︰ (U+FE30)
— (U+2014) ↦−→︱ (U+FE31) – (U+2013) ↦−→︲ (U+FE32) ＿ (U+FF3F) ↦−→︳ (U+FE33)
（ (U+FF08) ↦−→︵ (U+FE35) ）(U+FF09) ↦−→︶ (U+FE36) ｛ (U+FF5B) ↦−→︷ (U+FE37)
｝(U+FF5D) ↦−→︸ (U+FE38) 〔 (U+3014) ↦−→︹ (U+FE39) 〕(U+3015) ↦−→︺ (U+FE3A)
【 (U+3010) ↦−→︻ (U+FE3B) 】(U+3011) ↦−→︼ (U+FE3C) 《 (U+300A) ↦−→︽ (U+FE3D)
》(U+300B) ↦−→︾ (U+FE3E) 〈 (U+3008) ↦−→︿ (U+FE3F) 〉(U+3009) ↦−→﹀ (U+FE40)
「 (U+300C) ↦−→﹁ (U+FE41) 」(U+300D) ↦−→﹂ (U+FE42) 『 (U+300E) ↦−→﹃ (U+FE43)
』(U+300F) ↦−→﹄ (U+FE44) ［ (U+FF3B) ↦−→﹇ (U+FE47) ］(U+FF3D) ↦−→﹈ (U+FE48)

4行目では \dtou下での \box0の幅が 20 ptに設定されるので，2行目と同じように

whatsit
\yoko

//

中身
��

rule

dir box (\dtou)
width: 20.0
height: 9.0
depth: 0.0

//

dir box (\tate)
width: 20.0
height: 5.0
depth: 5.0

と dir box が作成される．
このように寸法代入によってつくられた dir box は，前節の整合過程のときに再利用される．上記

の例でいえば，5行目を実行した後の \box0の内容は

whatsit
\dtou

// glyph
‘a’

//

dir box (\dtou)
width: 20.0
height: 9.0
depth: 0.0

中身
��

hbox
width: 9.0
height: 5.0
depth: 2.0
中身
��

whatsit
\yoko

// rule

のようになる．

22.3 縦組用字形の取得

縦組時には，「、」(U+3001) から「︑」(U+FE11) のように縦組用字形への置き換えに関係する処理
は，以下のようになっている．

• 各縦組用和文フォントは読み込み時に以下の属性が設定される：

112

vert activated 真となるのは，明示的に -vert も -vrt2 のいずれも指定されていないちょうど
その時．

auto enable vrt2 真となるのは，vert, vrt2 のいずれについても有効・無効が指定されていな
いちょうどその時．

vert activated については luatexja.define jfontコールバックで渡される引数 jfont infoから
取得可能である．

• auto enable vrt2 が真の場合は，現在の script tagと language system identifierの値で vrt2機能
が利用可能か調べる．利用可能ならば vrt2を，そうでなければ vertを有効化する．

• また，各和文フォント読み込み時には，「OpenType 機能による置換以前に行う縦組形への置換」
を格納したテーブル vformも作成する．

1. 表 22�� に示した各置換 𝑖 ↦−→ 𝑣 に対し，置換先 𝑣 がフォント内に存在する文字コードであるな
らば，𝑖 ↦−→ 𝑣 を vformに登録する．

2. 8.2 節にある jpotfが指定された場合，LuaTEX-ja 内部の別のテーブル vert jpotf table に登
録されている各置換 𝑖 ↦−→ 𝑣 に対して置換先 𝑣 がフォント内に存在する文字コードであるな
らば，𝑖 ↦−→ 𝑣 を vformに登録する．

3. もし vert も vrt2 も現在の script, language では有効にできない場合，どこかの script,
languageにおける vertで定義されている置換 𝑖 ↦−→ 𝑣 をすべて vformに登録する．

あとで説明するように，vform は vert activated が真であるような縦組用和文フォントでしか利
用されない．

•「現在の水平リスト」内の JAchar を（欧文フォントから）和文フォントへ置き換える処理
において，その時点での組方向が縦組であり，かつ処理対象の各ノードの縦組用フォントで
vert activated が真である場合，vformに従いグリフが置き換えられる．
luaotfloadが行う，OpenType機能に沿ったグリフ置換はこの後の処理となる．

113

参考文献
[1] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.
[2] C. Heinz, B. Moses. The Listings Package.
[3] Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013.

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf

[4] Thor Watanabe. Listings - MyTeXpert.http://mytexpert.osdn.jp/index.php?Listings
[5] W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3C Working

Group Note), 2011, 2012. http://www.w3.org/TR/jlreq/
日本語訳の書籍版：W3C 日本語組版タスクフォース（編），『W3C 技術ノート 日本語組版処理
の要件』，東京電機大学出版局，2012．

[6] 乙部厳己．「min10 フォントについて」http://argent.shinshu-u.ac.jp/~otobe/tex/files/

min10.pdf

[7] 日本工業規格 (Japanese Industrial Standard).「JIS X 4051, 日本語文書の組版方法 (Formatting
rules for Japanese documents)」, 1993, 1995, 2004.

[8] 濱野尚人，田村明史，倉沢良一．「TEXの出版への応用—縦組み機能の組み込み—」．.../texmf-
dist/doc/ptex/base/ptexdoc.pdf

[9] Hisato Hamano. Vertical Typesetting with TEX, TUGBoat 11(3), 346–352, 1990.
[10] International Organization for Standardization. ISO 32000-1:2008, Document management –

Portable document format – Part 1: PDF 1.7, 2008. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=51502

[11] 北 川 弘 典．「LuaTEX-ja の 近 況」， TEXConf 2018． https://raw.githubusercontent.com/

h-kitagawa/presentations/main/tc18ltja.pdf

[12] Takuto ASAKURA. The BXghost Package. https://github.com/wtsnjp/BXghost

114

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
http://mytexpert.osdn.jp/index.php?Listings
http://www.w3.org/TR/jlreq/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
https://raw.githubusercontent.com/h-kitagawa/presentations/main/tc18ltja.pdf
https://raw.githubusercontent.com/h-kitagawa/presentations/main/tc18ltja.pdf
https://github.com/wtsnjp/BXghost

	第I部 ユーザーズマニュアル
	はじめに
	背景
	pTeXからの主な変更点
	用語と記法
	プロジェクトについて

	使い方
	インストール
	注意点
	plain TeXで使う
	LaTeXで使う

	フォントの変更
	plain TeX and LaTeX2ε
	luatexja-fontspecパッケージ
	和文フォントのプリセット設定
	\CID, \UTFとotfパッケージのマクロ

	パラメータの変更
	JAcharの範囲
	kanjiskipとxkanjiskip
	xkanjiskip の挿入設定
	ベースラインの移動
	禁則処理関連パラメータとOpenType機能

	第II部 リファレンス
	LuaTeX-jaにおける \catcode
	予備知識：pTeXとupTeXにおける \kcatcode
	LuaTeX-jaの場合
	制御綴中に使用出来るJIS非漢字の違い

	縦組
	サポートする組方向
	異方向のボックス
	組方向の取得
	実装の比較

	プリミティブの再定義
	再定義の抑制

	フォントメトリックと和文フォント
	\jfont 命令
	\tfont 命令
	標準和文フォント・JFMの変更
	psftプリフィックス
	JFMファイルの構造
	数式フォントファミリ
	コールバック

	パラメータ
	\ltjsetparameter
	\ltjgetparameter
	\ltjsetparameter の代替

	plainでもLaTeXでも利用可能なその他の命令
	pTeX互換用命令
	\inhibitglue, \disinhibitglue
	\ltjfakeboxbdd, \ltjfakeparbegin
	\insertxkanjiskip, \insertkanjiskip
	\ltjdeclarealtfont
	\ltjalchar と \ltjjachar

	LaTeX2ε用の命令
	LaTeX2ε下での和文フォントの読み込み
	NFSS2へのパッチ
	\fontfamilyコマンドの詳細
	\DeclareTextSymbol使用時の注意
	\strutbox

	expl3形式の命令
	拡張パッケージ
	luatexja-fontspec
	luatexja-otf
	luatexja-adjust
	luatexja-ruby
	lltjext
	luatexja-preset

	第III部 実装
	パラメータの保持
	LuaTeX-jaで用いられるレジスタとwhatsitノード
	LuaTeX-jaのスタックシステム
	スタックシステムで使用される関数
	パラメータの拡張

	和文文字直後の改行
	参考：pTeXの動作
	LuaTeX-jaの動作
	濁点・半濁点付き仮名の正規化→luaotfload v3.19以降ではそちらで

	JFMグルーの挿入，kanjiskipとxkanjiskip
	概要
	「クラスタ」の定義
	段落／hboxの先頭や末尾
	概観と典型例：2つの「和文A」の場合
	その他の場合

	ベースライン補正の方法
	yoffset フィールド
	ALcharの補正

	listings パッケージへの対応
	注意
	文字種

	和文の行長補正方法
	行末文字の位置調整（行分割後の場合）
	行末文字の位置調整（行分割での考慮）
	グルーの調整

	複数フォントの「合成」（未完）
	LuaTeX-jaにおけるキャッシュ
	キャッシュの使用箇所
	内部命令

	縦組の実装
	direction whatsit
	dir_box
	縦組用字形の取得

	参考文献

