The LuaTEX-ja package

The LuaTgX-ja project team

20260107.0 (January 7, 2026)

Contents

II

User’s manual

Introduction

1.1 Backgrounds
1.2 Major changes from PIEX o o
1.3 Notations e
1.4 Aboutthe project
Getting Started

21 Installation L e
22 Cautions
23 Usinginplain TEX o o 0o
24 Using in EXTEX o o 0 o e e
Changing Fonts

31 plain TEX and BIEX 26 o 0 o o e
3.2 luatexja-fontspec package e
3.3 Presetsof Japanesefonts
3.4 \CID, \UTF, and macros in japanese-otf package

Changing Internal Parameters

41 RangeofJAchars e

4.2 kanjiskip and xkanjiskip

4.3 Insertion setting of xkanjiskip L L

4.4 Shifting the baseline L e

4.5 kinsoku parameters and OpenType features,
Reference

\catcode in LuaTgX-ja

5.1 Preliminaries: \kcatcode in plgX and upIEX
52 Caseof LuaTEX-ja ¢ v v v o e
5.3 Non-kanji charactersin a controlword L L.
Directions

6.1 Boxesindifferent direction
6.2 Getting current direction Lo

Redefined primitives by LuaTgX-ja

7.1

Suppressing redefinitions L L

Font Metric and Japanese Font

8.1
8.2
8.3
8.4
8.5
8.6
8.7

\Jfont . .o e e
\tfont . . . e e
Default Japanese fontsand JEMs L L
Prefix psft e
Structure of a JEM file
Mathfontfamily
Callbacks e e e e e

10
10

10
10
13
13
14
14

16

16
16
16
16

16
17
18

19
20

9 Parameters

9.1 \ltjsetparameter. e
9.2 \ltjgetparameter. e e
9.3 Alternative Commands to \1tjsetparameter.

10 Other Commands for plain TgX and IATEX 2¢
10.1 Commands for compatibility with pIgX o o
10.2 \inhibitglue, \disinhibitglue.
10.3 \1ltjfakeboxbdd, \1tjfakeparbegin.
10.4 \insertxkanjiskip, \insertkanjiskip.
10.5 \ltjdeclarealtfont e

11 Commands for IATEX 2¢
11.1 Loading Japanese fonts in BTEX 2¢ o oo oo e
11.2 Patchfor NFSS2 e
11.3 Detail of \fontfamilycommand
11.4 Notes on \DeclareTextSymbol 0 it ittt e e
11.5 \struthox e

12 expl3 interface

13 Addon packages
13.1 luatexja-fontspec L L e e e
13.2 luatexja-otf e e e e e e e
13.3 luatexja-adjust oL e e e e e e
13.4 luatexja-ruby e e e
13.5 11tjext.sty o e e e e e e
13.6 luatexja-preset L e e e e e e e e
13.6.1 General Options
13.6.2 Presets which support multi weights oo 0oL
13.6.3 Presets which do not support multi weights
13.6.4 Presets whichuse HGfonts
13.6.5 Define/Use Custom Presets

III Implementations

14 Storing Parameters
14.1 Used dimensions, attributes and whatsitnodes
14.2 Stack system of LuaTEX-ja o ..
14.3 Lua functions of the stack system oL

14.4 Extending Parameters e

15 Linebreak after a Japanese Character
15.1 Reference: behaviorin pIEX L e
15.2 BehaviorinLuaTEX-ja o o e e

16 Patch for the listings Package
16.1 Notes and additional keys L

16.2 Classof characters. e

17 Cache Management of LuaTgX-ja 60

17.1 Useof cache e 61
17.2 Internal e e e e e 61
References 62

This documentation is far from complete. It may have many grammatical (and contextual)
errors. Also, several parts are written in Japanese only.

Part1

User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pIEX, an extension of TgX, and its derivatives are used to typeset Japanese documents
in TgX. pIEX is an engine extension of TgX: so it can produce high-quality Japanese documents without
using very complicated macros. But this point is a mixed blessing: pIX is left behind from other extensions
of TgX, especially ¢-TgX and pdfTEX, and from changes about Japanese processing in computers (e.g., the
UTF-8 encoding).

Recently extensions of pIgX, namely uplEX (Unicode-implementation of pIEX) and e-pIEX (merging of
PIEX and ¢-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua “callbacks”, users
can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to
support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major changes from pIEX

The LuaTgX-ja package is under much influence of pIEX engine. The initial target of development was to
implement features of pIEX. However, implementing all feature of pIEX is impossible, since all process of
LuaTiX-ja must be implemented only by Lua and TgX macros. Hence LuaTgX-ja is not a just porting of pIX;
unnatural specifications/behaviors of plX were not adopted.

The followings are major changes from pIEX. For more detailed information, see Part III or other
sections of this manual.

ECommand names pIEX addes several primitives, such as \kanjiskip, \prebreakpenalty, and
\ifydir. They can be used as follows:

\kanjiskip=108pt \dimenB=kanjiskip
\tbaselineshift=0.1zw
\dimenB=\tbaselineshift
\prebreakpenalty" % =160

\ifydir ... \fi

However, we cannot use them under LuaTgX-ja. Instead of them, we have to write as the following.

\1ltjsetparameter{kanjiskip=18pt} \dimenB=\1tjgetparameter{kanjiskip}
\1tjsetparameter{talbaselineshift=0.1\zw}
\dimenB=\1tjgetparameter{talbaselineshift}
\1ltjsetparameter{prebreakpenalty={" 45 ,100}}
\ifnum\ltjgetparameter{direction}=4 ... \fi

Note that pIEX adds new two useful units, namely zw and zh. As shown above, they are changed to
\zw and \zh respectively in LuaTiX-ja.!

BLinebreak after a Japanese character In pIEX, a line break after Japanese character is ignored (and
doesn’t yield a space), since line breaks (in source files) are permitted almost everywhere in Japanese
texts. However, LuaTgX-ja doesn’t have this feature completely, because of a specification of LuaTgX. For
the detail, see Section 15.

1LuaTEX-ja 20200127.0 introduces \1tj@zw and \1tj@zh, which are copy of \zw and \zh.

ESpaces related to Japanese characters The insertion process of glues/kerns between two Japanese
characters and between a Japanese character and other characters (we refer glues/kerns of both kinds as
JAglue) is rewritten from scratch.

« As LuaTgX’s internal ligature handling is node-based (e.g., of{}fice doesn’t prevent ligatures), the
insertion process of JAglue is now node-based.

« Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

« Caution: due to above two points, many methods which did for the dividing the process of the insertion
of JAglue in pIEX are not effective anymore. In concrete terms, the following two methods are not
effective anymore:

B&{}ok 54&\/0K

If you want to do so, please put an empty horizontal box (hbox) between it instead:

5 & \hbox{}>o &

« In the process, two Japanese fonts which only differ in their “real” fonts are identified.

EDirections From version 20150420.0, LuaTEX-ja supports vertical writing. We implement this feature
by using callbacks of LuaTgX; so it must not be confused with Q-style direction support of LuaTgX itself.
Due to implementation, the dimension returned by \wd, \ht, or \dp depends on the content of the register
only. This is major difference with pIEX.

BM\discretionary Japanese characters in discretionary break (\discretionary) is not supported.

BGreek and Cyrillic letters, and ISO 8859-1 symbols By default, LuaTgX-ja uses Japanese fonts to
typeset Greek and Cyrillic letters, To change this behavior, put \1tjsetparameter{jacharrange={-2,-
33} in the preamble. For the detailed description, see Subsection 4.1.

From version 20150906.0, characters which belongs both ISO 8859-1 and JIS X 0208, such as 9 and §,
are now typeset in alphabetic fonts.

1.3 Notations

In this document, the following terms and notations are used:

« Characters are classified into following two types. Note that the classification can be customized by
a user (see Subsection 4.1).

— JAchar: standing for characters which is used in Japanese typesetting, such as Hira-
gana, Katakana, Kanji, and other Japanese punctuation marks.

— ALchar: standing for all other characters like latin alphabets.
We say alphabetic fonts for fonts used in ALchar, and Japanese fonts for fonts used in JAchar.

« A word in a sans-serif font with underline (like prebreakpenalty) means an internal parameter for
Japanese typesetting, and it is used as a key in \1tjsetparameter command.

« A word in a sens-serif font without underline (like fontspec) means a package or a class of KIEX.

« In this document, natural numbers start from zero. w denotes the set of all natural numbers which
can be used in TgX.

1.4 About the project

BProject Wiki Project Wiki is under construction.
« https://github.com/luatexja/luatexja/wiki/Home(en) (English)
o https://github.com/luatexja/luatexja/wiki (Japanese)

« https://github.com/luatexja/luatexja/wiki/Home(zh) (Chinese)

This project is hosted by GitHub.

EMembers
e Hironori KITAGAWA e Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
e Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

https://github.com/luatexja/luatexja/wiki/Home(en)
https://github.com/luatexja/luatexja/wiki
https://github.com/luatexja/luatexja/wiki/Home(zh)

2 Getting Started

2.1 Installation

The following packages are needed for the LuaTgX-ja package.
« LuaTiX 1.10.0 (or later) (DVI output (\outputmode=8 is not supported.)
« recent luaotfload (v3.1 or later recommended)
« adobemapping (Adobe cmap and pdfmapping files)
« etoolbox (if you want to use LuaTgX-ja with BTEX 2¢)
« ltxcmds, pdftexcmds
« fontspec v2.9e (or later)

« Harano Aji fonts (https://github.com/trueroad/HaranoAjiFonts)
More specifically, HaranoAjiMincho-Regular and HaranoAjiGothic-Medium.

Now LuaTjX-ja is available from CTAN (in the macros/luatex/generic/luatexja directory), and the
following distributions:

« TpX Live (in texmf-dist/tex/luatex/luatexja)
« MiKTEX (in luatexja.tar.xz)

Harano Aji fonts are also available in these distributions (haranoaji in TgX Live and MiKTgX).

EHarfBuzz and LuaTgX-ja Using LuaTgX-ja with LuaHBTEX(LuaTgX integrated with HarfBuzz) is not
well tested. Maybe documents can typeset without an error, but with unwanted results (especially, vertical
typesetting and \CID).

Especially, We don’t recommend defining a Japanese font with HarfBuzz, by specifying
Renderer=Harfbuzz etc. (fontspec) or mode=harf (otherwise).

B Manual installation

1. Download the source, by one of the following method. At the present, LuaTgX-ja has no stable
release.
+ Clone the Git repository by
$ git clone https://github.com/luatexja/luatexja.git

« Download the zip archive of HEAD in the master branch from
https://github.com/luatexja/luatexja/archive/refs/heads/master.zip.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the fore-
front of development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in
src/ are needed to work LuaTgX-ja.

3. If you downloaded this package from CTAN, you have to run following commands to generate
classes:

$ cd src

$ lualatex ltjclasses.ins
$ lualatex ltjsclasses.ins
$ lualatex 1tjltxdoc.ins

4. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an ex-
ample location. If you cloned entire Git repository, making a symbolic link of src/ instead copying
is also good.

5. If mktexlsr is needed to update the file name database, make it so.

7

http://www.luatex.org/
https://github.com/latex3/luaotfload
https://github.com/josephwright/etoolbox/
https://github.com/wspr/fontspec/
https://github.com/trueroad/HaranoAjiFonts
https://www.tug.org/texlive/
https://github.com/harfbuzz/harfbuzz
https://github.com/luatexja/luatexja/archive/refs/heads/master.zip

2.2 Cautions

For changes from pIEX, see Subsection 1.2.

+ The encoding of your source file must be UTF-8. Other encodings, such as EUC-JP or Shift-JIS, are
not supported.

 LuaTgX-ja is very slower than pIEX, and uses a lot of memory.

« This version of LuaTgX-ja has an experimental method of vertical typesetting (which uses RTT di-
rection and Identity-V CMap). This is not enabled by default; to enable it, one should execute the
following before the loading of LuaTEX-ja:

\directlua{luatexja_cmapidv = true}

2.3 Using in plain TgX

To use LuaTgX-ja in plain TgX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex. tex) for typesetting Japanese documents:

« The following 12 Japanese fonts are preloaded:

direction classification font name “10 pt” “7pt” “5 pt”

yoko (horizontal) mincho HaranoAjiMincho-Regular ~ \tenmin \sevenmin \fivemin
gothic HaranoAjiGothic-Medium \tengt \sevengt \fivegt

tate (vertical) mincho HaranoAjiMincho-Regular ~ \tentmin \seventmin \fivetmin
gothic HaranoAjiGothic-Medium \tentgt \seventgt \fivetgt

— The “default” Japanese fonts (and JFMs for them) can be modified by defining \1tj@stdmcfont
etc. before one inputs luatexja.sty (Subsection 8.3).

— A character in an alphabetic font is generally smaller than a Japanese font in the same size. So
actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts,
namely scaled by 0.962216.

« The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip)

is set to
+1pt
—1pt

+1pt

(0.25 - 0.962216 - 10 pt) e

= 2.40554 pt

2.4 Using in KIgX

Using in BIEX 2¢ is basically same. To set up the minimal environment for Japanese, you only have to load
luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in piIEX are plfonts.dtx and pldefs.1tx).

« Font encodings for Japanese fonts are JY3 (for horizontal direction) and JT3 (for vertical direction).

« Traditionally, Japanese documents use only two families: mincho (JHEA{K) and gothic (3 v 7 1F).
mincho is used in the main text, while gothic is used in the headings or for emphasis.

classification commands family

mincho (HHEA{K) \textme{...} {\mcfamily ...} \mcdefault
gothic (3w V1K) \textgt{...} {\gtfamily ...} \gtdefault
(Japanese counterpart for typewriter font) — — \jttdefault

Here \jttdefault specifies the Japanese font family in \verb or verbatim environment, and its
default value is \mcdefault (mincho family).? LuaTgX-ja does not define commands to only switch
current Japanese font family to \jttdefault.

By default, the following fonts are used for these two families.

classification family \mdseries \bfseries scale
mincho (FHEI{E) me HaranoAjiMincho-Regular ~ HaranoAjiGothic-Medium 0.962216
gothic (A wU1K) gt HaranoAjiGothic-Medium HaranoAjiGothic-Medium 0.962216

Note that the bold series (series bx or b) in both family are same as the medium series of gothic
family. There is no italic nor slanted shape for these mc and gt.

« From version 20181102.0, one can specifies disablejfam option at loading LuaTgX-ja. This option
prevents loading a patch for KTgX, which are needed to support Japanese characters in math mode.

Without disablejfam option, one can typeset Japanese characters in math mode as d (see Page 8)
as before. Japanese characters in math mode are typeset by the font family mc.

If you use the beamer class with the default font theme (which uses sans serif fonts) and with LuaTgX-
ja, you might want to change default Japanese fonts to the gothic family. The following line changes
the default Japanese font family to it:

\renewcommand{\kanjifamilydefault}{\gtdefault}

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
LuaTiX-ja has the counterparts of jclasses (standard classes in pEIEX) and jsclasses (classes by Haruhiko

Okumura), namely, Itjclasses® and Itjsclasses®.

Original jsclasses use \mag primitive to set the main document font size. However, LuaTgX does not
support \mag in PDF output, so Itjsclasses uses the nomag* option® by default to set the main font size. If
this causes some unexpected behavior, specify nomag option in \documentclass.

Bgeometry package and classes for vertical writing It is well-known that the geometry package
produces the following error, when classes for vertical writing is used:

! Incompatible direction list can't be unboxed.
\@begindvi ->\unvbox \@begindvibox
\global \let \@begindvi \@empty

Now, LuaTgX-ja automatically applies the patch lltjp-geometry to the geometry package, when the direction
of the document is tate (vertical writing). This patch lltjp-geometry also can be used in pKIgX; for the detail,
please refer 11tjp-geometry.pdf (Japanese).

3 Changing Fonts

3.1 plain TgX and KXTgX 2¢

Emplain TgX To change Japanese fonts in plain TgX, you must use the command \jfont and \tfont. So
please see Subsection 8.1.

2When ltjsclasses classes are used, or luatexja-fontspec (or luatexja-preset) is loaded with match option, \ttfamily changes the
current Japanese font amily to \ jttdefault. These classes and packages also redefine \jttdefault to \gtdefault (gothic family).

3ltjarticle.cls, 1tjbook.cls, 1tjreport.cls, 1tjtarticle.cls, 1tjtbook.cls, 1tjtreport.cls. The latter 1tjt*.cls are
for vertically written Japanese documents.

4lt‘]'sart',icle.cls, 1tjsbook.cls, 1tjsreport.cls, 1tjskiyou.cls.

Same effect as the BXjscls classes (by Takayuki Yato) and jsclasses. However, these classes uses only TiX code, but Itjsclasses uses
Lua code.

lltjp-geometry.pdf

[N

BIATEX 2. (NFSS2) For KIEX 2., LuaTgX-ja adopted most of the font selection system of pIEX 2¢ (in
plfonts.dtx).

encoding family series shape selection

Alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape* —
auto select \fontencoding \fontfamily — — \usefont

\fontfamily, \fontseries, and \fontshape try to change attributes of Japanese fonts, as well as
those of alphabetic fonts. Of course, \selectfont is needed to select current text fonts.

Note that \fontshape always changes current alphabetic font shape, but it does not change current
Japanese font shape if the target shape is unavailable for current Japanese encoding/family/series.
For the detail, see Subsection 11.2.

« \fontencoding{(encoding)} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3, and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the current Japanese font family, the current alphabetic font family, or both. For the detail,
see Subsection 11.2.

For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. (In
previous version of LuaTgX-ja, using \DeclareFontFamily didn’t cause any problem. But this no
longer applies the current version.)

Defining a Japanese font shape can be done by usual \DeclareFontShape:

\DeclareFontShape{JY3}{mc}{b}{n}{<-> s*HaranoAjiMincho--Bold:jfm=ujis;-kern}{}
% Harano Aji Mincho Bold

BJapanese characters in math mode Since pIEX supports Japanese characters in math mode, there
are sources like the following:

$f_{=m}$~($f_{\text{high temperature}}s$). fg’?‘% (ﬁligh temperatum)'

\[y=(x-1)"2+2\quad & > T\quad y>8 \]

$5\in Z:=\{\,p\in\mathbb N:\text{p is a
prime}\,\}$.

y=(x-1%+2 &oT y>0
5¢€ % :={peN:pisaprime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

« The lines 1 and 2 above are not correct, since “fEiii” in above is used as a textual label, and “ & - C”
is used as a conjunction.

« However, the line 3 is correct, since “%” is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

$f_{\tGXt{_l%_iEu}}$"‘% f* (f)
($f_{\text{high temperature}}$). wid Uhigh temperature /-
\[y=(x-1)"2+2\quad

\mathrel{\mbox{d& > T}}\quad y>8 \]

$5\in Z:=\{\,p\in\mathbb N:\text{p is a _ o .
prineR\ \3$, 5¢€ % :={peN:pisaprime}.

y=(x-1*+2 XoT y>0

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to
change Japanese fonts in math mode in this chapter. For the method, please see Subsection 8.6.

When LuaTEX-ja is loaded with disablejfam option, one cannot write Japanese characters in math mode
as $3:$. At that case, one have to use \mbox (or \text in the amsmath package).

10

Table 1. Commands of luatexja-fontspec

Japanese fonts \jfontspec \setmainjfont \setsansjfont \setmonojfont
Alphabetic fonts \fontspec \setmainfont \setsansfont \setmonofont
Japanese fonts \newjfontfamily \renewjfontfamily \setjfontfamily \providejfontfamily
Alphabetic fonts \newfontfamily \renewfontfamily \setfontfamily \providefontfamily
Japanese fonts \newjfontface \renewjfontface \setjfontface \providejfontface
Alphabetic fonts \newfontface \renewfontface \setfontface \providefontface
Japanese fonts \defaultjfontfeatures \addjfontfeatures
Alphabetic fonts \defaultfontfeatures \addfontfeatures

3.2 luatexja-fontspec package

To use the functionality of the fontspec package to Japanese fonts, it is needed to load the luatexja-fontspec
package in the preamble, as follows:

\usepackage[(options)]1{1luatexja-fontspec}

This luatexja-fontspec package automatically loads luatexja and fontspec packages, if needed.

In the luatexja-fontspec package, several commands are defined as counterparts of original commands
in the fontspec package (see Table 1):

The package option of luatexja-fontspec are the followings:

match
If this option is specified, usual family-changing commands such as \rmfamily, \textrm,
\sffamily, ... also change Japanese font family.

pass={options)
(Obsoleted) Specity options {options) which will be passed to the fontspec package.

scale=(float)
Override the ratio of the font size of Japanese fonts to that of alphabetic fonts. The default value is
determined as follows:

« The value of \Cjascale is used, if this control sequence is already defined.

« It is calculated automatically from the current Japanese font at the loading of the package, if
\Cjascale is not defined.

\Cjascale is defined in ltjclasses and ltjsclasses.

All other options listed above are simply passed to the fontspec package. This means that two lines
below are equivalent, for example.

\usepackage[no-math]{fontspec}\usepackage{luatexja-fontspec}
\usepackage[no-math]{luatexja-fontspec}

Note that kerning information in a font is not used (that is, kern feature is set off) by default in these seven
(or eight) commands. This is because of the compatibility with previous versions of LuaTgX-ja (see 8.1).

Below is an example of \ jfontspec.

\jfontspec[CJKShape=NLC]{HaranoAjiMincho-Regular}
JIS~X~B213:2004—>31 5 \par
\jfontspec[CJKShape=J1S1990]{HaranoAjiMincho-Regular}
JIS~X~B208-1990—>it &5 \par
\jfontspec[CJKShape=J1S1978]{HaranoAjiMincho-Regular}
JIS~C~6226-1978—>i1 5

JIS X 0213:2004 —3tfiB
JIS X 0208-1990 —3L: i
JIS C 6226-1978 —>3Lfi&

11

N U W =

3.3 Presets of Japanese fonts

With luatexja-preset package, one use one of “preset” to simplify Japanese font setting. For details of pack-
age options, and those of each presets, please see Subsecion 13.6. The following presets are defined:

haranoaji, hiragino-pro, hiragino-pron, ipa, ipa-hg, ipaex, ipaex-hg,
kozuka-pré, kozuka-prén, kozuka-pro, moga-mobo, moga-mobo-ex, bizud,
morisawa-prén, morisawa-pro, ms, ms-hg, noembed, noto-otc, noto-otf, noto,
noto-jp, sourcehan, sourcehan-jp, ume, yu-osx, yu-win, yu-winl@

For example, this document loads luatexja-preset package by

\usepackage[haranoaji]{luatexja-preset}

which means that Harano Aji fonts will be used in this document.

3.4 \CID, \UTF, and macros in japanese-otf package

Under pETIgX, japanese-otf package (developed by Shuzaburo Saito) is used for typesetting characters which
is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTEX-ja supports some
of functions in the japanese-otf package, as an external package luatexja-otf.

ZR\UTF{9DD73}%} & \CID{13966}FHE \UTF{95923} & H'

\UTF{9AD9} B EIC\\ A 3 z
\CID{7652}&fX MD\CID{13706} FF K, M[@-;%&H:Zq:lﬂﬂﬁﬁaﬁ 2 A
\CID{1481} 5, BFEER, \\ BHIXOEHR, Bk, HPHR,
S ¥ \CID{8765}\UTF{FA11}, ;& ¥ \ajMayuHama\\ el & E, I8 2 I

\aj¥H {4 717 }\ajKakko3\ajMaru¥obi{2}% W BB

\ajLig{ S MN\ajLigf OfI}\ajIIs

4 Changing Internal Parameters

There are many internal parameters in LuaTgX-ja. And due to the behavior of LuaTEX, most of them are
not stored as internal register of TgX, but as an original storage system in LuaTiX-ja. Hence, to assign or
acquire those parameters, you have to use commands \1tjsetparameter and \1tjgetparameter.

4.1 Range of JAchars

LuaTiX-ja divides the Unicode codespace U+8088-U+18FFFF into character ranges, numbered 1 to 217.
The grouping can be (globally) customized by \1tjdefcharrange. The next line adds whole characters in
Supplementary Ideographic Plane and the character “/#” to the character range 100.

\1tjdefcharrange{100}{"20008-"2FFFF, /#}
A character can belong to only one character range. For example, whole SIP belong to the range 4 in

the default setting of LuaTEX-ja, and if one executes the above line, then SIP will belong to the range 100
and be removed from the range 4.

The distinction between ALchar and JAchar is performed by character ranges. This can be edited by
setting the jacharrange parameter. For example, the code below is just the default setting of LuaTgX-ja, and
it sets

« a character which belongs character ranges 1, 4, 5, and 8 is ALchar,

« a character which belongs character ranges 2, 3, 6, 7, and 9 is JAchar.

\1ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8, +9}}
The argument to jacharrange parameter is a list of non-zero integer. Negative integer —n in the list means

that “each character in the range n is an ALchar”, and positive integer +n means that “... is a JAchar”.

Note that characters U+8000-U+087F are always treated as an ALchar (this cannot be customized).

12

Table 2. Characters in predefined character range 8.

§ (U+BBA7) Section Sign " (U+8BA8) Diaeresis

° (U+88BB) Degree sign + (U+06B1) Plus-minus sign
" (U+BBB4) Spacing acute 9 (U+8BB6) Paragraph sign
x (U+80D7) Multiplication sign + (U+@8F7) Division Sign

Table 3. Unicode blocks in predefined character range 1.

U+0080-U+BOFF
U+0180-U+B24F
U+02BB-U+B2FF
U+1EB0-U+1EFF

Latin Extended-A
IPA Extensions
Combining Diacritical Marks

U+01080-U+B17F
U+0250-U+02AF
U+08300-U+B36F

Latin-1 Supplement

Latin Extended-B

Spacing Modifier Letters
Latin Extended Additional

Table 4. Unicode blocks in predefined character range 3.

U+2878-U+269F Superscripts and Subscripts

U+20A8-U+20CF
U+2180-U+214F
U+2196-U+21FF
U+2300-U+23FF
U+2500-U+257F
U+25A0-U+25FF
U+2780-U+27BF
U+2980-U+29FF

Currency Symbols
Letterlike Symbols

Arrows

Miscellaneous Technical

Box Drawing

Geometric Shapes

Dingbats

Misc. Math Symbols-B

U+20D8-U+20FF
U+2150-U+218F
U+22080-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2980-U+297F
U+2BBO-U+2BFF

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols
Supplemental Arrows-B

Misc. Symbols and Arrows

EDefault character ranges LuaTgX-ja predefines nine character ranges for convenience. They are de-
termined from the following data:

« Blocks in Unicode 12.0.0.
« The Adobe-Japanl-UCS2 mapping between a CID Adobe-Japanl- and Unicode.

« The PXbase bundle for upIEX by Takayuki Yato.

Now we describe these nine ranges. The superscript “J” or “A” after the number shows whether each
character in the range is treated as JAchars or not by default. These settings are similar to the prefercjk
settings defined in PXbase bundle. Any characters equal to or above U+80888 which does not belong to
these eight ranges belongs to the character range 217.

Range 82 The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic
character set for Japanese). The character list is indicated in Table 2.

Range 14 Latin characters that some of them are included in Adobe-Japan1-7. This range consists of the
Unicode ranges indicated in Table 3, except characters in the range 8 above.

Range 2 Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these charac-
ters.

« U+08370-U+B3FF: Greek and Coptic « U+1FB0-U+1FFF: Greek Extended

+ U+B480-U+B4FF: Cyrillic

Range 3’ Miscellaneous symbols. The block list is indicated in Table 4.

Range 9 The intersection of the “General Punctuation” block (U+20888-U+286F) and Adobe-Japan1-7
character collection. This character range characters in Table 5.

Range 4* Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks
which are not in other predefined ranges. Hence, instead of showing the block list, we put the
definition of this range itself.

\1tjdefcharrange{43}{%
"5@@-"16FF, "1208-"1DFF, "2448-"245F, "27C6-"28FF, "2A88-"2AFF,
"2C8B-"2E7F, "4DCO-"4DFF, "A4DO-"A95F, "A9806-"ABFF, "E0BO-"FSFF,

13

(U+2002)
- (u+2011)
— (U+2014)
| (u+2016)
" (U+2019)
“ (u+201C)
U+201E)

U+2460-U+24FF
U+30080-U+303F
U+30A0-U+30FF
U+31F0-U+31FF
U+3300-U+33FF
U+4EB0-U+9FFF
U+FE10-U+FE1F
U+FE50-U+FE6F

Table 5. Characters in predefined character range 9.

En space

Non-breaking hyphen

Em dash

Double vertical line

Right single quotation mark
Left double quotation mark
Double low-9 quotation mark
Double dagger

Two dot leader

Per mille sign

Double prime

Single right-pointing angle quot.
Double exclamation mark
Undertie

Fraction slash

Question exclamation mark

Two asterisks aligned vertically

- (U+2018)
— (U+2013)
— (U+2015)
‘ (U+2018)
., (U+2014)
" (u+201D)
T (u+2820)
e (U+2022)
“+* (U+2026)

(U+2032)
< (U+2039)
P (U+283B)

(U+203E)
£ (U+2042)
?7? (U+2847)
1?7 (U+2049)

Hyphen

En dash

Horizontal bar

Left single quotation mark
Single low-9 quotation mark
Right double quotation mark
Dagger

Bullet

Horizontal ellipsis

Prime

Single left-pointing angle quot.
Reference mark

Overline

Asterism

Double question mark

Exclamation question mark

Table 6. Unicode blocks in predefined character range 6.

Enclosed Alphanumerics

CJK Symbols and Punctuation
Katakana

Katakana Phonetic Extensions
CJK Compatibility

CJK Unified Ideographs
Vertical Forms

Small Form Variants

U+1BB0B-U+1BOFF
U+1F100-U+1F1FF
U+20000-U+2FFFF
U+EB100-U+EQ1EF

U+1180-U+11FF
U+2FFB-U+2FFF
U+3130-U+318F
U+31C0-U+31EF
U+A490-U+A4CF
U+ACBO-U+D7AF

Kana Supplement
Enclosed Alphanumeric Supp.
(Supp. Ideographic Plane)

U+2E80-U+2EFF
U+3040-U+3089F
U+3190-U+319F
U+3200-U+32FF
U+34080-U+4DBF
U+F900-U+FAFF
U+FE30-U+FE4F
U+FFO@-U+FFEF
U+1B160-U+1B12F
U+1F200-U+1F2FF
U+30000-U+3FFFF

CJK Radicals Supplement
Hiragana

Kanbun

Enclosed CJK Letters and Months
CJK Unified Ideographs Ext-A
CJK Compatibility Ideographs
CJK Compatibility Forms
Halfwidth and Fullwidth Forms
Kana Extended-A

Enclosed Ideographic Supp.
(Tert. Ideographic Plane)

Variation Selectors Supp.

Table 7. Unicode blocks in predefined character range 7.

Hangul Jamo

Ideographic Description Characters
Hangul Compatibility Jamo

CJK Strokes

Yi Radicals

Hangul Syllables

U+2F80-U+2FDF
U+3100-U+312F
U+31A0-U+31BF
U+ABB0-U+A48F
U+A960-U+A97F
U+D7BB-U+D7FF

Kangxi Radicals
Bopomofo

Bopomofo Extended

Yi Syllables

Hangul Jamo Extended-A
Hangul Jamo Extended-B

"FBBO-"FEBGF, "FE20-"FE2F, "FE70-"FEFF, "106006-"1AFFF, "1B176-"1FOFF,
... (and characters in U+2888-U+286F which are not in range 9)

"1F3080-"1FFFF,
} % non-Japanese

Range 5% Surrogates and Supplementary Private Use Areas.

Range 6! Characters used in Japanese. The block list is indicated in Table 6.

Range 77 Characters used in CJK languages, but not included in Adobe-Japan1-7. The block list is indi-

cated in Table 7.

ENotes on U+8888-U+88FF You should treat characters in

textttU+0080-U+BOFF as ALchar, when you use traditional 8-bit fonts, such as the marvosym package.

For example, \Frowny which is provided by the marvosym package has the same codepoint as §
(U+00A7). Hence, as previous versions of LuaTgX-ja, if these characters are treated as JAchars, then
\Frowny produces “ § ” (in a Japanese font).

14

To avoid such situations, the default setting of LuaTgX-ja is changed in version 20150906.0 so that all
characters U+6888-U+00FF are treated as ALchar.

If you want to output a character as ALchar and JAchar regardless the range setting, you can use
\1tjalchar and \1tjjachar respectively, as the following example.

\gtfamily\large % default, ALchar, JAchar

1, \1tjalchar'9, \1ltjjachar'9\\ % default: ALchar 1L ? ﬂ
a, \ltjalchar' a, \ltjjachar'a % default: JAchar a,a A

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

+ Glues/kerns specified in JFM. If \inhibitglue is issued around a JAchar, this glue will not be
inserted at the place.

« The default glue which inserted between two JAchars (kanjiskip).

+ The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following. Note that only their values
at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

\1tjsetparameter{kanjiskip={6pt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

Here \zw is a internal dimension which stores fullwidth of the current Japanese font. This \zw can be used
as the unit zw in pIEX.

The value of these parameter can be get by \ltjgetparameter. Note that the result by
\1tjgetparameter is not the internal quantities, but a string (hence \the cannot be prefixed).

kanjiskip: \1tjgetparameter{kanjiskip},\\ kanjiskip: 0.0pt plus 0.4pt minus 0.5pt,
xkanjiskip: \ltjgetparameter{xkanjiskip} xkanjiskip: 2.40553pt plus 1.0pt minus 1.0pt

It may occur that JFM contains the data of “ideal width of kanjiskip” and/or “ideal width of xkanjiskip”.
To use these data from JEM, set the value of kanjiskip or xkanjiskip to \maxdimen (these “ideal width” cannot
be retrived by \1tjgetparameter).

4.3 Insertion setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For exam-
ple, xkanjiskip should not be inserted after opening parenthesis (e.g., compare “(” and “(7). LuaTgX-ja
can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars
and alxspmode parameters ALchars respectively.

\1tjsetparameter{jaxspmode={' & ,preonly},
alxspmode={"\!,postonly}} p Hq ! 5
pdhq WD

The second argument preonly means that the insertion of xkanjiskip is allowed before this character,
but not after. the other possible values are postonly, allow, and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore,
line 1 in the code above can be rewritten as follows:

jsetparameter{alxspmode= ,preonly}, jaxspmode= !,postonly
\1ltjset ter{al de={" 1y}, j de={"\! tonly}}

One can use also numbers to specify these two parameters (see Subsection 9.1).

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

15

0 NN G R W N

4.4 Shifting the baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of
one of the pair is needed. In pIiX, this is achieved by setting \ybaselineshift (or \tbaselineshift) to a
non-zero length (the baseline of ALchar is shifted below). However, for documents whose main language
is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because
of this, LuaTgX-ja can independently set the shifting amount of the baseline of alphabetic fonts and that
of Japanese fonts.

Horizontal writing (yoko direction) etc. Vertical writing(tate direction)

Alphabetic fonts yalbaselineshift parameter talbaselineshift parameter
Japanese fonts yjabaselineshift parameter tjabaselineshift parameter

Here the horizontal line in the below example is the baseline of a line.

\vrule width 158pt height 0.2pt depth 8.2pt \
hskip-1208pt
\1ltjsetparameter{yjabaselineshift=0pt, N .
yalbaselineshift=0pt}abcdH L\ 444444jﬂxLZ&L‘Ll‘abeﬁ%ibﬁfT““‘i
\1tjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcd L\ S

There is an interesting side-effect: characters in different size can be vertically aligned center in a line,
by setting two parameters appropriately. The following is an example (beware the value is not well tuned):

\vrule width 158pt height4.417pt depth-4.217pt%
\kern-1506pt
\large xyz2F

{\scriptsize cgéri»ywh s 351 .= !
\1tjsetparameter{yjabaselineshift=-1.757pt,

yalbaselineshift=-1.757pt}
EFxyzH WD
3LV Sabe

Note that setting positive yalbaselineshift or talbaselineshift parameters does not increase the depth of
one-letter syllable p of Alchar, if its left-protrusion (\1pcode) and right-protrusion (\rpcode) are both
non-zero. This is because

« These two parameters are implemented by setting yoffset field of a glyph node, and this does not
increase the depth of the glyph.

« To cope with the above situation, LuaTgX-ja automatically supplies a rule in every syllable.

« However, we cannot use this “supplying a rule” method if a syllable comprises just one letter whose
\1pcode and \rpcode are both non-zero.

This problem does not apply for yjabaselineshift nor tjabaselineshift, becuse a JAchar is encapsulated
by a horizontal box if needed.

4.5 kinsoku parameters and OpenType features

Among parameters which related to Japanese word-wrapping process (kinsoku shori),

jaxspmode, alxspmode, prebreakpenalty, postbreakpenalty and kcatcode

are stored by each character codes.

OpenType font features are ignored in these parameters. For example, a fullwidth katakana “7”” on
line 10 in the below input is replaced to its halfwidth variant “7”, by hwid feature. However, the penalty
inserted after it is 10 which is the postbreakpenalty of “7”, not 20.

16

N L Y N TSI R

—
o

\1ltjsetparameter{postbreakpenalty=

Y77, 183}
\1ltjsetparameter{postbreakpenalty={'7

{

{°7, 283}

\newcommand\showpostpenal[1]{%
\leavevmode\setbox8=\hbox{#1\hbox{}}%
\unhbox8\setboxB8=\1lastbox\the\lastpenalty}

\showpostpena{J’},
\showpostpena{7},

{\addjfontfeatures{CharacterWidth=Half}\showpostpena{J”}}

17

7 10,7 20, 77 10

Part 11
Reference

5 \catcode in LuaTgX-ja

5.1 Preliminaries: \kcatcode in pIEX and upIEX

In PIEX and uplEX, the value of \kcatcode determines whether a Japanese character can be used in a
control word. For the detail, see Table 8.

\kcatcode can be set by a row of JIS X 0208 in pIEX, and generally by a Unicode block® in uplEX. So
characters which can be used in a control word slightly differ between pIEX and upIEX.

5.2 Case of LuaTgX-ja

The role of \kcatcode in pPIEX and uplEX can be divided into the following four kinds, and LuaTgX-ja can
control these four kinds separately:

« Distinction between JAchar or ALchar is controlled by the character range, see Subsection 4.1.

« Whether the character can be used in a control word is controlled by setting \catcode to 11 (enabled)
or 12 (disabled), as usual.

« Whether jcharwidowpenalty can be inserted before the character is controlled by the lowermost bit of
the kcatcode parameter.

« Linebreak after a JAchar does not produce a space.

Default setting of \catcode of Unicode characters with LuaTgX is slightly inconvenient for pIEX users
to shifting to LuaTgX-ja, because several fullwidth characters which can be used in a control word with
PIEX, such as “1” (FULLWIDTH DIGIT ONE), cannnot be used in a control word with LuaTEX. Hence,
LuaTgEX-ja changes the \catcode of some characters—whose line breaking class is “ID” (Ideographic) in
UAX #14—, to allow these characters in the control word.

5.3 Non-kanji characters in a control word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ in

PIEX, in uplEX, and in LuaTgX-ja. Table 9 shows the difference. Except for three characters *,~ ,and * ,
LuaTiX-ja admits more characters in a control word than upIEX.

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see https:
//github.com/h-kitagawa/kct.

6 Directions

LuaTiEX supports four Q-style directions: TLT, TRT, RIT and LTL. However, neither directions are not well-
suited for typesetting Japanese vertically, hence we implemented vertical writing by rotating TLT-box by
90 degrees.

LuaTiX-ja supports four directions, as shown in Table 10. The second column (yoko direction) is just
horizontal writing, and the third column (tate direction) is vertical writing. The fourth column (dtou direc-
tion) is actually a hidden feature of pIEX. We implemented this for debugging purpose. The fifth column
(utod direction) corresponds the “tate (math) direction” of pIEX.

Directions can be changed by \yoko, \tate, \dtou, \utod, only when the current list is null. These
commands cannot be executed in unrestricted horizontal modes, nor math modes. The direction of a math
formula is changed to utod, when the direction outside the math formula is tate (vertical writing).

SupTEX divides U+FF@@-U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \kcatcode can be set by a subblock.

18

https://github.com/h-kitagawa/kct
https://github.com/h-kitagawa/kct

Table 8. \kcatcode in upIEX ul.30

\kcatcode meaning control word widow penalty linebreak

15 non-cjk (treated as usual KIEX)

16 kanji Y Y ignored
17 kana Y Y ignored
18 other N N ignored
19 hangul Y Y space

Table 9. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word

row col. pIEX uplgX LuaTgX-ja row col. pIEX uplEX LuaTgX-ja
* (U+30FB) 1 6 N Y N // (u+FFOF) 1 31 N N Y
" (U+309B) 1 11 N Y N U (U+FF3C) 1 32 N N Y
(U+309C) 1 12 N Y N ~ (U+FFSE) 1 33 N N Y
(U+FF40) 1 14 N N Y | (U+FFsc) 1 35 N N Y
A (U+FF3E) 1 16 N N Y + (u+FFBB) 1 60 N N Y
 (U+FFE3) 1 17 N N Y = (U+FF1D) 1 65 N N Y
_ (U+FF3F) 1 18 N N Y < (U+FF1C) 1 67 N N Y
N (U+36FD) 1 19 N Y Y > (U+FF1E) 1 68 N N Y
N (U+36FE) 1 20 N Y Y H# (u+FFe3) 1 84 N N Y
> (U+389D) 1 21 N Y Y & (u+FFoe) 1 85 N N Y
Y (U+369E) 1 22 N Y Y K (u+FFea) 1 86 N N Y
/I (U+3003) 1 23 N N Y @ (u+FF28) 1 87 N N Y
> (U+4EDD) 1 24 N Y Y T (u+3012) 2 9 N N Y
& (U+3085) 1 25 N N Y == (U+3013) 2 4 N N Y
K (U+3886) 1 26 N N Y T (UsFFE2) 2 44 N N Y
Ow+3ee7y 1 27 N N Y A @s2128§) 2 82 N N Y
— (U+38FC) 1 28 N Y Y Greek letters (row 6) Y N Y
Cyrillic letters (row 7) N N Y
6.1 Boxes in different direction
As in pIEX, one can use boxes of different direction in one document. The below is an example.
1 C CI3EREy yoko ?{H
2 \hbox{\tate % tate D
3 \hbox{#H3}% tate EE
;1 fl)ﬂ?z:lc;\yoko BHEDOARI% yoko *ﬁ’\ﬂgﬁ\]ﬁ
¢ ZWATDB T
7} A
8 FTHERICES% yoko 5
i 8 KMHHICR 2

Table 11 shows how a box is arranged when the direction inside the box and that outside the box differ.

®\wd and direction In pIgX, \wd, \ht, \dp means the dimensions of a box register with respact to the
current direction. This means that the value of \wd® etc. might differ when the current direction is different,
even if \box@ stores the same box. However, this no longer applies in LuaTEX-ja.

19

N N

Table 10. Directions supported by LuaTgX-ja

horizontal (yoko direction) vertical (tate direction) dtou direction utod direction

Commands \yoko \tate \dtou \utod
Beginning of the page Top Right Left Right
Beginning of the line Left Top Bottom Top
Used Japanese font horizontal (\jfont) vertical (\tf ont) horizontal (90° rotated)
Example 2 }
(Notation used in Q) TLT RTR,RTT

\setboxB=\hbox to 28pt{foo}
\the\wd@,~\hbox{\tate\vrule\the\wdo}
\wde=1688pt

—
(e
S

S

\the\wdd,~\hbox{\tate \the\wdo} -

dO'oz

20.0pt, "= 100.0pt,

To access box dimensions with respect to current direction, one have to use the following commands
instead of \wd wtc.

\1tjgetwd(numy), \1tjgetht(num), \1tjgetdp{num)
These commands return an internal dimension of \box(num) with respect to the current direction.
One can use these in \dimexpr primitive, as the followings.

\dimexpr 2\1ltjgetwd42-3pt\relax, \the\ltjgetwdl761

The following is an example.

1 \parindent@pt

2 \setbox32767=\hbox{\yoko & C <&} YOKO

3 \fboxsep=06mm\fbox{\copy32767} 38.48877pt,
4 \vbox{\hsize=20mm 8.46753pt,
5 \yoko YOKO \the\ltjgetwd32767, \\ I oA 1.15466pt.
6 \the\ltjgetht32767, \\ \the\ltjgetdp32767.} D

7 \vbox{\hsize=208mm\raggedleft —_ o &&&

8 \tate TATE \the\ltjgetwd32767, \\ N E § % S

9 \the\ltjgetht32767, \\ \the\ltjgetdp32767.} e R

10 \vbox{\hsize=20mm\raggedleft %Lg %o'g g a gl

11 \dtou DTOU \the\ltjgetwd32767, \\ Tt m

—
)

\the\ltjgetht32767, \\ \the\ltjgetdp32767.}

\1tjsetwd{num)=(dimen), \1tjsetht{num)=(dimen), \1tjsetdp(num)={dimen)
These commands set the dimension of \box{num). One does not need to group the argument (num);
four calls of \1tjsetwd below have the same meaning.

\ltjsetwd42 28pt, \ltjsetwd42-28pt, \ltjsetwd=42 28pt, \ltjsetwd=42-20pt

6.2 Getting current direction

The direction parameter returns the current direction, and the boxdir parameter (with the argument (numy))
returns the direction of a box register \box(num). The returned value of these parameters are a string:

Direction yoko tate dtou utod (empty)

Returned value 4 3 1 11]

20

Table 11. Boxes in different direction

typeset in yoko direction typeset in tate or utod direction typeset in dtou direction

Fﬁ Wy 44 Dr Hr } Hp Dp
_ :dT

ht > T A T A
s hy yoko hy yoko
Hy wr 5 Wr Wh
S wy wy
Y - >
y = l v l v
Dy
Wy = hr +dr, Wr = hy + dy, Wh = hy +dy,
Hy = wr, Hr = wy/2, Hp = wy,
DY=0pt DT=Wy/2 DD=0pt

Hp| Dp
——

A T A T dr hr
2 2 g
S S 8
Hy = WD Wr = WD Wh wr o
I3
g
_ hp dp _ hp dp Y
Dy
Wy = hp +dp, Wr = hp +dp, Wp = wr,
Hy = wp, Hr = dp, Hp =dr,
Dy =0pt Dt = hp Dp = ht

\leavevmode\def\DIR{\1tjgetparameter{direction}} §
\hbox{\yoko \DIR}, \hbox{\tate\DIR}, o
\hbox{\dtou\DIR}, \hbox{\utod\DIR}, §_
\hbox{\tate$\hbox{tate math: \DIR}$} =
4, v, —, :, =
\setbox2=\hbox{\tate}\1tjgetparameter{boxdir}{2} 3

7 Redefined primitives by LuaTgX-ja

The following primitives are redefined by LuaTgX-ja (using \protected\def), for supporting Japanese
typesetting and multiple directions:

\/

\unhbox(numy), \unvbox{num), \unhcopy(numy, \unvcopy(num)

\vadjust{(material)}

\insert{number){(material)}

\lastbox

\raise(dimen)(box), \lower{dimen){box), \moveleft(dimen){box), \moveright(dimen)(box),

\split{number)to(dimen), \vcenter{{material)}

21

N

\makeatletter\scriptsize\ttfamily

\meaning\vadjust \\ % current luacall 51
j i) , . luacall 51
\meaning\1ltj@@vadjust \\ % LuaTeX-ja \vadjust

\meaning\1tj@@orig@vadjust % original

Figure 1. Redefining \vadjust primitive by LuaTgX-ja

\makeatletter
\def\1tj@stop@overwrite@primitive{\insert\vadjust\/\unhbox\vcenter\fontseries}
\makeatother

%% Keep the meaning of \insert, \vadjust, \/, \unhbox and \vcenter.

%% \fontseries will still be redefined by \LuaTeX-ja, because it is not primitive.
\usepackage{luatexja}

\usepackage{breqn}

\makeatletter
\1tj@overwrite@primitive\expandafter{\insert\vadjust\/\unhbox\vcenter}
\makeatother

%% Redefine \insert, \vadjust, \/, \unhbox and \vcenter.

Figure 2. \1tj@stop@overwrite@primitive and \1tj@overwrite@primitive

On each primitive \(primitive) in the list above, its meaning just before loading LuaTEX-ja is
backed up into \1tj@@Rorig@({primitive), and the meaning after redefinition by LuaTEX-ja is stored in
\1tj@@(primitive). For example, Figure 1 shows the situation of \vadjust primitive.

7.1 Suppressing redefinitions

Sometimes redefining primitives by LuaTgX-ja causes a problem. For example, the breqn package (v0.98k)
assumes that \vadjust and \insert have their primitive meanings. So, this package cannot by loaded
after LuaTgX-ja by default.

LuaTigX-ja version 20210517.0 has features for that problem. Namely:

« Primitives which is listed in \1tj@stop@overwrite@primitive are retain their meanings at just
before loading LuaTEX-ja.

« After loading LuaTgX-ja, one can specify primitives to \1t j@overwrite@primitive, to redefine them
by LuaTgX-ja.

See Figure 2 for an example.

8 Font Metric and Japanese Font

8.1 \jfont

To load a font as a Japanese font (for horizontal direction), you must use the \jfont instead of \font,
while \ jfont admits the same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so
TrueType/OpenType fonts with features can be used for Japanese fonts:

\jfont\tradmc={IPAexMincho:script=latn;%

+trad;-kern;jfm=ujis} at 1l4pt %/ﬁ%/%/@

\tradme & &, X

It is required to specify a (horizontal) JFM in at each calling of \jfont. A JFM is a Lua script which
contains measurements of characters and glues/kerns that are automatically inserted for Japanese type-
setting. The structure of JFM will be described in the next subsection.

22

O P N N G R W N =

—_
- o

\1tjsetparameter{differentjfm=both}
\jfont\F=HaranoAjiMincho-Regular: jfm=ujis
\jfont\G=HaranoAjiGothic-Medium: jfm=ujis
\jfont\H=HaranoAjiGothic-Medium: jfm=ujis;jfmvar=hoge

\F) \G []3} (% halfwidth space YI1 () gy (

) {\H [1} (% fullwidth space EF, TIEFT Q29

‘ ‘ ‘ ¥, TEF Az
EF, (\6 T 3 (&) \par
EF, (O TEFD 3 (EF) % prex-like

\1ltjsetparameter{differentjfm=paverage}

Figure 3. Example of jfmvar key

Table 12. Differences between horizontal JEMs shipped with LuaTEX-ja

00060660
HHHEEDL %
ADIBEENTRE
T2 o THLE

006006066
HHLHEEL S
ADBEINTE
FICT > THL =

00006006
»HH5HEED S
ADBEENTIK
R AN A=

T L7
Hrok | i 5 o Lol
ICIES 5 - #H o

(Blue: jfm-ujis.lua, Black: jfm-jis.lua, Red: jfm-min.lua)

L. FL7.

Note that the defined control sequence (\tradmc in the example above) using \jfont is not a font_def
token, but a macro. Hence the input like \fontname\tradmc causes a error. We denote control sequences
which are defined in \ jfont by (jfont_cs).

BSpecifying JFM The general scheme for specifying a JFM is the following:

\jfont(jfont_cs)=...;jtm=(JFM name)[/{(JFM features)}]; . ..;[jEmvar=(identifier)];. ..

(JFM name) The name of a (horizontal) JFM. LuaTgX-ja searches and loads jfm-{JFM name).lua’.

(JFM features) An optional comma-separated list of JFM options. Enclosing braces ({}) are optional,
but this does not escape any characters. The contents of this list can be accessed by a table
luatexja.jfont. jfm_feature from a JFM, at its loading. See Figure 4 for an example.

Note that any JFM files which is shipped with LuaTEX-ja does not use this feature.

(identifier) An optional string.

LuaTeX-ja “does not distinguish” two Japanese fonts which uses same JEM and are the same size. Here
“uses same JFM” means that all of (JFM name), (JFM features) and (identifier) of two fonts agree.

For example, The first “) " and “ [in Figure 3 are typeset in different real fonts. However, because
they use the same JFMs and their size are same, LuaTgX-ja inserts penalties, glues and kerns as if these
two character are typeset in a same font. Namely, the glue between these characters is halfwidth, as in
“) [. However, this does not applies with \F and \H in Figure 3, because their (identifier) are different.

BHorizontal JFMs The following horizontal JFMs are shipped with LuaTgX-ja.

"When LuaTgX-ja (version 20230409 or later) is used under KIEX 2¢, LuaTgX-ja searches a JFM also in directories which are
specified in \input@path.

23

O P N N R W N e

_ e e
[T =S

\A: (nil) \A \B \C \D

\B: [kana] = true, [kern] = “8.5”, [ps] = false, \A DEAF HE A4 F DEA 5 DHEA 3

\C: [kern] = 8.5, [down] = “8.2”, B HBWMAF DA F DA HDPWA g

\D: [kern] = “8.5”, [down] = “8.2”, \C BEAT DEAYT HElx HElx
O HiEATF HEATF HEIx HESAP

\small\ltjsetparameter{differentjfm=both}\tabcolsep=.5\zw

% \printjfmfeat is defined in the source of this document
\jfont\A=HaranoAjiMincho-Regular: jfm=testf at 9pt \printjfmfeat\A
\jfont\B=HaranoAjiMincho-Bold: jfm=testf/kern=08.5,-ps,+kana at 9pt \printjfmfeat\B
\jfont\C=HaranoAjiGothic-Regular:jfm=testf/kern=8.5,down=0.2 at 9pt \printjfmfeat\C
\jfont\D=HaranoAjiGothic-Bold: jfm=testf/down=8.2,kern=08.5 at 9pt \printjfmfeat\D
\def\TEST#1{\string#1&{#1HEH{\A 1 FI1&{#1HEH{\B 1 FI{#1HEIH\C 1 FI{MBHEH\D 1F}}
\vspace{-4\baselineskip}\hfill\ttfamily
\begin{tabular}{11111}

&\string\A&\string\B&\string\C&\string\D\\\TEST\A\\\TEST\B\\\TEST\C\\\TEST\D\\
\end{tabular}

% No space between “‘;E'' and ‘4 '' iff two Japanese fonts uses same JFM
\1ltjsetparameter{differentjfm=paverage}

Figure 4. Example of JFM features

jfm-ujis.lua A standard horizontal JFM of LuaTgX-ja. This file is based on upnmlminr-h.tfm, a metric
for UTF/OTF package that is used in upIEX. When you are going to use the luatexja-otf package, you
should use this JEM.

jfm-jis.lua A counterpart for jis.tfm, “JIS font metric” which is widely used in pIEX. A major differ-
ence between jfm-ujis.lua and this jfm-jis.1lua is that most characters under jfm-ujis.lua are
square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min18.tfm, which is one of the default Japanese font metric shipped with
PIEX.

jEfm-prop.lua A JFM for proportional typesetting. This JFM doesn’t have any information of character
dimension (width, height, depth), nor glues/kerns information.

jfm-propw.lua Another JFM for proportional typesetting. In contrast to jfm-prop.lua, this JFM has in-
formations of character height and depth.

See Table 12 for the difference among jfm-ujis.lua, jfm-jis.lua, jfm-min.lua.

BUsing kerning information in a font Some fonts have information for inter-glyph spacing. LuaTgX-
ja 20140324.0 or later treats kerning spaces like an italic correction; any glue and/or kern from the JFM
and a kerning space from the font can coexist. See Figure 5 for detail.

At version 20220411.0, defaults Japanese fonts which are defined at the loading of LuaTgX-ja, Itj-
classes, and ltjsclasses do not insert font-derived kerning spaces by default. This is because standard JFMs
do not expect font-derived kerning spaces between Japanese characters.

Also note that in \setmainjfont etc. which are provided by luatexja-fontspec package, kerning option
is set off (Kerning=0£f) by default. This means the following two lines have the same meaning:

\setmainjfont{HaranoAjiMincho-Regular}
\setmainjfont[Kerning=0ff]{HaranoAjiMincho-Regular}

HMextend and slant The following setting can be specified as OpenType font features:
extend=(extend) expand the font horizontally by (extend).

slant=(slant) slant the font.

24

NI RN - %, B N SU R R

= e
N o= o

N o G R W N e

EAFIvs&A0< BAFIv I 42
HAFIvIXA < BAFI 9 I HA T
ZAF IV RA 2 HAFIv IR0
HAFIVIEAD< HAFIvIRA D

\newcommand\test{\vrule ¥+ 3 v I X420 I \vrule\\}

\jfont\KMFW = HaranoAjiMincho-Regular:jfm=prop;-kern at 17.28pt

\jfont\KMFK = HaranoAjiMincho-Regular:jfm=prop at 17.28pt % kern is activated
\jfont\KMPW = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;-kern at 17.28pt
\jfont\KMPK = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;+kern at 17.28pt
\begin{multicols}{2}

\1ltjsetparameter{kanjiskip=0pt}

{\KMFW\test \KMFK\test \KMPW\test \KMPK\test}

\1ltjsetparameter{kanjiskip=3pt}
{\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
\end{multicols}

Figure 5. Kerning information and kanjiskip

\leavevmode

\1tjsetparameter{kanjiskip=0pt plus 3\zw}

\vrule\hbox to 15\zw{& L\] 5, ZH}\vrule\\

\jfont\G=HaranoAjiMincho-Regular%
:jfm=ujis;-1tjksp at \zw

\G\leavevmode%

\vrule\hbox to 15\zw{® L] 5, X H}\vrule

& AN 2, zZ H
B Moy 5, % Bl

Figure 6. 1tjksp “feature”

Note that LuaTgX-ja doesn’t adjust JFMs by these extend and slant settings; one have to write new JFMs
on purpose. For example, the following example uses the standard JFM jfm-ujis.lua, hence the let-
terspacing and the width of italic corrections are not correct:

\jfont\E=HaranoAjiMincho-Regular:extend=1.5; jfm=ujis;-kern
\jfont\S=HaranoAjiMincho-Regular:slant=1;jfm=ujis;-kern B SO I3 S7 7 FABC
\E HVSZHE \S HL5\/ABC

BM1tjksp “feature” kanjiskip natural, kanjiskip_stretch, kanjiskip_shrink keys (Page ??) makes
tha LuaTgX-ja inserts not only a glue which is specified by a JFM, and also the natural width/stretch
part/shrink part of kanjiskip. This functionality is disabled by -1t jksp specification, as shown in Figure 6.

BMltjpci “feature” By default, The luaotfload package (since v3.19) normalizes Unicode sequences to
NFC. However, this normalization converts CJK compatibility ideographs to their canonical equivalents,
such as “T#” (U+FA19) to “fi”. One can use variation selectors, but old fonts does not support them.

So, LuaTgX-ja now protects CJK compatibility ideographs from processing by the luaotfload package by
defualt. This functionality is disabled by -1tjpci specification, as shown in Figure 7.

8.2 \tfont

\tfont loads a font as a Japanese font for vertical direction. This command admits the same syntax as in
\font and \jfont. A font defined by \tfont differs the following points from that by \ jfont:

25

[B N N

[B N O

\def\TEST{\leavevmode\char"FA10\char"FA12\char"FA15
\char"FA19.H"\char"30899. | \char"309A. \par}

\jfont\A=HaranoAjiMincho-Regular:jfm=ujis; at 15pt jﬁ%ﬂ%?%ﬁ\gﬁiq} i)i\ cio
\A\TEST % default = N 0o
\jfont\G=HaranoAjiMincho-Regular:jfm=ujis;-1tjpci at 15pt iﬁﬂﬁf@i%ﬁa 75)- cj:

U 4 y, - N
\G\TEST % 1tjpci off B R 2 13
\jfont\H=HaranoAjiMincho-Regular:jfm=ujis;-normalize at 15pt
\H\TEST % normalization off

Figure 7. 1tjpci “feature”

\jfont\X=[HaranoAjiMincho-Regular.otf]:jfm=ujis
\tfont\U=[HaranoAjiMincho-Regular.otf]:jfm=ujisv
\tfont\V=[HaranoAjiMincho-Regular.otf]:jfm=ujisv;jpotf
\def\TEST#1#2{\leavevmode\hbox{#1#2\string#t2 “5IF, rAF&E. ” }}
\ttfamily\centering\TEST\yoko\X \quad \TEST\tate\U \quad \TEST\tate\V

— -
= <
51 5]
"o
e ok
L
WL AL
/If_:‘_; A'#;
\X “glﬁﬁ, ZIFUE‘}_’:'E/I\\' 7 < //O

Figure 8. jpotf “feature”

« OpenType Feature vrt2® is automatically activated, unless vert and//or vrt2 features are explicitly
activated or deactivated (as the second line in the example below).

\tfont\S=HaranoAjiMincho-Regular:jfm=ujisv % vrt2 is automatically activated
\tfont\T=HaranoAjiMincho-Regular:jfm=ujisv;-vert % vert and vrt2 are not activated
\tfont\U=file:ipaexm.ttf:jfm=ujisv

% vert is automatically activated, since this font does not have vrt2

« Sometimes vert and/or vrt2 are not activated while one specified activation of these feature. This
is because the font does not define these features in current combination of script tag and lan-
guage system identifier.

In this situation, LuaTgX-ja performs all replacements which is defined in vert feature for some
scripts for some languages.

« \tfont uses a vertical JEM instead of a horizontal JFM. LuaTgX-ja ships following vertical JFMs:

jfm-ujisv.lua A standard vertical JFM in LuaTEX-ja. This JFM is based on upnmlminr-v.tfm, a
metric for UTF/OTF package that is used in upIX.

jfm-tmin.lua A counterpart for tminl@.tfm, which is one of the default Japanese font metric
shipped with pIEX.

« If vert and/or vrt2 features are activated, one can specify jpotf to additional substitutions. By
default, it substitutes ideographic comma/period for fullwidth comma/period, and double prime
quotation marks for double quotation marks (See Figure 8). One can customize substitutions by
lua function luatexja.jfont.register_vert_replace (see Japanese version of this manual).

81f the font does not define the vrt2 feature, vert is used instead.

26

1
2
3
4
5
6

8.3 Default Japanese fonts and JFMs

If following commands are defined at loading LuaTgX-ja package, these change default Japanese fonts and
JFMs for them:

\1tj@stdmcfont The default Japanese font for the mincho family.
\1tj@stdgtfont The default Japanese font for the gothic family.
\1tj@stdyokojfm The default JFM for horizontal direction.

\1tj@stdtatejfm The default JFM for vertical direction.

For example,

\def\1tj@stdmcfont{IPAMincho}
\def\1tj@stdgtfont{IPAGothic}

makes that IPA Mincho and IPA Gothic will be used as default Japanese fonts, instead of Harano Aji fonts.

This feature is intended for classes which use special JFMs’. It is recommended to use
\luatexja-preset or \luatexja-fontspec package to select standard fonts in ordinary KIgX sources.

For compatibility with earlier versions, LuaTgX-ja reads luatexja.cfg automatically if it is found by
LuaTgX. One should not overuse this luatexja.cfg; it will overwrite the definition of \1tj@stdmcfont
and others.

8.4 Prefix psft

Besides “file” and “name” prefixes which are introduced in the luaotfload package, LuaTgX-ja adds “psft”
prefix in \ jfont (and \font), to specify a “name-only” Japanese font which will not be embedded to PDF.
Note that these non-embedded fonts under current LuaTgX has Identity-H encoding, and this violates the
standard 1SO32000-1:2008 ([10]).

OpenType font features, such as “+jp98”, have no meaning in name-only fonts using ‘psft” prefix, be-
cause we can’t expect what fonts are actually used by the PDF reader. Note that extend and slant settings
(see above) are supported with psft prefix, because they are only simple linear transformations.

BMcid key The default font defined by using psft prefix is for Japanese typesetting; it is Adobe-Japan1-
7 CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or
Korean typesetting.

\jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japanl-7;jfm=jis} % Japanese

\jfont\testD={psft:Ryumin-Light:jfm=jis} % default: Adobe-Japanl-7
\jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-7;jfm=jis}% Traditional Chinese
\jfont\testG={psft:SimSun:cid=Adobe-GB1-6;jfm=jis} % Simplified Chinese
\jfont\testK={psft:Batang:cid=Adobe-Koreal-2;jfm=jis} % Korean

on es = S :o0urcenanseril :cia= obe- =75 m=J1is 70 orean
\jfont\testkR={psft:S HanSerifAKR9:cid=Adobe-KR-9;jfm=jis} % K

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JEM for Chinese and
Korean fonts.

Atpresent, LuaTgX-ja supports only 5 values written in the sample code above. Specifying other values,
eg.,
\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}
produces the following error:
! Package luatexja Error: bad cid key ‘Adobe-Japan2'.
See the luatexja package documentation for explanation.
Type H <return> for immediate help.

<to be read again>
\par

9This is because commands has @ in their names.

27

~

1

—_
=]

1
13

N

1.78

?7h
I couldn't find any non-embedded font information for the CID
*Adobe-Japan2'. For now, I'll use ‘Adobe-Japanl-6'.

Please contact the LuaTeX-ja project team.
?

8.5 Structure of a JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers
in design-size unit.

version=(version) (optional, default value is 1)

The version JFM. Currently 1, 2, and, 3 are supported

dir={direction) (required)

The direction of JEM. 'yoko' (horizontal) or 'tate' (vertical) are supported.

zw=(length) (required)
The amount of the length of the “full-width”.

zh=(length) (required)
The amount of the “full-height” (height + depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)
This field specifies the “ideal” amount of kanjiskip. As noted in Subsection 4.2, if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified in
JEM, it is regarded as 0 pt). Note that (stretch) and (shrink) fields are in design-size unit too.
xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the “ideal” amount of xkanjiskip.

BCharacter classes Besides from above fields, a JFM file have several sub-tables those indices are nat-
ural numbers. The table indexed by i € w stores information of character class i. At least, the character
class 0 is always present, so each JEM file must have a sub-table whose index is [8]. Each sub-table (its
numerical index is denoted by i) has the following fields:

chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type i. This field is optional if i = 0, since all
JAchar which do not belong any character classes other than 0 are in the character class 0 (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following
form:

« a Unicode code point

. the character itself (as a Lua string, like 'd')

- a string like 'd*"' (the character followed by an asterisk)

- several “imaginary” characters (We will describe these later.)

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify the width of characters in character class i, the height, the depth and the amount of italic
correction. All characters in character class i are regarded that its width, height, and depth are as
values of these fields. The default values are shown in Table 13.

28

Direction of JFM 'yoko' (horizontal) 'tate' (vertical)

width field the width of the “real” glyph

height field the height of the “real” glyph 0.0
depth field the depth of the “real” glyph 0.0
italic field 0.0

Table 13. Default values of width field and other fields

Consider a Japanese character node which belongs to a charac-

A
I ter class whose the align field is 'middle"’.
*) « The black rectangle is the imaginary body of the node. Its
height width, height, and depth are specified by JFM.
« Since the align field is 'middle’, the “real” glyph is cen-
T width L, tered horizontally (the green rectangle) first.
down
“ort :: depth « Furthermore, the glyph is shifted according to values of
] y fields left and down. The ultimate position of the real
0 glyph is indicated by the red rectangle.
Figure 9. The position of the real glyph (horizontal Japanese fonts)
A < >
depth height
1l 1l
£
down, width ()
left
Y >
Y \

Figure 10. The position of the real glyph (vertical Japanese fonts)

left=(length), down=(length), align={align)

These fields are for adjusting the position of the “real” glyph. Legal values of align field are 'left',
'middle', and 'right'. If one of these 3 fields are omitted, 1eft and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 9 and Figure 10.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle’
or 'right'. For example, setting the align field to 'right' is practically needed when the current
character class is the class for opening delimiters’.

kern={[j1=(kern), [j'1={(kern), [ratio=(ratio)]}, ...}

glue={[j1={(width), (stretch), (shrink), [ratio=(ratio), ...1}, ...}

Specifies the amount of kern or glue which will be inserted between characters in character class i
and those in character class j.

(ratio) specifies how much the glue is originated in the “right” character. It is a real number between
0 and 1, and treated as 0.5 if omitted. For example, The width of a glue between an ideographic
full stop “; ” and a fullwidth middle dot “ + ” is three-fourth of fullwidth, namely halfwidth from
the ideographic full stop, and quarter-width from the fullwidth middle dot. In this case, we specify
(ratio) t0 0.25/(0.5 + 0.25) = 1/3.

In case of glue, one can specify following additional keys in each [j] subtable:

29

priority=(priority) An integer in [—4,3] (treated as 0 if omitted), or a pair of these integers
{(stretch), (shrink)} (version 2 or later). This is used only in line adjustment with priority by
luatexja-adjust (see Subsection 13.3). Higher value means the glue is easy to stretch, and is also
easy to shrink.

kanjiskip_natural=(num), kanjiskip_stretch=(num), kanjiskip_shrink=(num)
These keys specifies the amount of the natural width of kanjiskip(the stretch/shrink part, respec-
tively) which will be inserted in addition to the original JFM glue. Default values of them are all
0.

As an example, in jfm-ujis.lua, the standard JFM in horizontal writing, we have

- Between an ordinal letter “&” and an ideographic opening bracket, we have a glue whose
natural part and shrink part are both half-width, while its stretch part is zero. However,
this glue also can be stretched as much as the stretch part of kanjiskip times the value of
kanjiskip_stretch key (1 in this case).

3

« Between an ideographic closeing brackets (including the ideographic comma “, ”) and an
ordinal letter (including an ALchar “f”), we have the same glue. Again, this glue also can
be stretched as much as the stretch part of kanjiskip times the value of kanjiskip_stretch
key (1 in this case).

« Between an ideographic opening bracket and an ordinal letter and between an ordinal letter
and an ideographic closing bracket, we have a glue whose natural part and stretch part are
both zero, while its shrink part as much as the shrink part of kanjiskip.

Hence we have the following result:

\1tjsetparameter{kanjiskip=6pt minus \zw}

\V\hbox spread -2.5\zw{ad UL\l 5, X1 £}V

1 \leavevmode\let\V=\vrule
2 \ltjsetparameter{kanjiskip=8pt plus 5\zw}
3 \ltjsetparameter{xkanjiskip=8pt plus 8.5\zw} r - . .
~ = [
4 \V\hbox spread 7\zw{ad L\ 5, XH1 £}1\V a® r »J > 9,’ A B f
; ad® MW 5, 28] f
6 \vrule\hbox{ad TUL\] 5, X&1 £}\V\par ‘a@ Ry 2 Xﬁﬁ
7
8

end_stretch=(kern), end_shrink=(kern) (optional, version 1 only)
end_adjust={(kern), (kern), ...} (optional, version 2 or later)

round_threshold=(float) (optional, version 3 or later, only available in character class 0)

BCharacter to character classes We explain how the character class of a character is determined,
using jfm-test.lua which contains the following:

[e] = {

chars = { &' },

align = 'left', left = 8.0, down = 0.0,

width = 1.8, height = 0.88, depth = 8.12, italic=6.0,
3,
[26008] = {

chars = { 'c ', 't' },

align = 'left', left = 0.0, down = 8.8,

width = 8.5, height = 0.88, depth = 8.12, italic=6.8,
}!

Now consider the following input/output:

\jfont\a=IPAexMincho: jfm=test;+hwid

\setboxB\hbox{\a E7#E}\the\wdo 15.0pt

Now we look why the above source outputs 15 pt.

1. The character “t” is converted to its half width form “t” by hwid feature.

2. According to the JFM, the character class of “t” is 2000, hence its width is halfwidth.
30

3.

4.

This

The character class of “I&” is zero, hence its width is fullwidth.

Hence the width of \hbox equals to 15 pt.

example shows that the character class of a character is generally determined after applying font

features by luaotfload.

However, if the class determined by the glyph after application of features is zero, LuaTEX-ja adopts
the class determined by the glyph before application of features. The following input is an example.

\jfont\a=HaranoAjiMincho-Regular: jfm=test;+vert W oR
\a #, \inhibitglue & b

Here, the character class of the ideographic full stop “, 7 (U+3002) is determined as follows:

1.

. However, LuaTgX-ja remembers that this

. Hence the ideographic full stop “

As the case of “t”, the ideographic full stop “; ” is converted to its vertical form “ °” (U+FE12) by
vert feature.

. The character class of “ °”, according to the JFM is zero.

« Oy

is obtained from “; ” by font features. The character

>

class of “s 7 is non-zero value, namely, 2000.

>

" in above belongs the character class 2000.

BImaginary characters As described before, one can specify several “imaginary characters” in chars
field. The most of these characters are regarded as the characters of class 0 in pIEX. As a result, LuaTgX-ja
can control typesetting finer than pIEX. The following is the list of imaginary characters:

'"boxbdd'

The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent) para-
graph. If a hbox b begins (resp. ends) a glue or kern between this “charater” and a JAchar, JAglue
won’t be inserted before(resp. after) the hbox b. kanjiskip and xkanjiskip around a hbox.

'"parbdd’

The beginning of an (indented) paragraph.

'jcharbdd'

A boundary between JAchar and anything else.

'alchar', 'nox_alchar'

(version 3 or later) A boundary between JAchar and ALchar.

'glue'

-1

(version 3 or later) A boundary between JAchar, and, a glue or kern.

The left/right boundary of an inline math formula.

EPorting JFM from pIEX See Japanese version of this manual.

8.6

Math font family

TgX handles fonts in math formulas by 16 font families!?, and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table 14 shows counterparts to
TEX’s primitives for math font families. There is no relation between the value of \fam and that of \ jfam;
with appropriate settings, one can set both \fam and \jfam to the same value. Here (jfont_cs) in the
argument of jatextfont etc. is a control sequence which is defined by \jfont, i.e., a horizontal Japanese

font.

190Omega, Aleph, LuaTiX and e{u)pTEX can handles 256 families, but an external package is needed to support this in plain TgX
and BTEX.

31

Table 14. Commands for Japanese math fonts

Japanese fonts alphabetic fonts

\jfam € [0, 256) \fam

jatextfont ={ (jfam), (jfont_cs)} \textfont(fam)=(font_cs)
jascriptfont ={ (jfam), (jfont_cs)} \scriptfont(fam)=(font_cs)

jascriptscriptfont ={(jfam), (jfont_cs)} \scriptscriptfont(fam)=(font_cs)

8.7 Callbacks

LuaTgX-ja also has several callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback
With this callback, one can overwrite JEMs. This callback is called when a new JFM is loaded.

1 function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JEM file, except this argument has
chars field which contains character codes whose character class is not 0.

An example of this callback is the 1tjarticle class, with forcefully assigning character class 0 to
'parbdd’ in the JFM jfm-min.lua.

luatexja.define_jfont callback
This callback and the next callback form a pair, and you can assign characters which do not have
fixed code points in Unicode to non-zero character classes. This luatexja.define_font callback is
called just when new Japanese font is loaded.

—

function (<table> jfont_info, <number> font_number)
return <table> new_jfont_info
end

w N

jfont_info has the following fields, which may not overwritten by a user:

size The font size specified at \ jfont in scaled points (1sp = 271 pt).

zw, zh, kanjiskip, xkanjiskip These are scaled value of those specified by the JFM, by the font
size.

jfm The internal number of the JFM.
var The value of jfmvar key, which is specified at \ jfont. The default value is the empty string.

chars The mapping table from character codes to its character classes.
The specification [i].chars={({character), ...} in the JFM will be stored in this field as
chars={[(character)]=i, ...}.

char_type For i € w, char_type[i] is information of characters whose class is i, and has the fol-
lowing fields:

« width, height, depth, italic, down, left are just scaled value of those specified by the
JFM, by the font size.

« align is a number which is determined from align field in the JFM:

1 ('right' in JFM),
0.5 ('middle' in JFM),

0 (otherwise).

Fori, j € w, char_type[i][j] stores a kern or a glue which will be inserted between character
class i and class j.

32

The returned table new_jfont_info also should include these fields, but you are free to add more
fields (to use them in the luatexja.find_char_class callback). The font_number is a font number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTgX-ja.

luatexja.find_char_class callback

N o GR W N =

This callback is called just when LuaTgX-ja is trying to determine which character class a character
chr_code belongs. A function used in this callback should be in the following form:

function (<number> char_class, <table> jfont_info, <number> char_code)
if char_class~=8 then return char_class
else

return (<number> new_char_class or 9)
end
end

The argument char_class is the result of LuaTgX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should
be as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s
default routine.

luatexja.set_width callback

1
2
3

This callback is called when LuaTgX-ja is trying to encapsule a JAchar glyph_node, to adjust its
dimension and position.
function (<table> shift_info, <table> jfont_info, <table> char_type)

return <table> new_shift_info
end

The argument shift_info and the returned new_shift_info have down and left fields, which are
the amount of shifting down/left the character in a scaled point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automat-
ically adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character
class 0. For example, suppose that

« The setting of the JEM: (height) = 88x, (depth) = 12x (the standard values of Japanese Open-
Type fonts);

« The value of the real font: (height) = 28y, (depth) = 5y (the standard values of Japanese
TrueType fonts).
Then, the position of glyphs is shifted up by

88x

(28y + 5y) — 28y = 0y = 1.04
88x + 12x 0 TY) Ty = o5y = LAY

9 Parameters

9.1

\1ltjsetparameter

As described before, \1tjsetparameter and \1tjgetparameter are commands for accessing most param-
eters of LuaTgX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to that of pIEX
(e.g., \prebreakpenalty') =18008) is the position of hpack_filter callback in the source of LuaTgX, see
Section 14.

\1ltjsetparameter and \1tjglobalsetparameter are commands for assigning parameters. These take
one argument which is a key-value list. The difference between these two commands is the scope of
assignment; \1tjsetparameter does a local assignment and \1tjglobalsetparameter does a global one
by default. They also obey the value of \globaldefs, like other assignments.

The following is the list of parameters which can be specified by the \1tjsetparameter command.
[\cs] indicates the counterpart in pIEX, and symbols beside each parameter has the following meaning:

33

«

« “x” : values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole
hbox.

+ “i”: assignments are always global.

jcharwidowpenalty =(penalty)* [\jcharwidowpenalty]

Penalty value for suppressing orphans. This penalty is inserted just after the last JAchar which is
not regarded as a (Japanese) punctuation mark.

kcatcode ={{char_code) ,{natural number)3}*

An additional attributes which each character whose character code is {char_code) has. At ver-
sion 20120506.0 or later, the lowermost bit of {natural number) indicates whether the character is
considered as a punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={(char_code) , (penalty)}* [\prebreakpenalty]

Set a penalty which is inserted automatically before the character (char_code), to prevent a line starts
from this character. For example, a line cannot started with one of closing brackets “J 7, so LuaTgX-ja
sets

\ltjsetparameter{prebreakpenalty={‘] ,16000}}

by default.
pIEX has following restrictions on \prebreakpenalty and \postbreakpenalty, but they don’t exist
in LuaTgX-ja:

« Both \prebreakpenalty and \postbreakpenalty cannot be set for the same character.

« We can set \prebreakpenalty and \postbreakpenalty up to 256 characters.

postbreakpenalty ={(char_code) , (penalty)}* [\postbreakpenalty]

Set a penalty which is inserted automatically after the character (char_code), to prevent a line ends
with this character.

jatextfont ={ (jfam), (jfont_cs)}* [\textfont in TEX]
jascriptfont ={ (jfam), (jfont_cs)}* [\scriptfont in TiX]
jascriptscriptfont ={{jfam), (jfont_cs)}* [\scriptscriptfont in TpX]

yjabaselineshift =(dimen)
yalbaselineshift =(dimen) [\ybaselineshift]

tjabaselineshift =(dimen)
talbaselineshift =(dimen) [\tbaselineshift]

jaxspmode ={{char_code) , (mode) }*
Set whether inserting xkanjiskip is allowed before/after a JAchar whose character code is {char_code).
The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is
the default value.

This parameter is similar to the \inhibitxspcode primitive of pIEX, but not compatible with
\inhibitxspcode.

alxspmode ={(char_code) , (mode)}* [\xspcode]
Set whether inserting xkanjiskip is allowed before/after a ALchar whose character code is
(char_code). The followings are allowed for (mode):

34

[T N

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.

1, preonly Insertion of xkanjiskip is allowed before the character, but not after.

2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the

default value.

Note that parameters jaxspmode and alxspmode share a common table, hence these two parameters
are synonyms of each other.

autospacing =(bool) [\autospacing]
autoxspacing =(bool) [\autoxspacing]

kanjiskip =(skip)* [\kanjiskip]
The default glue which inserted between two JAchars. Changing current Japanese font does not alter
this parameter, as pIEX.

If the natural width of this parameter is \maxdimen, LuaTgX-ja uses the value which is specified in
the JFM for current Japanese font (See Subsection 8.5).
xkanjiskip =(skip)* [\xkanjiskip]

The default glue which inserted between a JAchar and an ALchar. Changing current font does not
alter this parameter, as pIEX.

As kanjiskip, if the natural width of this parameter is \maxdimen, LuaTEX-ja uses the value which is
specified in the JFM for current Japanese font (See Subsection 8.5).

differentjfm =(mode) '
Specify how glues/kerns between two JAchars whose JFM (or size) are different. The allowed argu-
ments are the followings:

average, both, large, small, pleft, pright, paverage

The default value is paverage. ...

jacharrange =(ranges)
kansujichar ={(digit), (char_code)}* [\kansujichar]

direction =(dir) (always local)

Assigning to this parameter has the same effect as \yoko (if (dir) = 4), \tate (if (dir) = 3), \dtou (if
(dir) = 1) or \utod (if (dir) = 11). If the argument (dir) is not one of 4, 3, 1 nor 11, the behavior of
this assignment is undefined.

9.2 \ltjgetparameter

\ltjgetparameter is a control sequence for acquiring parameters. It always takes a parameter name as
first argument.

\ltjgetparameter{differentjfm},
\1tjgetparameter{autospacing},
\1tjgetparameter{kanjiskip},
\1tjgetparameter{prebreakpenalty}{‘) }.

paverage, 1, 0.0pt plus 0.4pt minus 0.5pt, 10000.
The return value of \1tjgetparameter is always a string, which is outputted by tex.write(). Hence
any character other than space “ ” (U+80828) has the category code 12 (other), while the space has 10 (space).

« If first argument is one of the following, no additional argument is needed.

jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing,
kanjiskip, xkanjiskip, differentjfm, direction

35

Note that \1tjgetparameter{autospacing} and \1tjgetparameter{autoxspacing} returns 1 or 0,
not true nor false.

« If first argument is one of the following, an additional argument—a character code, for example—is
needed.

kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\1tjgetparameter{jaxspmode}{...} and \ltjgetparameter{alxspmode}{...} returns 0, 1,
2, or 3, instead of preonly etc.

« \1ltjgetparameter{jacharrange}{(range)} returns 8 if “characters which belong to the character
range (range) are JAchar”, 1 if “... are ALchar”. Although there is no character range —1, specifying
—1 to (range) does not cause an error (returns 1).

« For an integer (digit) between 0 and 9, \1tjgetparameter{kansujichar}{(digit)} returns the char-
acter code of the result of \kansuji(digit).

+ \ltjgetparameter{adjustdir} returns a integer which represents the direction of the surrounding
vertical list. As direction, the return value 1 means dtou direction, 3 means tate direction (vertical
typesetting), and 4 means yoko direction (horizontal typesetting).

« For an integer (register) between 0 and 65535, \1tjgetparameter{boxdir}{(register)} returns the
direction of \box(register). If this box register is void, the returned value is zero.

« The following parameter names cannot be specified in \1tjgetparameter.
jatextfont, jascriptfont, jascriptscriptfont, jacharrange
« \ltjgetparameter{chartorange}{(char_code)} returns the range number which (char_code) be-

longs to (although there is no parameter named “chartorange”).

If {char_code) is between 0 and 127, this (char_code) does not belong to any character range. In this
case, \1tjgetparameter{chartorange}{{char_code)} returns —1.

Hence, one can know whether (char_code) is JAchar or not by the following:

\1tjgetparameter{jacharrange}{\1tjgetparameter{chartorange}{(char_code)}}
% 0 if JAchar, 1 if ALchar

« Because the returned value is string, the following conditionals do not work if kanjiskip
(or xkanjiskip) has the stretch part or the shrink part.

\ifdim\1ltjgetparameter{kanjiskip}>\z@ ... \fi
\ifdim\1ltjgetparameter{xkanjiskip}>\z@ ... \fi
The correct way is using a temporary register.

\@tempskipa=\1tjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ ... \fi
\@tempskipa=\1tjgetparameter{xkanjiskip}\ifdim\@tempskipa>\z@ ... \fi

9.3 Alternative Commands to \1tjsetparameter

The basic method to set parameters of LuaTgX-jais to use \1tjsetparameter or \1tjglobalsetparameter.
However, these commands are slow, because they parse a key-value list, so several alternative commands
are used in LuaTgX-ja. This subsection is not for general LuaTpX-ja users.

ESetting kanjiskip or xkanjiskip In Itjsclasses, every size-changing command such as \Large changes
\kanjiskip and \xkanjiskip. Buta simple implementation, as the code below, is slow since two key-value
lists are parsed by \1tjsetparameter:

36

\1tjsetparameter{kanjiskip=8\zw plus .1\zw minus .81\zw}
\@tempskipa=\1tjgetparameter{xkanjiskip}
\ifdim\@tempskipa>\z@
\if@slide
\1ltjsetparameter{xkanjiskip=8.1lem}
\else
\1tjsetparameter{xkanjiskip=0.25em plus 6.15em minus 6.86em}
\fi
\fi

Hence, LuaTgX-ja defines more primitive commands, namely \1ltj@setpar@global,
\ltjsetkanjiskip, and \1tjsetxkanjiskip. Here

\1tj@setpar@global\ltjsetkanjiskip 16pt

and \1tjsetparameter{kanjiskip=18pt} has the same effect. The actual code of ltjsclasses is shown below:

\1tj@setpar@global
\1tjsetkanjiskip{\z@ plus .1\zw minus .01\zw}
\@tempskipa=\1tjgetparameter{xkanjiskip}
\ifdim\@tempskipa>\z@
\if@slide
\1ltjsetxkanjiskip.lem
\else
\1ltjsetxkanjiskip.25em plus .15em minus .B6em
\fi
\fi

Note that using \ltjsetkanjiskip or \ltjsetxkanjiskip alone, that is, without executing
\1tj@setpar@global in advance, is not supported.

10 Other Commands for plain TgX and KXTEX 2¢

10.1 Commands for compatibility with pIEX

The following commands are implemented for compatibility with pIEX. Note that the former five com-
mands don’t support JIS X 0213, but only JIS X 0208. The last \kansuji converts an integer into its Chinese
numerals.

\kuten, \jis, \euc, \sjis, \ucs, \kansuji

These six commands takes an internal integer, and returns a string.

\newcount\hoge

\hoge="2423 %" 9251, JL._H—
\the\hoge, \kansuji\hoge\\ 12355,
\jis\hoge, \char\jis\hoge\\ —+t0—
\kansujil1701

To change characters of Chinese numerals for each digit, set kansujichar parameter:

\1ltjsetparameter{kansujichar={1, =}}
\1tjsetparameter{kansujichar={7,‘%E}}
\1ltjsetparameter{kansujichar={8, &}}
\kansujil7e1

%

Bl
Gl

10.2 \inhibitglue, \disinhibitglue

\inhibitglue suppresses the insertion of a glue/kern soecified in JFM at the place. The following is an
example, using a special JFM that there will be a glue between the beginning of a box and “®”, and also
between “®” and “U”.

37

N e W e

R W N

[S N N

\jfont\g=HaranoAjiMincho-Regular:jfm=test \g » v HW
\fbox{\hbox{ 7 & \inhibitglue J}}

\inhibitglue\par\noindent #1 »H 1
\par\inhibitglue\noindent 2 »H 2
\par\noindent\inhibitglue @3 »H 3

\par) 4) \inhibitglue 5) 4) 5
\par\hrule\noindent dpoff\inhibitglue ice H office

With the help of this example, we remark the specification of \inhibitglue:

The call of \inhibitglue in the (internal) vertical mode is simply ignored.

« \inhibitglue does not suppress kanjiskip or \xkanjiskip.

The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not
get over boundary of paragraphs. Moreover, \ inhibitglue cancels ligatures and kernings, as shown
in the last line of above example.

The call of \inhibitglue in math mode is just ignored.

\disinhibitglue suppresses the effect of \inhbitglue. In other words, \disinhibitglue allows the
insertion of a glue/kern specified by JFM. If \inhibitglue and \disinhibitglue both specified at the
same time, the latest one is effective. This commans is added in the version 20201224.0.

Note that \disinhibitglue also cancels ligatures and kernings.

10.3 \1ltjfakeboxbdd, \1tjfakeparbegin

Sometimes 'parbdd' and 'boxbdd' specifications look like “fail”, especially in paragraphs inside list en-
vironments. This is because \everypar inserts some nodes such as boxes and kerns, so the “first letter” in
a paragraph is in fact not the first letter.

\parindentl\zw

\noindent 537)373555537)\11& % for comparison

THhdHHHH \par % normal paragraph %Eb%%%%%%%%%%@%
\everypar{\null} " BHHHDD
THHHHHH \par % 222

\1tjfakeboxbdd and \1tjfakeparbegin primitives resolve this situation.

« \1ltjfakeparbegin creates a node which indicates “beginning of an indented paragraph” to the
insertion process of JAglue.

« \1tjfakeboxbdd creates a node which indicates “beginning/ending of a box” to the insertion process
of JAglue.

As an example, the example above can be improved as follows:

\parindentl\zw

\noindent @ @ @ 4 4 45 45 &5 \par % for comparison

THhdHdHHH \par % normal paragraph %éﬁéﬁﬁﬁﬁﬁﬁiﬁ%@%
'HHdHdd D

\everypar{\null\1ltjfakeparbegin}
THdHHdHH \par

10.4 \insertxkanjiskip, \insertkanjiskip

There are some situations which one wants to insert xkanjiskip manually. A simple approach is to use
\hskip\ltjgetparameter{xkanjiskip}, but this approach has several weak points. To cope with these
weak points, LuaTgX-ja defines a command \insertxkanjiskip which inserts xkanjiskip glue manually,
from the version 20201224.0.

38

N R . I N TSR R

—_
o

N

« “\insertxkanjiskip” (without any keyword) uses the value of xkanjiskip at the place.

« “\insertxkanjiskip late” (with “late” keyword) uses the value of xkanjiskip at the end of a para-
graph/hbox.

See the example below.

\1tjsetparameter{xkanjiskip=8.25\zw}

»H (% 8.5\zw (from JFM)

& \insertxkanjiskip ¢ 0.25\zw (xkanjiskip at here)

&H\insertxkanjiskip late (% 08.25\zw (xkanjiskip at EOP)

dHak 1.25\zw (xkanjiskip at EOP) »h (B> (H a
\\% » (B a
\1tjsetparameter{xkanjiskip=1.25\zw}

@ \insertxkanjiskip (% 1.25\zw (xkanjiskip at here)

Ha% 1.25\zw (xkanjiskip at EOP)

%% At the end of the paragraph (EOP), xkanjiskip is 1.25\zw.

There is a similar command \insertkanjiskip (kanjiskip instead of xkanjiskip) is also defined. Note
that any shorthand form of \insert[x]kanjiskip are not defined by LuaTgX-ja.

10.5 \ltjdeclarealtfont

Using \1tjdeclarealtfont, one can “compose” more than one Japanese fonts. This \1tjdeclarealtfont
uses in the following form:

\1tjdeclarealtfont(base_font_cs){alt_font_cs){(range)}
where (base_font_cs) and (alt_font_cs) are defined by \ jfont. Its meaning is

If the current Japanese font is (base_font_cs), characters which belong to (range) is typeset
by another Japanese font (alt_font_cs), instead of (base_font_cs).

Here (range) is a comma-separated list of character codes, but also accepts negative integers: —n (n=1)
means that all characters of character classes n, with respect to JFM used by (base_font_cs). Note that
characters which do not exist in (alt_font_cs) are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTgX-ja, then

\1tjdeclarealtfont\hoge\piyo{"3608-"30FF, {-1}-{-1}}

does

If the current Japanese font is \hoge, U+3000-U+38FF and characters in class 1 (ideographic
opening brackets) are typeset by \piyo.

»

Note that specifying negative numbers needs specification like {-13}-{-1}, because simple “-1” is
treated as the range between 0 and 1.

\gtfamily\large 1[1[1[q

b b b
9,\char*1,\1tjalchar'1,\1tjjachar" 1\\ % default: ALchar
a,\char' a,\ltjalchar' a,\ltjjachar® a\\ % default: JAchar a, d,o a
g,\charg,\ltjalchar'g,\1tjjachar'g % ALchar unless \1ltjjachar £.2.8,8

11 Commands for IXTEX 2¢

11.1 Loading Japanese fonts in KXTEX 2¢

From version 20190107, LuaTiX-ja does not load Japanese fonts for horizontal direction and that for vertical
direction at same time, to reduce the number of loaded fonts. This will save time for typesetting and
memory consumption of Lua side ([11]).

39

+ \selectfont loads (and chooses) only the Japanese font for the current direction, and does not
load the Japanese font for other direction (LuaTEX-ja only detects its size and JFM, to calculate the
amount of shifting the baseline).

« Direction changing commands (\yoko, \tate, \dtou, \utod) are patched to include the following
process:

If the Japanese font for new direction is not loaded, LuaTgX-ja loads it automatically.
Original commands are saved as \1tj@@orig@yoko etc.

« Specifying Japanese font command which is defined by \jfont, \tfont, or \DeclareFixedFont di-
rectly actually loads (and selects) the Japanese font. For example, JAchars in \box8 will be typeset
in \HOGE, in the following code:

% in horizontal direction (\yoko)
\DeclareFixedFont\HOGE{JT3}{gt}{m}{n}{12} % JT3: for vertical direction
\HOGE

\setboxB8=\hbox{\tate #HL'5}

11.2 Patch for NFSS2

Japanese patch for NFSS2 in LuaTgX-ja is based on plfonts.dtx which plays the same role in pBTEX 2¢.
We will describe commands which are not described in Subsection 3.1.

additonal dimensions
Like pIIEX 2¢, LuaTgX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

and its \normalsize version:

\Cht (height), \Cdp (depth), \Cwd (width),
\Cvs (equals to \baselineskip), \Chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former
dimensions are determined from a character whose character class is zero, but on the other hand
\zw and \zh are specified by JFM.

\DeclareYokoKanjiEncoding{{encoding)}{(text-settings)}{(math-settings)}
\DeclareTateKanjiEncoding{(encoding)}{{text-settings) }{(math-settings)}
In NFSS2 under LuaTgX-ja, distinction between alphabetic fonts and Japanese fonts are only made by
their encodings. For example, encodings OT1 and T1 are encodings for alphabetic fonts, and Japanese
fonts cannot have these encodings. These command define a new encoding scheme for Japanese font
families.

\DeclareKanjiEncodingDefaults{(text-settings)}{(math-settings)}
\DeclareKanjiSubstitution{(encoding)}{(family)}{(series)}{(shape)}

\DeclareErrorKanjiFont{({encoding)}{(family)}{(series)}{(shape)}{(size)}
The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{({unified-cmd)}{{al-cmd)}{{ja-cmd)}

\DeclareRelationFont{(ja-encoding)}{{ja-family)}{(ja-series)}{{ja-shape)}
{(al-encoding) }{(al-family) }{(al-series) }{(al-shape) }
This command sets the “accompanied” alphabetic font (given by the latter 4 arguments) with respect
to a Japanese font given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local
assignment, where \DeclareRelationFont does a global assignment.

40

\userelfont

T

(Only) at the next call of \selectfont, change current alphabetic font encoding/family/... to the
‘accompanied’ alphabetic font family with respect to current Japanese font family, which was set by
\DeclareRelationFont or \SetRelationFont.

The following is an example of \SetRelationFont and \userelfont:

\makeatletter

\SetRelationFont{JY3}{\k@family}{m}{n}{TU}{Imss}{m}{n}
% \k@family: current Japanese font family

\userelfont\selectfont @ L\)Sabc

HW 9 abc

\adjustbaseline

In pBTEX 2¢, \adjustbaseline sets \thaselineshift to match the vertical center of “M” and that of
“B” in vertical typesetting:
(hp +dy) — (hé + d@)

\thaselineshift « 5 + dys — dw,

where h, and d, denote the height of “a” and the depth, respectively. In LuaTgX-ja, this
\adjustbaseline does similar task, namely setting the talbaselineshift parameter (a Japanese charac-
ter whose character class is zero is used, instead of ‘7%’).

\fontfamily{(family)}

As in KTgX 2¢, this command changes current font family (alphabetic, Japanese, or both) to (family).
See Subsection 11.3 for detail.

\fontshape{(shape)}, \fontshapeforce{(shape)}

As in BIgEX 2¢, this command changes current alphabetic font shape according to shape change rules.

Traditionally, \fontshape changes also current Japanese font shape always. However, this leads a lot
of BIEX font warning like

Font shape ‘JY3/mc/m/it' undefined
using ‘JY3/mc/m/n' instead on

when \itshape is called, because almost all Japanese fonts only have shape “n”, and \itshape calls
\fontshape.

LuaTgX-ja 20200323.0 change the behavior. Namely, \ fontshape{(shape)} and \fontshapeforce{(shape)}
change current Japanese font shape, only if the required shape (according to shape changing rules)

or (shape) is avaliable in current Japanese font family/series. When this is not the case, an info such

as

Kanji font shape JY3/mc/m/it' undefined
No change on ...

is issued instead of a warning.

\kanjishape{(shape)}, \kanjishapeforce{(shape)}

\kanjishape{(shape)} changes current Japanese font shape according to shape change rules, and
\kanjishapeforce{(shape)} changes current Japanese font shape to (shape), regardless of the rules.
Hence \kanjishape{it} produces a warning

Font shape ‘JY3/mc/m/it' undefined
using “JY3/mc/m/n' instead on

which is not produced by \fontshape{it}.

\DeclareAlternateKanjiFont

{(base-encoding) }{(base-family)}{(base-series) }{(base-shape) }

{(alt-encoding) }{{alt-family) }{ (alt-series) }{{alt-shape) } {(range) }

As\1ltjdeclarealtfont (Subsection 10.5), characters in (range) of the Japanese font (we say the base
font) which specified by first 4 arguments are typeset by the Japanese font which specified by fifth
to eighth arguments (we say the alternate font). An example is shown in Figure 11.

41

\DeclareKanjiFamily{JY3}{edm}{}

\DeclareFontShape{JY3}{edm}{m}{n} {<-> s*HaranoAjiMincho-Regular:jfm=ujis}{}
\DeclareFontShape{JY3}{edm}{m}{fb} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=003FFF}{}
\DeclareFontShape{JY3}{edm}{m}{fb2} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=FF1960}{}
\DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{J¥3}{edm}{m}{fb}{ "4EBB-"67FF,{-2}-{-2}}
\DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{J¥3}{edm}{m}{fb2}{"6800-"9FFF}
{\kanjifamily{edm}\selectfont

HEAERIF. EHIOEEShEERICEIT2KREZELCTITEIL, }

BARERE. EHIGEESNLEERICBI2AREZECTITHL, -

Figure 11. An example of \DeclareAlternateKanjiFont

« In \1tjdeclarealtfont, the base font and the alternate font must be already defined. But this
\DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont is ef-
fective only after current Japanese font is changed, or only after \selectfont is executed.

Furthermore, LuaTlgX-ja applies patches which enables NFSS2 commands, such as
\DeclareSymbolFont and \SetSymbolFont, to specify Japanee fonts as math fonts.

Specifying disablejfam option in \usepackage prevents applying these patches. Hence one cannot
write Japanese Characters in math mode directly if disablejfam option is specified. The code below does
not work either:

\DeclareSymbolFont{mincho}{JY3}{mc}{m}{n}
\DeclareSymbolFontAlphabet{\mathmc}{mincho}

11.3 Detail of \fontfamily command

In this subsection, we describe when \fontfamily(family) changes current Japanese/alphabetic font fam-
ily. Basically, current Japanese fotn family is changed to (family) if it is recognized as a Japanese font
family, and similar with alphabetic font family. There is a case that current Japanese/alphabetic font fam-
ily are both changed to (family), and another case that (family) isn’t recognized as a Japanese/alphabetic
font family either.

BRecognition as Japanese font family First, Whether Japanese font family will be changed is deter-
mined in following order. This order is very similar to \fontfamily in pIEX 2¢, but we re-implemented
in Lua. We use an auxiliary list Nj.

1. If the family (family) has been defined already by \DeclareKanjiFamily, {family) is recognized as
a Japanese font family. Note that (family) need not be defined under current Japanese font encoding.

2. If the family (family) has been listed in a list Nj, this means that (family) is not a Japanese font
family.

3. If the luatexja-fontspec package is loaded, we stop here, and (family) is not recognized as a Japanese
font family.

If the luatexja-fontspec package is not loaded, now LuaTEX-ja looks whether there exists a Japanese
font encoding (enc) such that a font definition named (enc)(family) . £d (the file name is all lower-
case) exists. If so, (family) is recognized as a Japanese font family (the font definition file won’t be
loaded here). If not, (family) is not a Japanese font family, and (family) is appended to the list Nj.

BRecognition as alphabetic font family Next, whether alphabetic font family will be changed is
determined in following order. We use auxiliary lists F5 and Na,

1. If the family (family) has been listed in a list F, (family) is recognized as an alphabetic font family.

42

Table 15. strut

box direction width height depth user command
\ystrutbox yoko 0 0.7\baselineskip 0.3\baselineskip \ystrut
\tstrutbox tate, utod 0 0.5\baselineskip 0.5\baselineskip \tstrut
\dstrutbox dtou 0 0.7\baselineskip 0.3\baselineskip \dstrut
\zstrutbox — 0 0.7\baselineskip 0.3\baselineskip \zstrut

2. If the family (family) has been listed in a list N, this means that (family) is not an alphabetic font
family.

3. If there exists an alphabetic font encoding such that the family (family) has been defined under it,
(family) is recognized as an alphabetic font family, and to memorize this, (family) is appended to
the list Fa.

4. Now LuaTgX-ja looks whether there exists an alphabetic font encoding (enc) such that a font defi-
nition named (enc)(family) . £d (the file name is all lowercase) exists. If so, current alphabetic font
family will be changed to (family) (the font definition file won’t be loaded here). If not, current
alphabetic font family won’t be changed, and (family) is appended to the list Na.

Also, each call of \DeclareFontFamily after loading of LuaTEX-ja makes the second argument (family)
is appended to the list Fx.

The above order is very similar to \fontfamily in pKIgEX 2¢, but more complicated (clause 3.). This
is because pIEX 2. is a format however LuaTgX-ja is not, hence LuaTEX-ja does not know calls of
\DeclareFontFamily before itself is loaded.

BRemarks Of course, there is a case that (family) is not recognized as a Japanese font family, nor an
alphabetic font family. In this case, LuaTgX-ja treats “the argument (family) is wrong”, so set both current
alphabetic and Japanese font family to (family), to use the default family for font substitution.

11.4 Notes on \DeclareTextSymbol

From KIEX 2017/01/01, the standard encoding of LuafTgX is changed to the TU encoding. This menas that
symbols defined by T1 and TS1 encodings can be used without loading any package. To produces these
symbols in alphabetic fonts in LuaTgX-ja, LuaTgX-ja patches \DeclareTextSymbol, and reloads tuenc.def.

Under original definition of \DeclareTextSymbol, internal commands which is defined by
\DeclareTextSymbol (such as \T1\textquotedblleft) are chardef tokens. However, this no longer holds
in LuaTgX-ja; for example, the meaning of \TU\textquotedblleft is \1tjalchar8226..

11.5 \strutbox

As pKIEX (2017/04/08 or later), \strutbox is a macro which is expanded to one of
\ystrutbox, \tstrutbox, and \dstrutbox (all of them are shown in Table 15), according to the
current direction. Similarly, \strut now uses one of these boxes.

12 expl3 interface

This section describes expl3 interfaces provided by LuaTgX-ja. All of them belong to te platex module,
since they are provided for compatibility with Japanese pIEX. Note that commands which are marked
with dagger (“”) are additions by LuaTgX-ja.

\platex_direction_yoko:, \platex_direction_tate:, \platex_direction_dtou:
Synonyms for \yoko, \tate and \dtou, respectively.

\platex_if_direction_yoko_p:
43

\platex_if_direction_yoko:IF {(true code)}{(false code)}
Tests if the current direction is yoko (horizontal writing).

\platex_if_direction_tate_nomath_p:T

\platex_if_direction_tate_nomath: ET {(true code) }{(false code)}
Tests if the current direction is tate (vertical writing).

\platex_if_direction_tate_math_p:'

\platex_if_direction_tate_math: ET {(true code)}{(false code)}
Tests if the current direction is utod.

\platex_if_direction_tate_p:

\platex_if_direction_tate:IF {(true code)}{(false code)}
Tests if the current direction is tate or utod.

\platex_if_direction_dtou_p:

\platex_if_direction_dtou:IF {(true code)}{(false code)}
Tests if the current direction is dtou.

\platex_if_box_yoko_p:N (box)

\platex_if box_yoko:NIF (box) {(true code)}{(false code)}
Tests if the direction of (box) is yoko.

\platex_if_box_tate_nomath_p:NT (box)

\platex_if_box_tate_nomath:NIF' (box) {(true code)}{(false code)}
Tests if the direction of (box) is tate.

\platex_if_box_tate_math_p:N" (box)

\platex_if_box_tate_math:NIF' (box) {(true code)}{(false code)}
Tests if the direction of (box) is utod.

\platex_if box_tate_p:N (box)

\platex_if box_tate:NIF (box) {(true code)}{(false code)}
Tests if the direction of (box) is tate or utod.

\platex_if _box_dtou_p:N (box)

\platex_if box_dtou:NITF (box) {(true code)}{(false code)}
Tests if the direction of (box) is dtou.

13 Addon packages

LuaTgX-ja has several addon packages. These addons are written as KIEX packages, but luatexja-otf

and luatexja-adjust can be loaded in plain LuaTgX by \input.

13.1 luatexja-fontspec

As described in Subsection 3.2, this optional package provides the counterparts for several commands
defined in the fontspec package (requires fontspec v2.4). In addition to OpenType font features in the
original fontspec, the following “font features” specifications are allowed for the commands of Japanese

version:

CID=(name), JFM=(name), JFM-var=(name)

These 3 keys correspond to cid, jfm and jfmvar keys for \jfont and \tfont respectively. See Sub-

sections 8.1 and 8.4 for details of cid, jfm and jfmvar keys.

The CID key is effective only when with NoEmbed described below. The same JFM cannot be used in
both horizontal Japanese fonts and vertical Japanese fonts, hence the JFM key will be actually used

in YokoFeatures and TateFeatures keys.

44

N e W R

N . I N TSR R

BifHD 7 X b

\jfontspec[b
YokoFeatures={Color=FF1980}, TateFeatures={Color=003FFF}, ﬁg

TateFont=HaranoAjiGothic-Regular
J]{HaranoAjiMincho-Regular}
\hbox{\yoko DT X }\hbox{\tate HHEDT X +}
\addjfontfeatures{Color=06AF80}
\hbox{\yoko #&fH}\hbox{\tate #tiH}

BERE TN
[saat

Figure 12. An example of TateFeatures etc.

\jfontspec[
AltFont={
{Range="4EB0-"67FF, Font=HaranoAjiGothic-Regular, Color=803FFF},
{Range="6880-"9EFF, Color=FF1960},
{Range="3040-"3686F, Font=HaranoAjiGothic-Regular, Color=35A16B},

}
J]{HaranoAjiMincho-Regular}
HEAERIF. EHIOBESNEERICEIT2AREZELCTITEIL. bbb S DFRDEHIZ.
HERCOBMICLEZHEL. hHAELTICHOIEDODTERHDD S TEREEERL, -

AAERIG, EHIOERESHICERICEITAXEZEL TITEIL, Do OIS DFRDD
IC. MERCOBMICEZHRE. DOAELLICODAEDODTHHOB Lo TEIRZHERL, -

Figure 13. An example of Al1tFont

NoEmbed
By specifying this key, one can use “name-only” Japanese font which will not be embedded in the
output PDF file. See Subsection 8.4.

Kanjiskip={bool)

TateFeatures={(features)}, TateFont={font)
The TateFeatures key specifies font features which are only turned on in vertical writing, such as
Style=VerticalKana (vkna feature). Similarly, the TateFont key specifies the Japanese font which
will be used only in vertical writing. A demonstrarion is shown in Figure 12.

YokoFeatures={(features)}
The YokoFeatures key specifies font features which are only turned on in horizontal writing,. A
demonstrarion is shown in Figure 12.

AltFont
As\1tjdeclarealtfont (Subsection 10.5) and \DeclareAlternateKanjiFont (Subsection 11.2), with
this key, one can typeset some Japanese characters by a different font and/or using different features.
The AltFont feature takes a comma-separated list of comma-separated lists, as the following:

AltFont = {
{ Range=(range), (features)},
{ Range=(range), Font=(font name), (features) },
{ Range=(range), Font=(font name)> },

}

Each sublist should have the Range key (sublist which does not contain Range key is simply ignored).
A demonstrarion is shown in Figure 13.

45

BRemark on AltFont, YokoFeatures, TateFeatures keys

In AltFont, YokoFeatures, TateFeatures keys, one cannot specify per-shape settings such as
BoldFeatures. For example,

AltFont = {
{ Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,
Range="3000-"30FF, BoldFeatures={Color=FF1966} }
}

does not work. Instead, one have to write

UprightFeatures = {
AltFont = { { Font=HogeraMin-Light, Range='"3600-"30FF, } },
3,

BoldFeatures = {
AltFont = { { Font=HogeraMin-Bold, Range="3800-"30FF, Color=FF1960 } },

}

On the other hand, YokoFeatures, TateFeatures and TateFont keys can be specified in each list in
the A1tFont key. Also, one can specify AltFont inside YokoFeatures, TateFeatures.

Note that features which are specified in YokoFeatures and TateFeatures are always interpreted after
other “direction-independent” features. This explains why \addjfontfeatures at line 6 in Figure 12 has
no effect, because a color specification is already done in YokoFeatures and TateFeatures keys.

13.2 luatexja-otf

This optional package supports typesetting glyphs by specifying a CID number. The package luatexja-otf
offers the following 2 low-level commands:

\CID{{number)}
Typeset a glyph whose CID number is (number). If the Japanese font is neither Adobe-Japan1, Adobe-
GB1, Adobe-CNS1, Adobe-Koreal, nor Adobe-KR CID-keyed font, LuaTiX-ja treats that (number) is
a CID number of Adobe-Japan1 character collection, and tries to typeset a “most suitable glyph”.

Note that if the Japanese font is loaded using the HarfBuzz library, this \CID command does not work.
\UTF{{hex_number)}

Typeset a character whose character code is (hex_number) (in hexadecimal). This command is similar
to \char"(hex_number), but please remind remarks below.

This package automatically loads luatexja-ajmacros.sty, which is slightly modified version of
ajmacros.sty'!. Hence one can use macros which sre defined in ajmacros.sty, such as \aj¥ .

BRemarks Characters by \CID and \UTF commands are different from ordinary characters in the fol-
lowing points:

« Always treated as JAchars.

« In vertical direction, vert/vrt2 feature are automatically applied to characters by \UTF, regardless
these feature are not activated in current Japanese font.

« Processes for supporting other OpenType features (for example, glyph replacement and kerning)
by the luaotfload package is not performed to these characters.

B Additional syntax of JFM The package luatexja-otf extends the syntax of JEM; the entries of chars
table in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number
in Adobe-Japan1 is xxx.

This extended notation is used in the standard JEM jfm-ujis.lua to typeset halfwidth Hiragana glyphs
(CID 516-598) in halfwidth.

46

[T ORI

4

The value of kanjiskip is 0 pt

13.3

no adjustment L){J:O))E@Gi, r@ﬁ%ﬁﬁj Z J: < biﬁé 7‘%\
without priority J;{J:@}Eﬁbi, R g 3
with priority J;{J:@)E@ Li, r@ﬁ/‘%ﬁiﬁj & c]: < I]%:%iﬂg) 753‘

+1/5em
—1/5em

in this figure, for making the difference obvious.

Figure 14. Line adjustment

luatexja-adjust

(see Japanese version of this manual)

134

luatexja-ruby

This addon package provides functionality of “ruby” (furigana) annotations using callbacks of LuaTEX-
ja. There is no detailed manual of luatexja-ruby.sty in English. (Japanese manual is another PDF file,
luatexja-ruby.pdf.)

Group-ruby By default, ruby characters (the second argument of \ruby) are attached to base characters

(the first argument), as one object. This type of ruby is called group-ruby.

HEITA

REER\ruby {0 B} {A K D TAIBRIE - \ —_— %’13%5@
RPGHRD \ruby (B EH{ A &K S5 TA PRI -\ s
RERD\ruby {HHAH KL S TAILE WS ER-\\ o K
REHR\ruby {BEH N T LV IBRIE - ﬁﬁ@?jﬁ PN
HPEHE P

As the above example, ruby hangover is allowed on the Hiragana before/after its base characters.

Mono-ruby To attach ruby characters to each base characters (mono-ruby), one should use \ruby mul-

1

tiple times:

BREE D \ruby{ ¥ {H &L S N\ ruby{ B} { TAIERIZ -+ ﬁ@fﬁ@ﬁf) ﬂﬂ%}i’f/i ,,,,,,

Jukugo-ruby Vertical bar | denotes a boundary of groups.

1
2
3

[B N T N

\ruby{¥ | #H{H LS| TAH
\ruby{ B | D | TV}
\ruby{fZ [IRHH < 51D}

HED
9

iy
>

< BEM

1 A

\

If there are multiple groups in one \ruby call, A linebreak between two groups is allowed.

\vbox{\hsize=6\zw\noindent li‘%fﬁ:g%
\hbox to 2.5\zw{}\ruby{R|2IEIBH{ITWVIZTDS |HhF |7} % i Mj
\hbox to 2.5\zw{}\ruby{R |2 FEIBHITWV|ZTDS |HF|/} EEL 7 Y- 2;‘
\hbox to 3\zw{}\ruby{R|2IBIHHITWVIZTDS |hF|f} i wH

205 pEk

} SHH

If the width of ruby characters are longer than that of base characters, \ruby automatically selects the
appropriate form among the line-head form, the line-middle form, and the line-end form.

\vbox{\hsize=8\zw\noindent SU7Eb

\null\kern3\zw *:---* Z\ruby{#E}{SFExH}13 537%b
\kernl\zw -:*-*- E\ruby{FE}{SFT=EH13B\\ B e %K %

\null\kern5\zw - Z\ruby{FEH{ DT FH1B e T %

3

1Useful macros by iNOUE Koich!, for the japanese-otf package.

47

luatexja-ruby.pdf

13.5 1l1tjext.sty

PEIEX supplies additional macros for vertical writing in the plext package. The lltjext package which we
want to describe here is the LuaTgX-ja counterpart of the plext package.

tabular, array, minipage environments
These environments are extended by <dir>, which specifies the direction, as follows:

\begin{tabular}<dir>[pos]{table spec} ... \end{tabular}
\begin{array}<dir>[pos]{table spec} ... \end{array}
\begin{minipage}<dir>[pos]{width} ... \end{minipage}

This option permits one of the following five values. If none of them is specified, the direction inside
the environment is same as that outside the enviromnent.

y yoko direction (horizontal writing)

t tate direction (vertical writing)

z utod direction if direction outside the env. is tate.

d dtou direction

u utod direction

\parbox<(dir)>[{pos)1{{width)}{(contents)}
\parbox command is also extended by <({dir)>.

\pbox<({dir)>[(width)1[{pos)1{({contents)}
This commands typeset {contents) in LR-mode, in (dir) direction. If (width) is positive, the width of
the box becomes this (width). In this case, (contents) will be aligned to left (when (pos) is 1), center
(c), or right (r).

picture environment
picture environment also extended by <(dir)>, as follows:

\begin{picture}<dir>(x_size, y_size)(x_offset,y_offset)
\end{picture}

\rensuji[{pos)1{{contents)}, \rensujiskip
\Kanji{{counter_name)}

\kasen{(contents)}, \bou{{contents)}, \boutenchar

%

RES

13.6 luatexja-preset

As described in Subsection 3.3, One can load the luatexja-preset package to use several “presets” of Japanese
fonts. This package provides functions in a part of japanese-otf package (changing fonts) and a part of
PXchfon package (presets) by Takayuki Yato.

Options which are given in \usepackage but not described in this subsection are simply passed to the
luatexja-fontspec'?. For example, the line 5 in below example is equivalent to lines 1-3.

\usepackage[no-math]{fontspec}
\usepackage[match]{luatexja-fontspec}
\usepackage[kozuka-prén]{luatexja-preset}

\usepackage[no-math,match,kozuka-prén]{luatexja-preset}

2if nfssonly option is not specified; in this case these options are simply ignored.

48

13.6.1 General Options

fontspec (enabled by default)
With this option, Japanese fonts are selected using functionality of the luatexja-fontspec package. This
means that the fontspec package is automatically loaded by this package.
If you need to pass some options to fontspec, you can load fontspec manually before luatexja-preset:

\usepackage[no-math]{fontspec}
\usepackage[...]{luatexja-preset}

nfssonly

With this option, selecting Japanese fonts won’t be performed using the functionality of the fontspec
package, but only standard NFSS2 (hence without \addjfontfeatures etc.). This option is ignored
when luatexja-fontspec package is loaded.

When this option is specified, fontspec and luatexja-fontspec are not loaded by default. Nevertheless,
the packagefontspec can coexist with the option, as the following:

\usepackage{fontspec}
\usepackage[hiragino-pron,nfssonly]{luatexja-preset}

In this case, one can use \setmainfont etc. to select alphabetic fonts.

match
If this option is specified, usual family-changing commands such as \rmfamily, \textrm,
\sffamily, ... also change Japanese font family. This option is passed to luatexja-fontspec, if fontspec
option is specifed.

nodeluxe (enabled by default)

The nagation of deluxe option. Use one-weighted mincho and gothic font families. This means that
\mcfamily\bfseries, \gtfamily\bfseries and \gtfamily\mdseries use the same font.

deluxe

Use the mincho family with three weights (light, medium, and bold), the gothic family with three
weights (medium, bold, and extra bold), and rounded gothic'>. Mincho light and gothic extra bold can
be by \mcfamily\ltseries and \gtfamily\ebseries, respectively.

« Some presets do not have the light weight of mincho. In this case, we substitute the medium
weight for the light weight.

« luatexja-preset does not produce an error (only produces a warning), even if (one of) fonts for
\mcfamily\ltseries, \gtfamily\ebseries, \mgfamily do not exist.

expert
Use horizontal/vertical kana alternates, and define a command \rubyfamily to use kana characters

designed for ruby.
bold

Substitute bold series of gothic for medium series of gothic and bold series of mincho. If nodeluxe
option is enabled, medium series of gothic is also changed, since we use same font for both series of

gothic.
jis98, 90jis
Use JIS X 0208:1990 glyph variants if possible.

jis2004, 2084jis
Use JIS X 0213:2004 glyph variants if possible.

jEm_yoko={jfm)

Use the JFM jfm-(jfm) . lua for horizontal direction, instead of jfm-ujis.lua (default JEM).
jfm_tate={jfm)

Use the JFM jfm-(jfm) . lua for vertical direction, instead of jfm-ujisv.lua (default JEM).

BProvided by \mgfamily and \textmg, because “rounded gothic” is called maru gothic (XL =2'> v 27) in Japanese.

49

jis Same as jfm_yoko=jis.

Note that jis90, 98jis, jis28084 and 268084jis only affect with mincho, gothic (and, possibly rounded
gothic) families defined by this package. We didn’t taken account of when more than one options among

them are specified.

13.6.2 Presets which support multi weights

Besides bizud, haranoaji, morisawa-pro, and morisawa-prén presets, fonts are specified by font name,
not by file name. In following tables, starred fonts (e.g. KozGo...-Regular) are used for medium series of

gothic, if and only if deluxe option is specified.

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts.
kozuka-pré6 Kozuka Pr6 (Adobe-Japan1-6) fonts.
kozuka-prén Kozuka Pré6N (Adobe-Japanl1-6, JIS04-savvy) fonts.

Kozuka Pro/PréN fonts are bundled with Adobe’s software, such as Adobe InDesign. There is not

rounded gothic family in Kozuka fonts.

family series kozuka-pro kozuka-pré kozuka-prén
light KozMinPro-Light KozMinProVI-Light KozMinPr6N-Light
mincho medium KozMinPro-Regular ~ KozMinProVI-Regular =~ KozMinPr6N-Regular
bold KozMinPro-Bold KozMinProVI-Bold KozMinPré6N-Bold
medium KozGoPro-Regular* KozGoProVI-Regular® KozGoPr6N-Regular®
KozGoPro-Medium KozGoProVI-Medium KozGoPr6N-Medium
othic
& bold KozGoPro-Bold KozGoProVI-Bold KozGoPr6N-Bold
extra bold KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy
rounded gothic KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

hiragino-pro Hiragino Pro (Adobe-Japani-5) fonts.

hiragino-pron Hiragino ProN (Adobe-Japan1-5, JIS04-savvy) fonts.

Hiragino fonts (except Hiragino Mincho W2) are bundled with Mac OS X 10.5 or later. Note that fonts
for gothic extra bold (HiraKakuStd[N]-W8) only contains characters in Adobe-Japan1-3 character

collection, while others contains those in Adobe-Japan1-5 character collection.

family series hiragino-pro hiragino-pron
light Hiragino Mincho Pro W2 Hiragino Mincho ProN W2
mincho medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3
bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6
medium Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic ProN W3*
. Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
othic
& bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
extrabold Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

rounded gothic

Hiragino Maru Gothic Pro W4

Hiragino Maru Gothic ProN W4

bizud BIZ UD fonts (by Morisawa Inc.) bundled with Windows 10 October 2018 Update.

BIZ-UDMinchoM. ttc

BIZ-UDGothicR.ttc

family series
mincho

medium
gothic bold

extra bold

BIZ-UDGothicB.ttc
BIZ-UDGothicB.ttc

rounded gothic

BIZ-UDGothicB.ttc

50

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.

morisawa-prén Morisawa PréN (Adobe-Japanl-6, JIS04-savvy) fonts.

family series morisawa-pro morisawa-prén

mincho medium A-OTF-RyuminPro-Light.otf A-OTF-RyuminPréN-Light.otf
bold A-0TF-FutoMinA101Pro-Bold.otf A-0TF-FutoMinA101PréN-Bold.otf
medium A-OTF-GothicBBBPro-Medium.otf A-OTF-GothicBBBPr6N-Medium.otf

gothic bold A-0TF-FutoGoB161Pro-Bold.otf A-O0TF-FutoGoB101Pr6N-Bold.otf
extrabold A-0TF-MidashiGoPro-MB31l.otf A-0TF-MidashiGoPr6N-MB31.otf

rounded gothic

A-0TF-Jun181Pro-Light.otf

A-0TF-ShinMGoPré6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.
yu-winl® Yu fonts bundled with Windows 10.
yu-osx Yu fonts bundled with OSX Mavericks.

family series yu-win yu-winl@ yu-osx
light YuMincho-Light YuMincho-Light (YuMincho Medium)
mincho medium YuMincho-Regular YuMincho-Regular YuMincho Medium
bold YuMincho-Demibold =~ YuMincho-Demibold YuMincho Demibold
medium YuGothic-Regular™ YuGothic-Regular® YuGothic Medium*
YuGothic-Regular YuGothic-Medium YuGothic Medium
gothic bold YuGothic-Bold YuGothic-Bold YuGothic Bold
extrabold YuGothic-Bold YuGothic-Bold YuGothic Bold
rounded gothic YuGothic-Bold YuGothic-Bold YuGothic Bold

moga-mobo MogaMincho, MogaGothic, and MoboGothic.
moga-mobo-ex MogaExMincho, MogaExGothic, and MoboExGothic.

These fonts can be downloaded from http://yozvox.web.fc2.com/.

family series default, 98jis option jis2884 option
mincho medium Moga90Mincho MogaMincho
bold Moga90Mincho Bold MogaMincho Bold
medium Moga90Gothic MogaGothic
gothic bold Moga90Gothic Bold MogaGothic Bold
extrabold Moga90Gothic Bold MogaGothic Bold
rounded gothic Mobo90Gothic MoboGothic

When moga-mobo-ex is specified, the font “MogaEx90Mincho” etc. are used.

ume Ume Mincho and Ume Gothic.

These fonts can be downloaded from
https://ja.osdn.net/projects/ume-font/wiki/FrontPage.

family series default
mincho medium Ume Mincho
bold Ume Mincho
medium Ume Gothic*
Ume Gothic O5
gothic bold Ume Gothic 05
extra bold Ume Gothic O5
rounded gothic Ume Gothic O5

51

http://yozvox.web.fc2.com/
https://ja.osdn.net/projects/ume-font/wiki/FrontPage

sourcehan Source Han Serif and Source Han Sans fonts (Language-specific OTF or OTC)

sourcehan-jp Source Han Serif JP and Source Han Sans JP fonts (Region-specific Subset OTF)

family series sourcehan sourcehan-jp
light Source Han Serif Light Source Han Serif JP Light
mincho medium Source Han Serif Regular ~ Source Han Serif JP Regular
bold Source Han Serif Bold Source Han Serif JP Bold
medium Source Han Sans Regular® Source Han Sans JP Regular®
. Source Han Sans Medium Source Han Sans JP Medium
gothic
bold Source Han Sans Bold Source Han Sans JP Bold
extrabold Source Han Sans Heavy Source Han Sans JP Heavy
rounded gothic Source Han Sans Medium Source Han Sans JP Medium

noto-otc Noto Serif CJK and Noto Sans CJK fonts (OTC)
noto-otf, noto Noto Serif CJK and Noto Sans CJK fonts (Language-specific OTF)
noto-jp Noto Serif CJK and Noto Sans CJK fonts (Region-specific subset OTF)

family series noto-otc noto-otf, noto noto-jp
light Noto Serif CJK Light Noto Serif CJK JP Light Noto Serif JP Light
mincho medium Noto Serif CJK Regular ~ Noto Serif CJK JP Regular ~ Noto Serif JP Regular
bold Noto Serif CJK Bold Noto Serif CJK JP Bold Noto Serif JP Bold
medium Noto Sans CJK Regular® Noto Sans CJK JP Regular®* Noto Sans JP Regular®
. Noto Sans CJK Medium Noto Sans CJK JP Medium Noto Sans JP Medium
othic
& bold Noto Sans CJK Bold Noto Sans CJK JP Bold Noto Sans JP Bold
extra bold Noto Sans CJK Black Noto Sans CJK JP Black Noto Sans JP Black
rounded gothic Noto Sans CJK Medium Noto Sans CJK JP Medium Noto Sans JP Medium

haranoaji Harano Aji Fonts.

These fonts can be downloaded from

https://github.com/trueroad/HaranoAjiFonts. There is not rounded gothic family in Harano Aji

Fonts.
family series haranoaji
light HaranoAjiMincho-Light.otf
mincho medium HaranoAjiMincho-Regular.otf
bold HaranoAjiMincho-Bold.otf
medium HaranoAjiGothic-Regular.otf™
HaranoAjiGothic-Medium.otf
gothic
bold HaranoAjiGothic-Bold.otf
extrabold HaranoAjiGothic-Heavy.otf

rounded gothic

HaranoAjiGothic-Medium.otf

13.6.3 Presets which do not support multi weights

Next, we describe settings for using only single weight.

noembed ipa ipaex ms
mincho Ryumin-Light (non-embedded) IPA Mincho IPAex Mincho = MS Mincho
gothic GothicBBB-Medium (non-embedded) IPA Gothic =~ IPAex Gothic =~ MS Gothic

52

https://github.com/trueroad/HaranoAjiFonts

13.6.4 Presets which use HG fonts

We can use HG fonts bundled with Microsoft Office for realizing multiple weights. In the table below,
starred fonts (e.g., IPA Gothic”) are used only if jis2884 or nodeluxe option is spefified.

family series ipa-hg ipaex-hg ms-hg
mincho medium IPA Mincho IPAex Mincho MS Mincho
bold HG Mincho E HG Mincho E HG Mincho E
. IPA Gothic* IPAex Gothic* MS Gothic*
medium . . .
HG Gothic M HG Gothic M HG Gothic M
gothic bold HG Gothic E HG Gothic E HG Gothic E
extrabold HG Soei Kaku Gothic UB HG Soei Kaku Gothic UB HG Soei Kaku Gothic UB
rounded gothic HG MaruGothic MPRO ~ HG MaruGothic MPRO HG MaruGothic M PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are inter-
nally specified by:

default by font name (HGMinchoE, etc.).
jis9@,90jis by file name (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2@04, 2004jis by file name (hgrme®4. ttc, hgrgeB4. ttc, hgrsguB4. tte, hgrsmpB4. ttf).

13.6.5 Define/Use Custom Presets

From version 20170904.0, one can define new presets using \ltjnewpreset, and use them by
\1tjapplypreset. These two commands can only be used in the preamble.

\1tjnewpreset{(name)}{(specification)}
Define new preset (name). This <name> cannot be same as other presets, options described in Sub-
subsection 13.6.1, nor following 13 strings:

mc mc-1 mc-m mc-b mc-bx gt gt-u gt-d gt-m gt-b gt-bx gt-eb mg-m
(specification) is a comma-separated list which consists of other presets and/or the following keys:

me-1=(font) mincho light

me-m=(font) mincho medium

mc-b=(font) mincho bold

mc-bx=(font) synonym for mc-b={font)

gt-u=(font) gothic, when deluxe option is not specified.

gt-d=(font) gothic medium, when deluxe option is specified.

gt-m=(font) gothic medium. This key is equivalent to “gt-u=(font), gt-d(font)”.

gt-b=(font) gothic bold
Note that this key also specifies mincho bold if bold option is specified.

gt-bx=(font) synonym for gt-b=(font)
gt-eb=(font) gothic extra bold
mg-m={font) rounded gothic
me=(font) Equivalent to
mc-1=(font), mc-m=(font), mc-b=(font)
gt=(font) Equivalent to
gt-u=(font), gt-d=(font), gt-b=(font), gt-eb=(font)
\1tjnewpreset*{(name)}{(specification)}

Almost same as \1tjnewpreset. However, if (name) matches a preset which already defined, this
command simply overwrite it.

53

\1tjapplypreset{{name)}
Set Japanese font families using preset (name).

Note that \1tjnewpreset does not “expand” the definition to define a preset. This means that one can
write as the following:

\1tjnewpreset{hoge}{piyo,mc-b=HiraMinProN-Wé}
\1tjnewpreset{piyo}{mg-m=HiraMaruProN-W4}
\1tjapplypreset{hoge}

BRestrictions Presets which are defined by \1tjnewpreset have following restrictions:

+ One cannot specify non-embedded fonts (such as Ryumin-Light).

« Some presets, such as ipa-hg, have a feature that fonts are changed according to whether
98jis or jis20@4 is speified. This feature is not usable in presets which are defined by
\1tjnewpreset.

54

Part II1

Implementations

14 Storing Parameters

14.1 Used dimensions, attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTgX-ja.

\jQ (dimension) \jQ is equal to 1Q = 0.25 mm, where “Q” (also called “#%”) is a unit used in Japanese
phototypesetting. So one should not change the value of this dimension.

L

\jH (dimension) There is also a unit called “t4” which equals to 0.25 mm and used in Japanese photo-
typesetting. This \ jH is the same \dimen register as \jQ.

\1tj@dimen@zw (dimension) A temporal register for the “full-width” of current Japanese font. The com-
mand \zw sets this register to the correct value, and “return” this register itself.

\1tj@dimen@zh (dimension) A temporal register for the “full-height” (usually the sum of height of
imaginary body and its depth) of current Japanese font. The command \zh sets this register to
the correct value, and “return” this register itself.

\jfam (attribute) Current number of Japanese font family for math formulas.

\1tj@curjfnt (attribute) If this attribute is a positive number, it stores the font number of current
Japanese font for horizontal direction. If this attribute is negative, it means that the Japanese font
for horizontal direction is not loaded—LuaTEX-ja only knows its size and JEM.

\1tj@curtfnt (attribute) Similar to \1tj@curjfnt, but with current Japanese font for vertical direc-
tion.

\1tj@charclass (attribute) The character class of a JAchar. This attribute is only set on a glyph_node
which contains a JAchar.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(2716 pt). “unset” means zero.

\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point
(271 pt).

\1tj@tablshift (attribute)
\1tj@tkblshift (attribute)

\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node. 0 means “not
allowed”, and the other value (including “unset”) means “allowed”.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node. 0 means
“not allowed”, and the other value (including “unset”) means “allowed”.

\1tj@icflag (attribute) An attribute for distinguishing “kinds” of a node. One of the following value
is assigned to this attribute:

italic (1) Kerns from italic correction (\/), or from kerning information of a Japanese font. These
kerns are “ignored” in the insertion process of JAglue, unlike explicit \kern.
packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process (kinsoku shori) of Japanese char-
acters.

from_jfm—(from_jfm + 63) (4-67) Glues/kerns from JFM.
kanji_skip (68), kanji_skip_jfm (69) Glues from kanjiskip.

55

[T N

1226
1227
1228
1229
1230

xkanji_skip (70), xkanji_skip_jfm (71) Glues from xkanjiskip.
processed (73) Nodes which is already processed by

ic_processed (74) Glues from an italic correction, but already processed in the insertion process
of JAglues.

boxbdd (75) Glues/kerns that inserted just the beginning or the ending of an hbox or a para-
graph.

special_jaglue (76) Glues from \insert[x]kanjiskip.

\1tj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vec-
tors indicating which character block is regarded as a block of JAchars.

\1tj@dir (attribute) dir_node_auto (128)

dir_node_manual (256)

\1ltjlineendcomment (counter)

Furthermore, LuaTgX-ja uses several user-defined whatsit nodes for internal processing. All those
nodes except direction whatsits store a natural number (hence its type is 100). direction whatsits store
a node list, hence its type is 110. Their user_id (used for distinguish user-defined whatsits) are allocated
by luatexbase.newuserwhatsitid.

inhibitglue Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t
matter.

stack_marker Nodes for LuaTgX-ja’s stack system (see the next subsection). The value field of these
nodes is current group level.

char_by_cid Nodes for JAchar which processes by luaotfload won’t be applied, and the character code
is stored in the value field. Each node of this type are converted to a glyph_node after processes by
luaotfload. Nodes of this type is used in \CID and \UTF.

replace_vs Similar to char_by_cid whatsits above. These nodes are for ALchar which the callback process
of luaotfload won’t be applied.

begin_par Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in
list-like environments has a horizontal box for its label before the actual contents. So ...

direction

These whatsits will be removed during the process of inserting JAglues.

14.2 Stack system of LuaTgX-ja

EBackground LuaTgX-ja has its own stack system, and most parameters of LuaTgX-ja are stored in
it. To clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following
source:

\1ltjsetparameter{kanjiskip=8pt}.3\H'3H.%
\setboxB8=\hbox{%

\1tjsetparameter{kanjiskip=5pt}FIFIZEIF}
\box8.F &K T &K \par

SPEDNZ T F TR K

As described in Subsection 9.1, the only effective value of kanjiskip in an hbox is the latest value, so
the value of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation
method of LuaTiX, this “5 pt” cannot be known from any callbacks. In the tex/packaging.w, which is a
file in the source of LuaTgX, there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */

56

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

int grp;
grp = cur_group;
d = box_max_depth;
unsave();
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1l), grp, saved_level(2));
subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave() is executed before filtered_hpack(), where hpack_filter callback is executed)
here. So “5pt” in the above source is orphaned at unsave(), and hence it can’t be accessed from
hpack_filter callback.

EImplementation The code of stack system is based on that in a post of Dev-luatex mailing list'*.

These are two TgX count registers for maintaining information: \1tj@@stack for the stack level, and
\1tj@@group@level for the TEX’s group level when the last assignment was done. Parameters are stored in
one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack level i.
If a new stack level is created by \1tjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph “Background”, LuaTgX-ja uses another trick.
When the stack level is about to be increased, a whatsit node whose type, subtype and value are
44 (user_defined), stack_marker and the current group level respectively is appended to the current list
(we refer this node by stack_flag). This enables us to know whether assignment is done just inside a hbox.
Suppose that the stack level is s and the TgX’s group level is t just after the hbox group, then:

« If there is no stack_flag node in the list of the contents of the hbox, then no assignment was occurred
inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level s.

« If there is a stack_flag node whose value is ¢ + 1, then an assignment was occurred just inside the
hbox group. Hence values of parameters at the end of the hbox are stored in the stack level s + 1.

« If there are stack_flag nodes but all of their values are more than t + 1, then an assignment was
occurred in the box, but it is done in more internal group. Hence values of parameters at the end of
the hbox are stored in the stack level s.

Note that to work this trick correctly, assignments to \1tj@@stack and \1tj@@group@level have to
be local always, regardless the value of \globaldefs. To solve this problem, we use another trick: the
assignment \directlua{tex.globaldefs=0} is always local.

14.3 Lua functions of the stack system

In this subsection, we will see how a user use LuaTgX-ja’s stack system to store some data which obeys
the grouping of TgX.
The following function can be used to store data into a stack:

luatexja.stack.set_stack_table(index, <any> data)

Any values which except nil and NaN are usable as index. However, a user should use only negative
integers or strings as index, since natural numbers are used by LuaTgX-ja itself. Also, whether data is stored
locally or globally is determined by luatexja.isglobal (stored globally if and only if luatexja.isglobal
== 'global').

Stored data can be obtained as the return value of

luatexja.stack.get_stack_table(index, <any> default, <number> level)

where level is the stack level, which is usually the value of \1tj@@stack, and default is the default value
which will be returned if no values are stored in the stack table whose level is level.

4[peyv-luatex] tex. currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

57

380
381
382
383
384
385
386
387
388
389

(SR CRENSN

(SR RSN

\protected\def\1tj@setpar@global{%
\relax\ifnum\globaldefs>B\directlua{luatexja.isglobal="global'}%
\else\directlua{luatexja.isglobal=""'3}\fi

}
\protected\def\1ltjsetparameter#1{%
\1tj@setpar@global\setkeys[1tj]{japaram}{#1}\ignorespaces}
\protected\def\1ltjglobalsetparameter#l{%
\relax\ifnum\globaldefs<B\directlua{luatexja.isglobal=""}%
\else\directlua{luatexja.isglobal="'global'}\fi%
\setkeys[1tj]{japaram}{#1}\ignorespaces}

Figure 15. Definiton of parameter setting commands

14.4 Extending Parameters

Keys for \1tjsetparameter and \1tjgetparameter can be extended, as in luatexja-adjust.

ESetting parameters Figure 15 shows the most outer definition of two commands, \1tjsetparameter
and \1tjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval
package.

Hence, to add a key in \1tjsetparameter, one only have to add a key whose prefix is 1tj and whose
family is japaram, as the following.

\define@key[1tj]{japaram}{...}{...}

\1ltjsetparameter and \1tjglobalsetparameter automatically sets luatexja.isglobal. Its meaning
is the following.

'global' (global assignment),

luatexja.isglobal = .
(local assignment).

This is determined not only by command name (\1tjsetparameter or \1tjglobalsetparameter), but
also by the value of \globaldefs.

BGetting parameters \ltjgetparameter is implemented by a Lua script.

For parameters that do not need additional arguments, one only have to define a function in the ta-
ble luatexja.unary_pars. For example, with the following function, \1tjgetparameter{hoge} returns a
string 42.

function luatexja.unary_pars.hoge (t)
return 42
end

Here the argument of luatexja.unary_pars.hoge is the stack level of LuaTgX-ja’s stack system (see Sub-
section 14.2).

On the other hand, for parameters that need an additional argument (this must be an integer), one
have to define a function in luatexja.binary_pars first. For example,

function luatexja.binary_pars.fuga (c, t)

return tostring(c) .. ', .. tostring(42)
end

Here the first argument ¢ is the stack level, as before. The second argument c is just the second argument
of \1tjgetparameter.

For parameters that need an additional argument, one also have to execute the TgX code like

\1tj@@decl@array@param{fuga}

to indicate that “the parameter fuga needs an additional argument”.

58

scan a c.s.

5 [\par]
sart ———(N) e ending ot group taaly).
J Japanese characters.

5 end-of-line (usually ~"J).
10 space (usually).

O other characters, whose category code is in
{3,4,6,7,8,11,12,13}.

G,0 S
\;/CK)D o) [.], [\par] emits a space, or \par.

« We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also
ignored the input like “*~A” or “~~d£”.

« When a character whose category code is 0 (escape character) is seen by TgX, the input processor scans a control
sequence (scan a c.s.). These paths are not shown in the above diagram.

After that, the state is changed to State S (skipping blanks) in most cases, but to State M (middle of line)
sometimes.

Figure 16. State transitions of pIEX’s input processor

15 Linebreak after a Japanese Character

15.1 Reference: behavior in pIEX

In pIEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of
callbacks in LuaTgX. To clarify the difference between pIEX and LuaTgX, We briefly describe the handling
of a line break in pIEX, in this subsection.

pIEX’s input processor can be described in terms of a finite state automaton, as that of TgX in Section 2.5
of [1]. The internal states are as follows:

« State N: new line
« State S: skipping spaces
« State M: middle of line

« State K: after a Japanese character

The first three states—N, S, and M—are as same as TgX’s input processor. State K is similar to state M, and
is entered after Japanese characters. The diagram of state transitions are indicated in Figure 16. Note that
PIEX doesn’t leave state K after “beginning/ending of a group” characters.

15.2 Behavior in LuaTgX-ja

States in the input processor of LuaTEX is the same as that of TgX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a
space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-
line) is converted into an space token in the input processor. So we can use only the process_input_buffer
callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

59

[I N N

A character whose character code is \1tjlineendcomment'® is appended to an input line,
before LuaTrX actually process it, if and only if the following three conditions are satisfied:

1. The category code of \endlinechar!® is 5 (end-of-line).
2. The category code of \1tjlineendcomment itself is 14 (comment).

3. The input line matches the following “regular expression”:

(any char)*(JAcharﬂ({catcode = 11}U{catcode = 12})) ({catcode = 1}U{catcode = 2})"

BRemark The following example shows the major difference from the behavior of pIEX.

\fontspec[Ligatures=TeX]{Libertinus Serif}
\1tjsetparameter{autoxspacing=false}
\1tjsetparameter{jacharrange={-63}}xd xKyz\ u
y\ltjsetparameter{jacharrange={+6}3}zUL\

u

It is not strange that “%” does not printed in the above output. This is because TgX Gyre Termes does not
contain “®”, and because “®” in line 3 is considered as an ALchar.

«_ % « %

Note that there is no space before “y” in the output, but there is a space before “u”. This follows from

following reasons:

« When line 3 is processed by process_input_buffer callback, “®” is considered as an JAchar. Since
line 3 ends with an JAchar, the comment character (whose character code is \1tjlineendcomment)
is appended to this line, and hence the linebreak immediately after this line is ignored.

« When line 4 is processed by process_input_buffer callback, “\»” is considered as an ALchar. Since
line 4 ends with an ALchar, the linebreak immediately after this line emits a space.

16 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are
not included in these activated letters. For pIEX series, there is no method to make Japanese characters
active; a patch jlisting.sty ([4]) resolves the problem forcibly.

In LuaTigX-ja, the problem is resolved by using the process_input_buffer callback. The callback func-
tion inserts the output command (active character \1tjlineendcomment) before each letter above U+6886.
This method can omits the process to make all Japanese characters active (most of the activated characters
are not used in many cases).

If the listings package and LuaTgX-ja were loaded, then the patch lltjp-listings is loaded automatically
at \begin{document}.

16.1 Notes and additional keys

BVariation selectors lltjp-listings add two keys, namely vsraw and vscmd, which specify how variation
selectors are treated in 1stlisting or other enviroments. Note that these additional keys are not usable
in the preamble, since lltjp-listings is loaded at \begin{document}.

vsraw is a key which takes a boolean value, and its default value is false.
« If the vsraw key is true, then variation selectors are “combined” with the previous character.

1 \begin{lstlisting}[vsraw=true]
: BEmm, BEEX, B 1 BT, BHiX, B
3 \end{1lstlisting}

B1ts default value is "FFFFF, so U+FFFFF is used. The category code of U+FFFFF is set to 14 (comment) by LuaTgX-ja.
16Usually, it is (return) (whose character code is 13).

60

« If the vsraw key is false, then variation selectors are typeset by an appropriate command, which is
specified by the vscmd key. The default setting of the vscmd key produces the following.

1 \begin{lstlisting}[vsraw=false,

2 vscmd=\1tjlistingsvsstdemd] = = -
- e - 1 X

s BEE, BOMX, B BOum, BENAX, 55

4 \end{lstlisting}

For example, the following code is the setting of the vscmd key in this document.

1 \def\IVSA#1#2#3#4#5{%
2 \hbox tolem{\hss\textcolor{blue}{\raisebox{3.5pt}{\normalfont\ttfamily%
3 \fboxsep=0.5pt\fbox{\hbox toB8.75em{\hss\tiny \oalign{@#1#2\crcr#3#4#5\crcr}\hss}}}}\hss}

[
70

\gdef\IVSB#1{\expandafter\IVSA\directlua{
local cat_str = luatexbase.catcodetables['string']
8 tex.sprint(cat_str, string.format('%X', OxEBBEF+#1))
9 131}
10 \1stset{vscmd=\IVSB}

4}

5 {\catcode \%=11
6

7

The default output command of variation selectors is stored in \1tjlistingsvsstdcmd.

BThe doubleletterspace key Even the column format is [c]fixed, sometimes characters are not ver-
tically aligned. The following example is typeset with basewidth=2em, and you’ll see the leftmost “H” are
not vertically aligned.

1 H
2 : H H H H

[ltjp-listing adds the doubleletterspace key (not activated by default, for compatibility) to improve
the situation, namely doubles inter-character space in each output unit. With this key, the above input
now produces better output.

16.2 Class of characters
Roughly speaking, the listings package processes input as follows:

1. Collects letters and digits, which can be used for the name of identifiers.

2. When reading an other, outputs the collected character string (with modification, if needed).
3. Collects others.

4. When reading a letter or a digit, outputs the collected character string.

5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \1st@ifletter indicates
whether the previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc. Hence
the patch lltjp-listings introduces a new flag \1st@ifkanji, which indicates whether the previous character
is a Japanese character or not. For illustration, we introduce following classes of characters:

61

Letter Other

\1st@ifletter T F
\1st@ifkanji F F
Meaning char in an identifier other alphabet

Kanji Open Close
\1lst@ifletter T F T
\1lst@ifkanji T T F
Meaning most of Japanese char opening brackets closing brackets

Note that digits in the listings package can be Letter or Other according to circumstances.

For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese
open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected
character string is output in this case.

The following table summarizes 5 X 5 = 25 cases:

Next
Letter Other Kanji Open Close
Letter collects _ outputs__ collects
Other outputs collects outputs collects
Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,

- “outputs” means to output the collected character string (i.e., line breaking is permitted there).

« “collects” means to append the next character to the collected character string (i.e., line breaking is
prohibited there).

Characters above or equal to U+8088 except Variation Selectors are classified into above 5 classes by the
following rules:

« ALchars above or equal to U+08080 are classified as Letter.
« JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.
3. Characters that don’t satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61-U+FF9F) is same as the width of ALchar; the width of the other
JAchars is double the width of ALchar.

This classification process is executed every time a character appears in the 1stlisting environment
or other environments/commands.

17 Cache Management of LuaTgX-ja

LuaTiX-ja creates some cache files to reduce the loading time. in a similar way to the luaotfload package:

« Cache files are usually stored in (and loaded from) $ TEXMFVAR/luatexja/.

« In addition to caches of the text form (the extension is “.1lua.gz”, because they are compressed by
gzip), caches of the binary (bytecode) form are supported.
- Inloading a cache, the binary cache precedes the text form.

— When LuaTgX-ja updates a compressed text cache hoge. lua.gz, its binary version is also up-
dated.

62

Table 16. cid key and corresponding files

cid key name of the cache used CMaps
Adobe-Japanl-* 1tj-cid-auto-adobe-japanl.{lua.gz,luc} UniJIS2084-UTF32-* Adobe-Japanl-UCS2
Adobe-Koreal-* 1tj-cid-auto-adobe-koreal.{lua.gz,luc} UniKS-UTF32-* Adobe-Koreal-UCS2
Adobe-KR-* 1tj-cid-auto-adobe-kr.{lua.gz,luc} UniAKR-UTF32-* Adobe-KR-UCS2
Adobe-GB1-* 1tj-cid-auto-adobe-gbl.{lua.gz,luc} UniGB-UTF32-* Adobe-GB1-UCS2
Adobe-CNS1-* 1tj-cid-auto-adobe-cnsl.{lua.gz,luc} UniCNS-UTF32-* Adobe-CNS1-UCS2

17.1 Use of cache
LuaTgX-ja uses the following cache:

1tj-cid-auto-adobe-japanl.{lua.gz,luc}
The font table of a CID-keyed non-embedded Japanese font. This is loaded in every run. It is created
from three CMaps, UniJIS2804-UTF32-{H,V} and Adobe-Japanl-UCS2, and this is why these two
CMaps are needed in the first run of LuaTgX-ja.

Similar caches are created as Table 16, if you specified cid key in \jfont to use other CID-keyed
non-embedded fonts for Chinese or Korean, as in Page 25.

1tj-kinsoku.luc
The bytecode cache which default kinsoku parameters are stored.

1tj-jisxB8208.1uc
The bytecode version of 1tj-jisx8208.1ua. This is the conversion table between JIS X 0208 and
Unicode which is used in Kanji-code conversion commands for compatibility with pIEX.

1tj-ivd_ajl.luc
The bytecode version of 1tj-ivd_ajl.lua.

extra_***.{lua.gz,luc}
This file conains some information (especially for vertical typesetting) about the font

Sk KD

17.2 Internal

Cache management system of LuaTgX-ja is stored in luatexja.base (1tj-base. lua). There are four public
functions for cache management in luatexja.base, where (filename) stands for the file name without

suffix:

save_cache((filename), (data))
Save a non-nil table (data) into a cache (filename). Both the compressed text form (filename) . lua.gz
and its binary version are created or updated.

save_cache_luc((filename), (data)[, (serialized_data)])
Same as save_cache, except that only the binary cache is updated. The third argument (serial-
ized_data) is not usually given. But if this is given, it is treated as a string representation of (data).

load_cache({filename), (outdate))
Load the cache (filename). (outdate) is a function which takes one argument (the contents of the
cache), and its return value is whether the cache is outdated.

load_cache first tries to read the binary cache (filename) . 1uc. If its contents is up-to-date, load_cache
returns the contents. If the binary cache is not found or its contents is outdated, load_cache tries to
read the compressed text form (filename) . lua.gz. Hence, the return value of load_cache is non-nil,
if and only if the updated cache is found.

remove_cache ({filename))
Remove the cahce (filename).

63

References

Victor Eijkhout. TgX by Topic, A TzXnician’s Reference, Addison-Wesley, 1992.
C. Heinz, B. Moses. The Listings Package.

Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013.
http://tug.org/tug2613/slides/TUG2013 _upTeX.pdf

Thor Watanabe. Listings - MyTeXpert.http://mytexpert.osdn. jp/index.php?Listings

W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3C Working Group
Note), 2011, 2012. http://www.w3.0rg/TR/jlreq/

ZE LS. Tmin10 7 # > MITDOW T http://argent.shinshu-u.ac.jp/~otobe/tex/files/
minl@.pdf

HA TZEHk% (Japanese Industrial Standard). [JIS X 4051, HAGE X E ORI 1% (Formatting rules
for Japanese documents) | , 1993, 1995, 2004.

EEEA, HANAE, BIRE—. X O RN OIGH —#tH AERE D AIA A — 1. ... /texmE-
dist/doc/ptex/base/ptexdoc.pdf

Hisato Hamano. Vertical Typesetting with TgX, TUGBoat 11(3), 346-352, 1990.

International Organization for Standardization. ISO 32000-1:2008, Document management — Portable
document format — Part 1: PDF 1.7, 2008. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=515062

ALJ15AHE. MLuaTEX-ja DITHL I, TRXConf 2018. https://raw.githubusercontent.com/h-kitagawa/
presentations/main/tc181tja.pdf

Takuto ASAKURA. The BXghost Package. https://github.com/wtsnjp/BXghost

64

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
http://mytexpert.osdn.jp/index.php?Listings
http://www.w3.org/TR/jlreq/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
https://raw.githubusercontent.com/h-kitagawa/presentations/main/tc18ltja.pdf
https://raw.githubusercontent.com/h-kitagawa/presentations/main/tc18ltja.pdf
https://github.com/wtsnjp/BXghost

	I User's manual
	Introduction
	Backgrounds
	Major changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	luatexja-fontspec package
	Presets of Japanese fonts
	\CID, \UTF, and macros in japanese-otf package

	Changing Internal Parameters
	Range of JAchars
	kanjiskip and xkanjiskip
	Insertion setting of xkanjiskip
	Shifting the baseline
	kinsoku parameters and OpenType features

	II Reference
	\catcode in LuaTeX-ja
	Preliminaries: \kcatcode in pTeX and upTeX
	Case of LuaTeX-ja
	Non-kanji characters in a control word

	Directions
	Boxes in different direction
	Getting current direction

	Redefined primitives by LuaTeX-ja
	Suppressing redefinitions

	Font Metric and Japanese Font
	\jfont
	\tfont
	Default Japanese fonts and JFMs
	Prefix psft
	Structure of a JFM file
	Math font family
	Callbacks

	Parameters
	\ltjsetparameter
	\ltjgetparameter
	Alternative Commands to \ltjsetparameter

	Other Commands for plain TeX and LaTeX2ε
	Commands for compatibility with pTeX
	\inhibitglue, \disinhibitglue
	\ltjfakeboxbdd, \ltjfakeparbegin
	\insertxkanjiskip, \insertkanjiskip
	\ltjdeclarealtfont

	Commands for LaTeX2ε
	Loading Japanese fonts in LaTeX2ε
	Patch for NFSS2
	Detail of \fontfamily command
	Notes on \DeclareTextSymbol
	\strutbox

	expl3 interface
	Addon packages
	luatexja-fontspec
	luatexja-otf
	luatexja-adjust
	luatexja-ruby
	lltjext.sty
	luatexja-preset
	General Options
	Presets which support multi weights
	Presets which do not support multi weights
	Presets which use HG fonts
	Define/Use Custom Presets

	III Implementations
	Storing Parameters
	Used dimensions, attributes and whatsit nodes
	Stack system of LuaTeX-ja
	Lua functions of the stack system
	Extending Parameters

	Linebreak after a Japanese Character
	Reference: behavior in pTeX
	Behavior in LuaTeX-ja

	Patch for the listings Package
	Notes and additional keys
	Class of characters

	Cache Management of LuaTeX-ja
	Use of cache
	Internal

	References

