
The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun

Support: https://github.com/lualatex/luamplib

2026/01/14 v2.38.2

Abstract

Package to have metapost code typeset directly in a document with LuaTEX

Contents

1 Documentation 2
1.1 TEX . 3

1.1.1 \mplibforcehmode . 3
1.1.2 \everymplib, \everyendmplib . 3
1.1.3 \mplibsetformat . 3
1.1.4 \mplibnumbersystem . 4
1.1.5 \mplibshowlog . 4
1.1.6 \mpliblegacybehavior . 4
1.1.7 \mplibtextextlabel . 5
1.1.8 \mplibcodeinherit . 5
1.1.9 \mplibglobaltextext . 6
1.1.10 Separate metapost instances . 6
1.1.11 \mplibverbatim . 7
1.1.12 \mpdim . 7
1.1.13 \mpcolor . 7
1.1.14 \mpfig, \endmpfig . 7
1.1.15 About cache files . 8
1.1.16 About figure box metric . 9
1.1.17 luamplib.cfg . 9
1.1.18 Tagged PDF . 9

1.2 MetaPost . 11
1.2.1 mplibdimen, mplibcolor . 11
1.2.2 mplibtexcolor, mplibrgbtexcolor . 11
1.2.3 withmplibcolors . 11
1.2.4 withtransparency . 11

1

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod . 12
1.2.6 withfademethod . 13
1.2.7 mplibgraphictext . 14
1.2.8 mplibglyph . 15
1.2.9 mplibdrawglyph, and its friends . 15
1.2.10 mpliboutlinetext . 16
1.2.11 \mppattern, withmppattern . 16
1.2.12 asgroup . 18
1.2.13 \mplibgroup . 19
1.2.14 mpliblength, mplibuclength . 20
1.2.15 mplibsubstring, mplibucsubstring . 21

1.3 Lua . 21
1.3.1 runscript . 21
1.3.2 luamplib.instances . 21
1.3.3 luamplib.process_mplibcode . 22

2 Implementation 22
2.1 Lua module . 22
2.2 TEXpackage . 90

3 The GNU GPL License v2 111

1 Documentation

This package aims at providing a simple way to typeset directly metapost code in a document
with LuaTEX. LuaTEX is built with the Lua mplib library, that runs metapost code. This package
is basically a wrapper for the Lua mplib functions and some TEX functions to have the output
of the mplib functions in the pdf.

Using this package is easy: in Plain, type your metapost code between the macros
\mplibcode and \endmplibcode, and in LATEX in the mplibcode environment.

The resulting metapost figures are put in a TEX hboxwith dimensions adjusted to the meta-
post code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib.tex files from
ConTEXt. They have been adapted to LATEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

• possibility to use btex ... etex to typeset TEX code. textext 〈string〉 is a more versatile
macro equivalent to TEX 〈string〉 from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

• possibility to use verbatimtex ... etex, though it’s behavior cannot be the same as the
stand-alone mpost. Of course you cannot include \documentclass, \usepackage etc. When

2

these TEX commands are found in verbatimtex ... etex, the entire code will be ignored.
The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

• in the past, the package required PDF mode in order to have some output. Starting
with version 2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool
currently supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TEX, MetaPost, and Lua interfaces.

1.1 TEX

1.1.1 \mplibforcehmode

When this macro is declared, every metapost figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.1

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the lua table containing metapost code which will be
automatically inserted at the beginning and ending of each metapost code chunk.

\everymplib{ beginfig(0); }
\everyendmplib{ endfig; }
\begin{mplibcode}
% beginfig/endfig not needed
draw fullcircle scaled 1cm;

\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for metapost: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{〈format name〉}.

n.b. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided bymetafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

transparency (texdoc metafun § 8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=〈number〉" to the sentence. (0 ≤ 〈number〉 ≤ 1)
From v2.36, withtransparency is available with plain as well. See below § 1.2.4.

1Actually these commands redefine \prependtomplibbox. So you can redefine this command with anything suit-
able before a box. But see § 1.1.18 on Tagged PDF.

3

shading (texdoc metafun § 8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TEX side. For instance, when withshadecolors("orange", 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or l3color’s expression.
From v2.36, shading is available with plain format as well with extended functionality.
See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where 〈string〉 should be "" (empty), "isolated", "knockout", or "isolated,knockout". Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well, with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable}2 is declared, log messages returned by the meta-
post process will be printed to the .log file. This is the TEX side interface for luamplib.showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

By default, \mpliblegacybehavior{enable} is already declared for backward compatibility, in
which case TEX code in verbatimtex ... etex that comes just before beginfig() will be inserted
before the following metapost figure box. In this way, each figure box can be freely moved
horizontally or vertically. Also, a box number can be assigned to a figure box, allowing it to be
reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(0); ... endfig;
verbatimtex \leavevmode etex; beginfig(1); ... endfig;
verbatimtex \leavevmode\lower 1ex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;

\endmplibcode

2As for user’s setting, enable, true and yes are identical; disable, false and no are identical.
3But the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

4

n.b. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TEX code in verbatimtex ... etex between beginfig() and endfig will be

inserted after flushing out the metapost figure. As shown in the example below, VerbatimTeX
〈string〉 is a synonym of verbatimtex ... etex.4

\mplibcode
D := sqrt(2)**9;
beginfig(0);

draw fullcircle scaled D;

diameter: 22.62764bp.VerbatimTeX("\gdef\Dia{" & decimal D & "}");
endfig;

\endmplibcode
diameter: \Dia bp.

By contrast, when \mpliblegacybehavior{disable} is declared, any verbatimtex ... etex will
be executed, alongwith btex ... etex, sequentially one by one. So, some TEX code in verbatimtex
... etex will have effects on following btex ... etex codes.

\begin{mplibcode}
beginfig(0);

draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,0); % bold face
draw btex GHI etex shifted (2cm,0); % bold face

endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text", origin) thereafter is exactly the same as label(textext
"my text", origin).

n.b. In the background, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TEX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (^), 95 (_), 123 ({), 125 (}), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TEX.

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants, and
macros defined by previous metapost code chunks. On the contrary, \mplibcodeinherit{disable}

4But the recommended way to access metapost variables from TEX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

5

will make each code chunk being treated as an independent instance, never affected by previous
code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other metapost macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. This optional
command still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(0);} \everyendmplib{ endfig;}
\mplibcode
label(btex $\sqrt{2}$ etex, origin);
draw fullcircle scaled 20;

√
2

√
2picture pic; pic := currentpicture;

\endmplibcode
\mplibcode
currentpicture := pic scaled 2;

\endmplibcode

1.1.10 Separate metapost instances

luamplib v2.22 has added the support for several named metapost instances in LATEX mplibcode
environment. Plain TEX users also can use this functionality. The syntax for LATEX is:

\begin{mplibcode}[instanceName]
% some mp code

\end{mplibcode}

The behavior is as follows.

• All the variables and functions are shared only among all the environments belonging
to the same instance.

• \mplibcodeinherit only affects environments with no instance name set (since if a name
is set, the code is intended to be reused at some point).

• btex ... etex boxes are also shared and do not require \mplibglobaltextext.

• When an instance names is set, respective \currentmpinstancename is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.
Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceName]{...}
\everyendmplib[instanceName]{...}

6

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TEX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},0)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}
;

1.1.13 \mpcolor[...]{...}

With \mpcolor command, color names or expressions of color, xcolor and l3color module/pack-
ages can be used in the mplibcode environment (after withcolor command). See the example
above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color command. For spot
colors, l3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and xespotcolor (in DVI
mode) packages are supported as well.

n.b. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a metapost image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a metapost color expression
if possible, users can issue the sentence as follows without worring about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}
;

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7
;

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for LATEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TEX macros \mpfig ... \endmpfig and its starred version \mpfig* ...

7

\endmpfig to save typing toil. The former is roughly the same as follows:
\begin{mplibcode}[@mpfig]
beginfig(0)

token list declared by \everymplib[@mpfig]
...
token list declared by \everyendmplib[@mpfig]

endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:
\begin{mplibcode}[@mpfig]
...

\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, metapost codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor .5[red,white]); }
\mpfig* input boxes \endmpfig
\mpfig Box 1
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

• \mplibmakenocache{〈filename〉[,〈filename〉,...]}

• \mplibcancelnocache{〈filename〉[,〈filename〉,...]}

where 〈filename〉 is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,
$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{〈directory path〉}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

8

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MPllx, \MPlly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the LATEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=〈text〉 starts a Figure tag by default and sets an alternate text of the figure from the 〈text〉.
BBox info will be added automatically to the PDF. This key is needed for ordinary meta-
post figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within metapost code as well: VerbatimTeX
"\mplibalttext{〈text〉}";

actualtext=〈text〉 starts a Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the 〈text〉. If in vertical mode, horizontal mode will be forced by \noindent command.5
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
metapost code as well: VerbatimTeX "\mplibactualtext{〈text〉}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TEX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be
forced by \noindent command.6 BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TEX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TEX-text boxes is strongly
discouraged.

Note that the text in a TEX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For

5It is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

6The key text also shares the limitation mentioned in the previous footnote.

9

example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)

draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;

√
2√
3√
5√
7√
x

draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;

endfig;
\end{mplibcode}

off Given this key, nothing will be tagged by luamplib.

tag=〈name〉 You can choose a tag name, default value being Figure.7 For instance, you can set
‘tag=Formula, alt=〈text〉’ to get a Formula element with its alternate text.8

adjust-BBox=〈dimens〉 You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=〈key-val list〉 This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{〈key-val list〉}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
...

\end{mplibcode}

\mpfig[alt=drawing of a square box]
...

\endmpfig

\usemplibgroup[alt=drawing of a triangle]{...}

\mppattern{...} % see below
\mpfig[off] % do not tag this figure

...
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=〈name〉 or instancename=〈name〉
is also allowed in addition to the raw instance name as shown above.

7The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses LATEX’s regular math formula tagging, for which the text key is needed.

10

1.2 MetaPost

1.2.1 mplibdimen ..., mplibcolor ...

These are metapost interfaces for the TEX commands \mpdim and \mpcolor (see above § 1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
metapost operators can also be used in external .mp files, which cannot have TEX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a metapost operator that converts a TEX
color expression to a metapost color expression, that can be used anywhere color expression
is expected as well as after the withcolor command. For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a metapost error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor 〈string〉 always returns rgb-model expressions.

n.b. Spot colors are forced to cmyk or rgbmodel, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using themacro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
(〈fill color expr〉, 〈stroke color expr〉). When the argument is in string type, it is regarded as
the color expression of TEX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40
withpen pencircle scaled 2
withmplibcolors ("orange!60", 2/3red)
;

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency(number | string, number) is provided for plain format as well asmetafun. The
first argument accepts a number or a name of alternative transparency methods (see texdoc
metafun § 8.2 Figure 8.1). The second argument accepts a number denoting opacity.

\mpfig
fill unitsquare scaled 40

11

withcolor 2/3[blue,white]
;

fill fullcircle scaled 40
withcolor red
withtransparency (1, 0.5) % or ("normal", 0.5)
;

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same asmetafun’s new shadingmethod (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro namewhich onlyworks withmetafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

• textual pictures as well as paths can have shading effect. The term textual picture means
a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see below
§ 1.2.7 on this macro), or infont operator, though technically only the last one is a true
textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear"
withshadingvector (0,3)
withshadingstep (

withshadingfraction 1/2
withshadingcolors (red,green) TEX)

withshadingstep (
withshadingfraction 1
withshadingcolors (green,blue)

)
;

• When you give shading effect to a picture generated by ‘infont’ operator, the result of
withshadingvector will be the same as that of withshadingdirection, as luamplib considers
only the bounding box of the picture in this case.

As shown, the syntax is 〈path〉 | 〈textual picture〉 withshadingmethod 〈string〉, where the latter
shall be either "linear" or "circular". Other macros for optional values are:

withshadingvector 〈pair〉 Starting and ending points (as time value) on the path.

withshadingdirection 〈pair〉 Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin 〈pair〉 The center of starting and ending circles. Default value: center p

12

withshadingradius 〈pair〉 Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor 〈number〉 Multiplier of the radii. This is no-op in linearmode. Default value:
1.2

withshadingcenter 〈pair〉 Values for shifting starting center. For instance, (0,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform 〈string〉 where 〈string〉 shall be "yes" (respect transform) or "no" (ignore
transform). Default value: "no" for pictures made by infont operator; "yes" for all other
cases.

withshadingdomain 〈pair〉 Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction 〈number〉 Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors (color expr, color expr) Starting and ending colors. Default value is (white,
black). String-type argument is regarded as the color expression of TEX side.

1.2.6 ... withfademethod ...

This is a metapost operator which makes the color of an object gradiently transparent. The
syntax is 〈path〉 | 〈picture〉 withfademethod 〈string〉, the latter being either "linear" or "circular".
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand
of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.

Related macros to control optional values are:

withfadeopacity (number, number) sets the starting opacity and the ending opacity, default
value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector (pair, pair) sets the starting and ending points. Default value in the linear
mode is (llcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius (number, number) sets the radii of starting and ending circles. This is no-op in
the linear mode. Default value is (0, abs(center p - urcorner p)), meaning that fading
starts from the center and ends at the four corners of the bounding box.

13

withfadebbox (pair, pair) sets the bounding box of the fading area, default value being (llcorner
p, urcorner p). Though this option is not needed in most cases, there could be cases when
users want to explicitly control the bounding box. Particularly, see the description below
at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bp]{mill} etex;
draw mill

withfademethod "circular"
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, 0)
;

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext 〈string〉 is a metapost operator, the effect of which is similar to that of Con-
TEXt’s graphictext or our own mpliboutlinetext (see below § 1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3
fakebold 2.3 % fontspec option Funn

y
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue
;

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white" and
"black" respectively.9 When the color expressions are given in string type, they are regarded
as color, xcolor or l3color’s expressions. All from mplibgraphictext to the end of sentence will
compose an anonymous picture, which can be drawn or assigned to a variable. Incidentally,
withfillcolor and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be com-
patible with graphictext.

n.b. In some cases, especially when processing complicated TEX code, mplibgraphictext
will produce better results than ConTEXt or even than our own mpliboutlinetext, not tomention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.10 Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

9Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
10But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

14

1.2.8 mplibglyph ... of ...

From v2.30, we provide a newmetapost operator mplibglyph, which returns a metapost picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, metapost primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(0)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf" % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]" % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TEX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyphwill be quite similar to the result of glyph
primitive, metapost’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph 〈picture〉 command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

n.b. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect" to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd" to the last path in
the picture.

n.b. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what youwant: in such cases, you have to issue the command
draw 〈the last path〉 withpostscript "both" (or "eoboth" to apply even-odd rule).11

As this could be somewhat annoying to users, we provide the following commands as well:
mplibfillandstrokeglyph 〈picture〉, mplibstrokeglyph 〈picture〉, and mplibfillglyph 〈picture〉, the
last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)
;

11metafun provides macros nofill, eofill, fillup, eofillup etc. (seemetafun manual § 2.11), which luamplib with
plain format does not provide currently.

15

1.2.10 mpliboutlinetext (...)

From v2.31, a new metapost operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see themetafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!30})
(withpen pencircle scaled .2 withcolor red)
scaled 3
;

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

n.b. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{〈name〉} ... \endmppattern define a tiling pattern associated with the
〈name〉. metapost command withmppattern, the syntax being 〈cyclic path〉 | 〈textual picture〉
withmppattern 〈string〉, will fill the given path or text with the tiling pattern of the 〈name〉 by
replicating it horizontally and vertically.12 As said before at § 1.2.5, the textual picture here
means any text typeset by TEX, mostly the result of the btex command (and its derivatives) or
the infont operator.

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below

xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}

]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]
;

draw (left--right) scaled 5
withcolor 2/3[red,white]
;

\endmpfig
\endmppattern % or \end{mppattern}

12withpattern is an operator virtually the same as withmppattern, but the former forces a metapost picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), 〈cyclic path〉 withmppattern 〈string〉 works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern
Key Value Type Explanation
xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells
yshift number vertical shifting of pattern cells
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed
colored or coloured boolean false for uncolored pattern. default: true

* in string type, numbers are separated by spaces

\mpfig
draw fullcircle scaled 50

withpostscript "collect"
;

draw fullcircle scaled 120
withmppattern "mypatt"
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth"
;

\endmpfig

The available options are listed in Table 1.
For the sake of convenience, the width and height values of tiling patterns will be written

down into the log file. (depth is always zero.) Users can refer to them for option setting.
As for matrix option, metapost code such as "rotated 30 slanted .2" is allowed as well as

string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’
operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern, resources option is needed:
for instance, resources="/ExtGState 1 0 R". However, as luamplib automatically includes the
resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern which shall
have no color at all. Uncolored pattern will be painted later by the color of a metapost object.
An example:

\begin{mppattern}{pattnocolor}
[

colored = false,
matrix = "slanted .3 rotated 30",

]
\tiny\TeX

\end{mppattern}

17

\begin{mplibcode}
beginfig(1)

picture tex;
tex = mpliboutlinetext.p ("\bfseries \TeX");
for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]
scaled 8
withmppattern "pattnocolor"
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern
;

endfor
endfig;

\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)

draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor" TEXwithmplibcolors (
1/3[white,red], % paints the pattern
2/3 red

)
;

endfig;
\end{mplibcode}

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well asmetafun format. The syntax
is exactly the same: 〈picture〉 | 〈path〉 asgroup "" | "isolated" | "knockout" | "isolated,knockout",
which will return a metapost picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.

The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TEX code or in other metapost code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TEX and metapost macros as follows:

withgroupname 〈string〉 associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

18

\usemplibgroup{〈name〉} is a TEX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the group will be shifted to the origin.

usemplibgroup 〈string〉 is a metapost command which will add a transparency group of the
name to the currentpicture. Contrary to the TEX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox (pair,pair) sets the bounding box of the transparency group, default value be-
ing (llcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot lft llcorner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TEX and metapost commands:
\mpfig
draw image(

fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;

)
asgroup ""
withgroupname "mygroup"
withtransparency (1, 1/2)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

\noindent
\clap{\vrule width 10bp height .25bp depth .25bp}%
\clap{\vrule width .5bp height 5bp depth 5bp}%
\usemplibgroup{mygroup}

\mpfig
usemplibgroup "mygroup"

withtransparency (1, 1/4)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

Also note that normally the reused transparency groups are not affected by outer color
commands. However, if you have made the original transparency group using withoutcolor
command, colors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TEXmacros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros

19

Table 2: options for \mplibgroup
Key Value Type Explanation
asgroup string "", "isolated", "knockout", or "isolated,knockout"
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

* in string type, numbers are separated by spaces

from TEX side. The syntax is similar to the \mppattern command (see above § 1.2.11).
An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
[% options: see below

asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 30 rotated 45 ;
draw (left--right) scaled 30 rotated -45 ;

\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx" scaled 1.5

withtransparency (1, 0.5)
;

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As shown, you can reuse the mplibgroup using the TEX command \usemplibgroup or the
metapost command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TEX code (not by metapost
code) respects original height and depth.

1.2.14 mpliblength ..., mplibuclength ...

mpliblength 〈string〉 returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the metapost primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abçdéf" returns 6, not 8.

20

On the other hand, mplibuclength 〈string〉 returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Äpfel", where Ä is encoded using two codepoints
(U+0041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.15 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring 〈pair〉 of 〈string〉 is a unicode-aware version equivalent to the metapost’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abçdéf" returns "çdé", and
mplibsubstring (5,2) of "abçdéf" returns "édç".

On the other hand, mplibucsubstring 〈pair〉 of 〈string〉 returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (0,1) of "Äpfel", where Ä is en-
coded using two codepoints (U+0041 and U+0308), returns "Ä", not "A". This operator requires
lua-uni-algos package.

1.3 Lua

1.3.1 runscript ...

Using the primitive runscript 〈string〉, you can run a Lua code chunk from metapost side and
get some metapost code returned by Lua if you want. As the functionality is provided by the
mplib library itself, luamplib does not have much to say about it.

One thing is worthmentioning, however: if you return a Lua table to the metapost process,
it is automatically converted to a relevant metapost value type such as pair, color, cmykcolor
or transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the metapost color expression
(1,0,0) automatically.

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib.instances, through which
metapost variables are also easily accessible from Lua side, as documented in LuaTEX manual
§ 11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b = 1 > 2;
numeric n; n = 3;
string s; s = "MetaPost";
path p; p = unitsquare;

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")

21

Table 3: elements in luamplib table (partial)
Key Type Related TEX macro
codeinherit boolean \mplibcodeinherit
everyendmplib table \everyendmplib
everymplib table \everymplib
getcachedir function (〈string〉) \mplibcachedir
globaltextext boolean \mplibglobaltextext
legacyverbatimtex boolean \mpliblegacybehavior
noneedtoreplace table \mplibmakenocache
numbersystem string \mplibnumbersystem
setformat function (〈string〉) \mplibsetformat
showlog boolean \mplibshowlog
textextlabel boolean \mplibtextextlabel
verbatiminput boolean \mplibverbatim

local t = myinstance:get_path "p"
for k,v in pairs(t) do

print(k, type(v)=='table' and table.concat(v,' ') or v)
end

}

Of course, this sort of Lua code can also be executed inside metapost code using runscript.
Again, of course you can access a metapost value using your own TEX macro. For example:

\def\mpnumeric#1{\directlua{
tex.sprint(tostring(luamplib.instances.myinstance:get_numeric"#1"))

}}
\mpnumeric{n}\relax

1.3.3 Lua function luamplib.process_mplibcode

Users can execute a metapost code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("") which means that it
has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can have effects on the
process of process_mplibcode.

2 Implementation

2.1 Lua module
1
2 luatexbase.provides_module {

22

3 name = "luamplib",
4 version = "2.38.2",
5 date = "2026/01/14",
6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7 }
8

Use the luamplib namespace, since mplib is for the metapost library itself. ConTEXt uses
metapost.

9 luamplib = luamplib or { }
10 local luamplib = luamplib
11
12 local format, abs = string.format, math.abs
13

Use our own function for warn/info/err.
14 local function termorlog (target, text, kind)
15 if text then
16 local mod, write, append = "luamplib", texio.write_nl, texio.write
17 kind = kind
18 or target == "term" and "Warning (more info in the log)"
19 or target == "log" and "Info"
20 or target == "term and log" and "Warning"
21 or "Error"
22 target = kind == "Error" and "term and log" or target
23 local t = text:explode"\n+"
24 write(target, format("Module %s %s:", mod, kind))
25 if #t == 1 then
26 append(target, format(" %s", t[1]))
27 else
28 for _,line in ipairs(t) do
29 write(target, line)
30 end
31 write(target, format("(%s) ", mod))
32 end
33 append(target, format(" on input line %s", tex.inputlineno))
34 write(target, "")
35 if kind == "Error" then error() end
36 end
37 end
38 local function warn (...) -- beware '%' symbol
39 termorlog("term and log", select("#",...) > 1 and format(...) or ...)
40 end
41 local function info (...)
42 termorlog("log", select("#",...) > 1 and format(...) or ...)
43 end
44 local function err (...)
45 termorlog("error", select("#",...) > 1 and format(...) or ...)
46 end
47

23

48 luamplib.showlog = luamplib.showlog or false
49

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack
53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox
56 local texruntoks = tex.runtoks
57 if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest")
59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro
62 local mplib = require ('mplib')
63 local kpse = require ('kpse')
64 local lfs = require ('lfs')
65 local lfsattributes = lfs.attributes
66 local lfsisdir = lfs.isdir
67 local lfsmkdir = lfs.mkdir
68 local lfstouch = lfs.touch
69 local ioopen = io.open
70

Some helper functions, prepared for the case when l-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if lfsisdir(name) then
77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")
79 if fh then
80 fh:close(); os.remove(name)
81 return true
82 end
83 end
84 end
85 local mk_full_path = lfs.mkdirp or lfs.mkdirs or function(path)
86 local full = ""
87 for sub in path:gmatch("(/*[^\\/]+)") do
88 full = full .. sub
89 lfsmkdir(full)
90 end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib

24

regarding make_text, we might have to make cache files modified from input files.
First of all, determine the directory to store cache files.

93 local outputdir, cachedir
94 if lfstouch then
95 for i,v in ipairs{'TEXMFVAR','TEXMF_OUTPUT_DIRECTORY','.','TEXMFOUTPUT'} do
96 local var = i == 3 and v or kpse.var_value(v)
97 if var and var ~= "" then
98 for _,vv in next, var:explode(os.type == "unix" and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")

100 if not lfsisdir(dir) then
101 mk_full_path(dir)
102 end
103 if is_writable(dir) then
104 outputdir = dir
105 break
106 end
107 end
108 if outputdir then break end
109 end
110 end
111 end
112 outputdir = outputdir or '.'
113 function luamplib.getcachedir(dir)
114 dir = dir:gsub("##","#")
115 dir = dir:gsub("^~",
116 os.type == "windows" and os.getenv("UserProfile") or os.getenv("HOME"))
117 if lfstouch and dir then
118 if lfsisdir(dir) then
119 if is_writable(dir) then
120 cachedir = dir
121 else
122 warn("Directory '%s' is not writable!", dir)
123 end
124 else
125 warn("Directory '%s' does not exist!", dir)
126 end
127 end
128 end

Some basic metapost files not necessary to make cache files.
129 local noneedtoreplace = {
130 ["boxes.mp"] = true, -- ["format.mp"] = true,
131 ["graph.mp"] = true, ["marith.mp"] = true, ["mfplain.mp"] = true,
132 ["mpost.mp"] = true, ["plain.mp"] = true, ["rboxes.mp"] = true,
133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,
134 ["metafun.mp"] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv"] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv"] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv"] = true, ["mp-core.mpiv"] = true,

25

138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv"] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv"] = true, ["mp-luas.mpiv"] = true,
141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv"] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,
144 }
145 luamplib.noneedtoreplace = noneedtoreplace
146

Pattern formats to replace btex and verbatimtex ... etex in input files, if needed.
147 local name_b = "%f[%a_]"
148 local name_e = "%f[^%a_]"
149 local btex_etex = name_b.."btex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
150 local verbatimtex_etex = name_b.."verbatimtex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
151

Function luamplib.finder
152 local currenttime = os.time()
153 do
154 local luamplibtime = lfsattributes(kpse.find_file"luamplib.lua", "modification")

format.mp is much complicated, so specially treated.
155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")
157 if not fh then return file end
158 local data = fh:read("*all"); fh:close()
159 fh = ioopen(newfile,"w")
160 if not fh then return file end
161 fh:write(
162 "let normalinfont = infont;\n",
163 "primarydef str infont name = rawtextext(str) enddef;\n",
164 data,
165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$^{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"
168); fh:close()
169 lfstouch(newfile,currenttime,ofmodify)
170 return newfile
171 end
172 local function replaceinputmpfile (name,file)
173 local ofmodify = lfsattributes(file,"modification")
174 if not ofmodify then return file end
175 local newfile = name:gsub("%W","_")
176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then
178 local nf = lfsattributes(newfile)
179 if nf and nf.mode == "file" and
180 ofmodify == nf.modification and luamplibtime < nf.access then
181 return nf.size == 0 and file or newfile
182 end

26

183 end
184 if name == "format.mp" then return replaceformatmp(file,newfile,ofmodify) end
185 local fh = ioopen(file,"r")
186 if not fh then return file end
187 local data = fh:read("*all"); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTEX
manual, which is not the case of standalone metapost though.
188 local count,cnt = 0,0
189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
190 count = count + cnt
191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt
193 if count == 0 then
194 noneedtoreplace[name] = true
195 fh = ioopen(newfile,"w");
196 if fh then
197 fh:close()
198 lfstouch(newfile,currenttime,ofmodify)
199 end
200 return file
201 end
202 fh = ioopen(newfile,"w")
203 if not fh then return file end
204 fh:write(data); fh:close()
205 lfstouch(newfile,currenttime,ofmodify)
206 return newfile
207 end

As the finder function for mplib, use the kpse library and make it behave like as if metapost
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse
209 do
210 local exe = 0
211 while arg[exe-1] do
212 exe = exe-1
213 end
214 mpkpse = kpse.new(arg[exe], "mpost")
215 end
216 local special_ftype = {
217 pfb = "type1 fonts",
218 enc = "enc files",
219 }
220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then
222 if name and name ~= "mpout.log" then
223 kpse.record_output_file(name) -- recorder
224 end
225 return name
226 else

27

227 ftype = special_ftype[ftype] or ftype
228 local file = mpkpse:find_file(name,ftype)
229 if file then
230 if lfstouch and ftype == "mp" and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)
232 end
233 else
234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end
236 if file then
237 kpse.record_input_file(file) -- recorder
238 end
239 return file
240 end
241 end
242 end
243

For the main function: process
plain or metafun, though we cannot support metafun format fully.

244 local currentformat = "plain"
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false
249 local mplibinstances = {}
250 luamplib.instances = mplibinstances
251 local has_instancename = false
252
253 local process
254 do
255 local function reporterror (result, prevlog)
256 if not result then
257 err("no result object returned")
258 else
259 local t, e, l = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)
260 local log = l or t or "no-term"
261 log = log:gsub("%(Please type a command or say `end'%)",""):gsub("\n+","\n")
262 if result.status > 0 then
263 local first = log:match"(.-\n! .-)\n! "
264 if first then
265 termorlog("term", first)
266 termorlog("log", log, "Warning")
267 else
268 warn(log)
269 end
270 if result.status > 1 then

28

271 err(e or "see above messages")
272 end
273 elseif prevlog then
274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match"\n>>? .+"
276 if show then
277 termorlog("term", show, "Info (more info in the log)")
278 info(log)
279 elseif luamplib.showlog and log:find"%g" then
280 info(log)
281 end
282 end
283 return log
284 end
285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.
286 if not math.initialseed then math.randomseed(currenttime) end
287 local function luamplibload (name)
288 local mpx = mplib.new {
289 ini_version = true,
290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.
291 make_text = luamplib.maketext,
292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,
295 random_seed = math.random(4095),
296 utf8_mode = true,
297 extensions = 1,
298 }

Append our own metapost preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{
300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),
301 luamplib.preambles.mplibcode,
302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or "",
304 }
305 local result, log
306 if not mpx then
307 result = { status = 99, error = "out of memory"}
308 else
309 result = mpx:execute(preamble)
310 end

29

https://github.com/lualatex/luamplib/issues/21

311 log = reporterror(result)
312 return mpx, result, log
313 end

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)
315 local currfmt
316 if instancename and instancename ~= "" then
317 currfmt = instancename
318 has_instancename = true
319 else
320 currfmt = tableconcat{
321 currentformat,
322 luamplib.numbersystem or "scaled",
323 tostring(luamplib.textextlabel),
324 tostring(luamplib.legacyverbatimtex),
325 }
326 has_instancename = false
327 end
328 local mpx = mplibinstances[currfmt]
329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then
331 mpx:finish()
332 end
333 local log = ""
334 if standalone or not mpx then
335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx
337 end
338 local converted, result = false, {}
339 if mpx and data then
340 result = mpx:execute(data)
341 local log = reporterror(result, log)
342 if log then
343 if result.fig then
344 converted = luamplib.convert(result)
345 end
346 end
347 else
348 err"Mem file unloadable. Maybe generated with a different version of mplib?"
349 end
350 return converted, result
351 end
352 end
353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355

make_text and some run_script uses LuaTEX’s tex.runtoks.

30

356 local catlatex = luatexbase.registernumber("catcodetable@latex")
357 local catat11 = luatexbase.registernumber("catcodetable@atletter")

tex.scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-
iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536*(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is
true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.
363 local texboxes = { globalid = 0, localid = 4096 }
364 local process_tex_text
365 do
366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z
368 withprescript "mplibtexboxid=%i:%f:%f")'
369 function process_tex_text (str, maketext)
370 if str then
371 if not maketext then str = str:gsub("\r.-$","") end
372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global" or ""
374 local tex_box_id
375 if global == "" then
376 tex_box_id = texboxes.localid + 1
377 texboxes.localid = tex_box_id
378 else
379 local boxid = texboxes.globalid + 1
380 texboxes.globalid = boxid
381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount'allocationnumber'
383 end
384 if str:find"^%[taggingoff%]" then
385 str = str:gsub("^%[taggingoff%]%s*","")
386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))
388 else
389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))
391 end
392 local box = texgetbox(tex_box_id)
393 local wd = box.width / factor
394 local ht = box.height / factor

31

395 local dp = box.depth / factor
396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
397 end
398 return ""
399 end
400 end
401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-
mands should be used with graphical objects. Attempt to support l3color as well.
402 if is_defined'color_select:n' then
403 run_tex_code{
404 "\\newcatcodetable\\luamplibcctabexplat",
405 "\\begingroup",
406 "\\catcode`@=11 ",
407 "\\catcode`_=11 ",
408 "\\catcode`:=11 ",
409 "\\savecatcodetable\\luamplibcctabexplat",
410 "\\endgroup",
411 }
412 end
413 local ccexplat = luatexbase.registernumber"luamplibcctabexplat"
414
415 local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)
417 local t, tt = { }, res:gsub("[%[%]]","",2):explode()
418 local be = tt[1]:find"^%d" and 1 or 2
419 for i=be, #tt do
420 if not tonumber(tt[i]) then break end
421 t[#t+1] = tt[i]
422 end
423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata
424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro"mplibtmpb":explode","
426 end
427 return t
428 end
429 do
430 local colfmt = ccexplat and "l3color" or "xcolor"
431 local mplibcolorfmt = {
432 xcolor = tableconcat{
433 [[\begingroup\let\XC@mcolor\relax]],
434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}]],
435 [[\color%s\endgroup]],
436 },
437 l3color = tableconcat{
438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}]],
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}]],

32

440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}]],
441 [[\color_select:n%s\endgroup]],
442 },
443 }
444 function process_color (str)
445 if str then
446 if not str:find("%b{}") then
447 str = format("{%s}",str)
448 end
449 local myfmt = mplibcolorfmt[colfmt]
450 if colfmt == "l3color" and is_defined"color" then
451 if str:find("%b[]") then
452 myfmt = mplibcolorfmt.xcolor
453 else
454 for _,v in ipairs(str:match"{(.+)}":explode"!") do
455 if not v:find("^%s*%d+%s*$") then
456 local pp = get_macro(format("l__color_named_%s_prop",v))
457 if not pp or pp == "" then
458 myfmt = mplibcolorfmt.xcolor
459 break
460 end
461 end
462 end
463 end
464 end
465 run_tex_code(myfmt:format(str), ccexplat or catat11)
466 local t = texgettoks"mplibtmptoks"
467 if not pdfmode then
468 if t:find"^hsb" or not t:find"%d" then
469 t = "color push " .. t
470 elseif not t:find"^pdf" then
471 t = t:gsub("%a+ (.+)","pdf:bc [%1]")
472 end
473 end
474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end
476 return ""
477 end
478 function process_mplibcolor(str)
479 local res = process_color(str)
480 if res:find" cs " or res:find"@pdf.obj" or res:find"color push" then return res end
481 res = colorsplit(res:match'"mpliboverridecolor=(.+)"')
482 return format("(%s)", tableconcat(res, ","))
483 end
484 end
485

for \mpdim or mplibdimen
486 local function process_dimen (str)
487 if str then

33

488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}]], str))
490 return format("begingroup %s endgroup", texgettoks"mplibtmptoks")
491 end
492 return ""
493 end
494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then
497 run_tex_code(str)
498 end
499 return ""
500 end
501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TEX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str
508 end
509 return ""
510 end
511 local function process_verbatimtex_infig (str)
512 if str then
513 return format('special "postmplibverbtex=%s";', str)
514 end
515 return ""
516 end
517

For metafun format. see issue #79.
518 mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.
523 catcodes = catcodes or {}
524 local catcodes = catcodes
525 catcodes.numbers = catcodes.numbers or {}
526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers.texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers.luacatcodes = catcodes.numbers.luacatcodes or catlatex

34

529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers.txtcatcodes = catcodes.numbers.txtcatcodes or catlatex
533

Now luamplib.runscript
534 do
535 local runscript_funcs = {
536 luamplibtext = process_tex_text,
537 luamplibcolor = process_mplibcolor,
538 luamplibdimen = process_dimen,
539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,
542 }

A function from ConTEXt general.
543 local function mpprint(buffer,...)
544 for i=1,select("#",...) do
545 local value = select(i,...)
546 if value ~= nil then
547 local t = type(value)
548 if t == "number" then
549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string" then
551 buffer[#buffer+1] = value
552 elseif t == "table" then
553 buffer[#buffer+1] = "(" .. tableconcat(value,",") .. ")"
554 else -- boolean or whatever
555 buffer[#buffer+1] = tostring(value)
556 end
557 end
558 end
559 end
560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then
563 local f = runscript_funcs[id]
564 if f then
565 local t = f(str)
566 if t then return t end
567 end
568 end
569 local f = loadstring(code)
570 if type(f) == "function" then
571 local buffer = {}
572 function mp.print(...)
573 mpprint(buffer,...)
574 end

35

575 local res = {f()}
576 buffer = tableconcat(buffer)
577 if buffer and buffer ~= "" then
578 return buffer
579 end
580 buffer = {}
581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)
583 end
584 return ""
585 end
586 end
587

luamplib.maketext
588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\0PerCent\0")
592 :gsub("%%.-\n", "")
593 :gsub("%%.-$", "")
594 :gsub("%zPerCent%z", "\\%%")
595 :gsub("\r.-$", "")
596 :gsub("%s+", " ")
597 end
598 function luamplib.maketext (str, what)
599 if str and str ~= "" then
600 str = protecttexcontents(str)
601 if what == 1 then
602 if not str:find("\\documentclass"..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then
607 if luamplib.in_the_fig then
608 return process_verbatimtex_infig(str)
609 else
610 return process_verbatimtex_prefig(str)
611 end
612 else
613 return process_verbatimtex_text(str)
614 end
615 end
616 else
617 return process_tex_text(str, true) -- bool is for 'char13'
618 end
619 end
620 return ""

36

621 end
622 end
623

luamplib’s metapost color operators
624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
626 if res:find" cs " or res:find"@pdf.obj" then
627 if not rgb then
628 warn("%s is a spot color. Forced to CMYK", str)
629 end
630 run_tex_code({
631 "\\color_export:nnN{",
632 str,
633 "}{",
634 rgb and "space-sep-rgb" or "space-sep-cmyk",
635 "}\\mplib_@tempa",
636 },ccexplat)
637 return get_macro"mplib_@tempa":explode()
638 end
639 local t = colorsplit(res)
640 if #t == 3 or not rgb then return t end
641 if #t == 4 then
642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end
644 return { t[1], t[1], t[1] }
645 end
646
647 luamplib.shadecolor = function (str)
648 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
649 if res:find" cs " or res:find"@pdf.obj" then -- spot color shade: l3 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone3005 }
{ Separation }
{

name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}

}
\color_set:nnn{spotA}{pantone3005}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}

\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,

37

alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_set:nnn{spotC}{pantone1215}{1}

\color_model_new:nnn { pantone2040 }
{ Separation }
{

name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}

}
\color_set:nnn{spotD}{pantone2040}{1}

\ExplSyntaxOff
\begin{document}
\begin{mplibcode}
beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm

withshadingmethod "linear"
withshadingvector (0,1)
withshadingstep (

withshadingfraction .5
withshadingcolors ("spotB","spotC")

)
withshadingstep (

withshadingfraction 1
withshadingcolors ("spotC","spotD")

)
;

endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_model_new:nnn { pantone+black }
{ DeviceN }
{ names = {pantone1215,black} }

\color_set:nnn{purepantone}{pantone+black}{1,0}
\color_set:nnn{pureblack} {pantone+black}{0,1}

38

\ExplSyntaxOff
\begin{document}
\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30

withshadingmethod "linear"
withshadingcolors ("purepantone","pureblack")
;

\endmpfig
\end{document}

650 run_tex_code({
651 [[\color_export:nnN{]], str, [[}{backend}\mplib_@tempa]],
652 },ccexplat)
653 local name, value = get_macro'mplib_@tempa':match'{(.-)}{(.-)}'
654 local t, obj = res:explode()
655 if pdfmode then
656 obj = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else
658 obj = t[2]
659 end
660 return format('(1) withprescript"mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end
662 return colorsplit(res)
663 end
664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"^[%d%.:]+$" then
668 col = col:explode":"
669 for i=1,#col do
670 col[i] = format("%.3f", col[i])
671 end
672 if pdfmode then
673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col," ")
676 end
677 return format("[%s]", tableconcat(col," "))
678 end
679 col = process_color(col):match'"mpliboverridecolor=(.+)"'
680 if pdfmode then
681 local t = col:explode()
682 local b = filldraw == "fill" and 1 or #t/2+1
683 local e = b == 1 and #t/2 or #t
684 return tableconcat(t," ", b, e)
685 end
686 return format("[%s]", tableconcat(colorsplit(col)," "))
687 end

39

688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")
690 stroke = graphictextcolor(stroke, "stroke")
691 local bc = pdfmode and "" or "pdf:bc "
692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)
693 end
694 end
695

Remove trailing zeros for smaller PDF
696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub("%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext
699 local function getrulemetric (box, curr, bp)
700 local running = -1073741824
701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd
703 ht = ht == running and box.height or ht
704 dp = dp == running and box.depth or dp
705 if bp then
706 return wd/factor, ht/factor, dp/factor
707 end
708 return wd, ht, dp
709 end
710

luamplib’s mplibgraphictext operator
711 do
712 local emboldenfonts = { }
713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width
715 if not width then
716 local f
717 local function getglyph(n)
718 while n do
719 if n.head then
720 getglyph(n.head)
721 elseif n.font and n.font > 0 then
722 f = n.font; break
723 end
724 n = node.getnext(n)
725 end
726 end
727 getglyph(curr)
728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width
730 end
731 return width

40

732 end
733 local function getrulewhatsit (line, wd, ht, dp)
734 line, wd, ht, dp = line/1000, wd/factor, ht/factor, dp/factor
735 local pl
736 local fmt = "%f w %f %f %f %f re %s"
737 if pdfmode then
738 pl = node.new("whatsit","pdf_literal")
739 pl.mode = 0
740 else
741 fmt = "pdf:content "..fmt
742 pl = node.new("whatsit","special")
743 end
744 pl.data = fmt:format(line, 0, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue"
746 node.setglue(ss, 0, 65536, 65536, 2, 2)
747 pl.next = ss
748 return pl
749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined"ver@tagpdf.sty" then
752 tag_update_attrs = function (n, curr)
753 while n do
754 n.attr = curr.attr
755 if n.head then
756 tag_update_attrs(n.head, curr)
757 end
758 n = node.getnext(n)
759 end
760 end
761 else
762 tag_update_attrs = function() end
763 end
764 local function embolden (box, curr, fakebold)
765 local head = curr
766 while curr do
767 if curr.head then
768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then
770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then
772 if curr.leader.head then
773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule" then
775 local glue = node.effective_glue(curr, box)
776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist" then

41

779 wd = glue
780 else
781 ht, dp = 0, glue
782 end
783 local pl = getrulewhatsit(line, wd, ht, dp)
784 local pack = box.id == node.id"hlist" and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")
786 tag_update_attrs(list,curr)
787 head = node.insert_after(head, curr, list)
788 head, curr = node.remove(head, curr)
789 end
790 elseif curr.id == node.id"rule" and curr.subtype == 0 then
791 local line = getemboldenwidth(curr, fakebold)
792 local wd,ht,dp = getrulemetric(box, curr)
793 if box.id == node.id"vlist" then
794 ht, dp = 0, ht+dp
795 end
796 local pl = getrulewhatsit(line, wd, ht, dp)
797 local list
798 if box.id == node.id"hlist" then
799 list = node.hpack(pl, wd, "exactly")
800 else
801 list = node.vpack(pl, ht+dp, "exactly")
802 end
803 tag_update_attrs(list,curr)
804 head = node.insert_after(head, curr, list)
805 head, curr = node.remove(head, curr)
806 elseif curr.id == node.id"glyph" and curr.font > 0 then
807 local f = curr.font
808 local key = format("%s:%s",f,fakebold)
809 local i = emboldenfonts[key]
810 if not i then
811 local ft = font.getfont(f) or font.getcopy(f)
812 if pdfmode then
813 width = ft.size * fakebold / factor * 10
814 emboldenfonts.width = width
815 ft.mode, ft.width = 2, width
816 i = font.define(ft)
817 else
818 if ft.format ~= "opentype" and ft.format ~= "truetype" then
819 goto skip_type1
820 end
821 local name = ft.name:gsub('"',''):gsub(';$','')
822 name = format('%s;embolden=%s;',name,fakebold)
823 _, i = fonts.constructors.readanddefine(name,ft.size)
824 end
825 emboldenfonts[key] = i
826 end
827 curr.font = i

42

828 end
829 ::skip_type1::
830 curr = node.getnext(curr)
831 end
832 return head
833 end
834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)
836 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil
838 local box = texgetbox(id)
839 box.head = embolden(box, box.head, fakebold)
840 local colors = luamplib.fillandstrokecolor(fc, dc)
841 return format('%s %s)', fmt, colors)
842 end
843 end
844

luamplib’s mplibglyph operator

845 do
846 local function mperr (str)
847 return format("hide(errmessage %q)", str)
848 end
849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then
852 r = r - 360
853 elseif r < -180 then
854 r = r + 360
855 end
856 return r
857 end
858 local function turning (t)
859 local r, n = 0, #t
860 for i=1,2 do
861 tableinsert(t, t[i])
862 end
863 for i=1,n do
864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end
866 return r/360
867 end
868 local function glyphimage(t, fmt)
869 local q,p,r = {{},{}}
870 for i,v in ipairs(t) do
871 local cmd = v[#v]
872 if cmd == "m" then
873 p = {format('(%s,%s)',v[1],v[2])}
874 r = {{x=v[1],y=v[2]}}

43

875 else
876 local nt = t[i+1]
877 local last = not nt or nt[#nt] == "m"
878 if cmd == "l" then
879 local pt = t[i-1]
880 local seco = pt[#pt] == "m"
881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else
883 tableinsert(p, format('--(%s,%s)',v[1],v[2]))
884 tableinsert(r, {x=v[1],y=v[2]})
885 end
886 if last then
887 tableinsert(p, '--cycle')
888 end
889 elseif cmd == "c" then
890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1],v[2],v[3],v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then
892 tableinsert(p, '..cycle')
893 else
894 tableinsert(p, format('..(%s,%s)',v[5],v[6]))
895 if last then
896 tableinsert(p, '--cycle')
897 end
898 tableinsert(r, {x=v[5],y=v[6]})
899 end
900 else
901 return mperr"unknown operator"
902 end
903 if last then
904 tableinsert(q[turning(r) > 0 and 1 or 2], tableconcat(p))
905 end
906 end
907 end
908 r = { }
909 if fmt == "opentype" then
910 for _,v in ipairs(q[1]) do
911 tableinsert(r, format('addto currentpicture contour %s;',v))
912 end
913 for _,v in ipairs(q[2]) do
914 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
915 end
916 else
917 for _,v in ipairs(q[2]) do
918 tableinsert(r, format('addto currentpicture contour %s;',v))
919 end
920 for _,v in ipairs(q[1]) do
921 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
922 end
923 end

44

924 return format('image(%s)', tableconcat(r))
925 end
926 if not table.tofile then require"lualibs-lpeg"; require"lualibs-table"; end
927 function luamplib.glyph (f, c)
928 local filename, subfont, instance, kind, shapedata
929 local fid = tonumber(f) or font.id(f)
930 if fid > 0 then
931 local fontdata = font.getfont(fid) or font.getcopy(fid)
932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance
934 filename = filename and filename:gsub("^harfloaded:","")
935 else
936 local name
937 f = f:match"^%s*(.+)%s*$"
938 name, subfont, instance = f:match"(.+)%((%d+)%)%[(.-)%]$"
939 if not name then
940 name, instance = f:match"(.+)%[(.-)%]$" -- SourceHanSansK-VF.otf[Heavy]
941 end
942 if not name then
943 name, subfont = f:match"(.+)%((%d+)%)$" -- Times.ttc(2)
944 end
945 name = name or f
946 subfont = (subfont or 0)+1
947 instance = instance and instance:lower()
948 for _,ftype in ipairs{"opentype", "truetype"} do
949 filename = kpse.find_file(name, ftype.." fonts")
950 if filename then
951 kind = ftype; break
952 end
953 end
954 end
955 if kind ~= "opentype" and kind ~= "truetype" then
956 f = fid and fid > 0 and tex.fontname(fid) or f
957 if kpse.find_file(f, "tfm") then
958 return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
959 else
960 return mperr"font not found"
961 end
962 end
963 local time = lfsattributes(filename,"modification")
964 local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
965 local h = format(string.rep('%02x', 256/8), string.byte(sha2.digest256(k), 1, -1))
966 local newname = format("%s/%s.lua", cachedir or outputdir, h)
967 local newtime = lfsattributes(newname,"modification") or 0
968 if time == newtime then
969 shapedata = require(newname)
970 end
971 if not shapedata then
972 shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename,subfont,instance)

45

973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?" end
974 table.tofile(newname, shapedata, "return")
975 lfstouch(newname, time, time)
976 end
977 local gid = tonumber(c)
978 if not gid then
979 local uni = utf8.codepoint(c)
980 for i,v in pairs(shapedata.glyphs) do
981 if c == v.name or uni == v.unicode then
982 gid = i; break
983 end
984 end
985 end
986 if not gid then return mperr"cannot get GID (glyph id)" end
987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments
989 if not t then return "image()" end
990 for i,v in ipairs(t) do
991 if type(v) == "table" then
992 for ii,vv in ipairs(v) do
993 if type(vv) == "number" then
994 t[i][ii] = format("%.0f", vv * fac)
995 end
996 end
997 end
998 end
999 kind = shapedata.format or kind

1000 return glyphimage(t, kind)
1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do
1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z
1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert
1008 function outline_vert (res, box, curr, xshift, yshift)
1009 local b2u = box.dir == "LTL"
1010 local dy = (b2u and -box.depth or box.height)/factor
1011 local ody = dy
1012 while curr do
1013 if curr.id == node.id"rule" then
1014 local wd, ht, dp = getrulemetric(box, curr, true)
1015 local hd = ht + dp
1016 if hd ~= 0 then
1017 dy = dy + (b2u and dp or -ht)
1018 if wd ~= 0 and curr.subtype == 0 then
1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)

46

1020 end
1021 dy = dy + (b2u and ht or -dp)
1022 end
1023 elseif curr.id == node.id"glue" then
1024 local vwidth = node.effective_glue(curr,box)/factor
1025 if curr.leader then
1026 local curr, kind = curr.leader, curr.subtype
1027 if curr.id == node.id"rule" then
1028 local wd = getrulemetric(box, curr, true)
1029 if wd ~= 0 then
1030 local hd = vwidth
1031 local dy = dy + (b2u and 0 or -hd)
1032 if hd ~= 0 and curr.subtype == 0 then
1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)
1034 end
1035 end
1036 elseif curr.head then
1037 local hd = (curr.height + curr.depth)/factor
1038 if hd <= vwidth then
1039 local dy, n, iy = dy, 0, 0
1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)
1042 local ndy = math.ceil(ady / hd) * hd
1043 local diff = ndy - ady
1044 n = math.floor((vwidth-diff) / hd)
1045 dy = dy + (b2u and diff or -diff)
1046 else
1047 n = math.floor(vwidth / hd)
1048 if kind == 101 then
1049 local side = vwidth % hd / 2
1050 dy = dy + (b2u and side or -side)
1051 elseif kind == 102 then
1052 iy = vwidth % hd / (n+1)
1053 dy = dy + (b2u and iy or -iy)
1054 end
1055 end
1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd
1058 iy = b2u and iy or -iy
1059 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1060 for i=1,n do
1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy = dy + hd + iy
1063 end
1064 end
1065 end
1066 end
1067 dy = dy + (b2u and vwidth or -vwidth)
1068 elseif curr.id == node.id"kern" then

47

1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)
1070 elseif curr.id == node.id"vlist" then
1071 dy = dy + (b2u and curr.depth or -curr.height)/factor
1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor
1074 elseif curr.id == node.id"hlist" then
1075 dy = dy + (b2u and curr.depth or -curr.height)/factor
1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor
1078 end
1079 curr = node.getnext(curr)
1080 end
1081 return res
1082 end
1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l = box.dir == "TRT"
1085 local dx = r2l and (discwd or box.width/factor) or 0
1086 local dirs = { { dir = r2l, dx = dx } }
1087 while curr do
1088 if curr.id == node.id"dir" then
1089 local sign, dir = curr.dir:match"(.)(...)"
1090 local level, newdir = curr.level, r2l
1091 if sign == "+" then
1092 newdir = dir == "TRT"
1093 if r2l ~= newdir then
1094 local n = node.getnext(curr)
1095 while n do
1096 if n.id == node.id"dir" and n.level+1 == level then break end
1097 n = node.getnext(n)
1098 end
1099 n = n or node.tail(curr)
1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end
1102 dirs[level] = { dir = r2l, dx = dx }
1103 else
1104 local level = level + 1
1105 newdir = dirs[level].dir
1106 if r2l ~= newdir then
1107 dx = dirs[level].dx
1108 end
1109 end
1110 r2l = newdir
1111 elseif curr.char and curr.font and curr.font > 0 then
1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char
1114 local scale = ft.size / factor / 1000
1115 local slant = (ft.slant or 0)/1000
1116 local extend = (ft.extend or 1000)/1000
1117 local squeeze = (ft.squeeze or 1000)/1000

48

1118 local expand = 1 + (curr.expansion_factor or 0)/1000000
1119 local xscale, yscale = scale * extend * expand, scale * squeeze
1120 dx = dx - (r2l and curr.width/factor*expand or 0)
1121 local xoff, yoff = (curr.xoffset or 0)/factor, (curr.yoffset or 0)/factor
1122 local xpos, ypos = dx + xshift + xoff, yshift + yoff
1123 local vertical = ""
1124 if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
1125 if ft.shared.features.vertical then -- luatexko
1126 vertical = "rotated 90"
1127 local data = ft.characters[curr.char] or { }
1128 if ft.hb then
1129 local hoff, voff = (data.luatexko_hoff or 0)/factor, (data.luatexko_voff or 0)/factor
1130 local charraise = (ft.luatexko_charraise or 0)/factor
1131 xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise
1132 else
1133 local cmds = data.commands or { {0,0}, {0,0} }
1134 local voff, hoff = -cmds[1][2]/factor, cmds[2][2]/factor
1135 xpos, ypos = xpos + hoff, ypos + voff
1136 end
1137 elseif curr ~= box.head then -- luatexja
1138 vertical = "rotated 90"
1139 local en = ft.parameters.quad/factor/2
1140 xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
1141 end
1142 end
1143 local image
1144 if ft.format == "opentype" or ft.format == "truetype" then
1145 image = luamplib.glyph(curr.font, gid)
1146 else
1147 local name, scale = ft.name, 1
1148 local vf = font.read_vf(name, ft.size)
1149 if vf and vf.characters[gid] then
1150 local cmds = vf.characters[gid].commands or {}
1151 for _,v in ipairs(cmds) do
1152 if v[1] == "char" then
1153 gid = v[2]
1154 elseif v[1] == "font" and vf.fonts[v[2]] then
1155 name = vf.fonts[v[2]].name
1156 scale = vf.fonts[v[2]].size / ft.size
1157 end
1158 end
1159 end
1160 image = format("glyph %s of %q scaled %f", gid, name, scale)
1161 end
1162 res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
1163 #res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
1164 dx = dx + (r2l and 0 or curr.width/factor*expand)
1165 elseif curr.replace then
1166 local width = node.dimensions(curr.replace)/factor

49

1167 dx = dx - (r2l and width or 0)
1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and 0 or width)
1170 elseif curr.id == node.id"rule" then
1171 local wd, ht, dp = getrulemetric(box, curr, true)
1172 if wd ~= 0 then
1173 local hd = ht + dp
1174 dx = dx - (r2l and wd or 0)
1175 if hd ~= 0 and curr.subtype == 0 then
1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end
1178 dx = dx + (r2l and 0 or wd)
1179 end
1180 elseif curr.id == node.id"glue" then
1181 local width = node.effective_glue(curr, box)/factor
1182 dx = dx - (r2l and width or 0)
1183 if curr.leader then
1184 local curr, kind = curr.leader, curr.subtype
1185 if curr.id == node.id"rule" then
1186 local wd, ht, dp = getrulemetric(box, curr, true)
1187 local hd = ht + dp
1188 if hd ~= 0 then
1189 wd = width
1190 if wd ~= 0 and curr.subtype == 0 then
1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end
1193 end
1194 elseif curr.head then
1195 local wd = curr.width/factor
1196 if wd <= width then
1197 local dx = r2l and dx+width or dx
1198 local n, ix = 0, 0
1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)
1201 local ndx = math.ceil(adx / wd) * wd
1202 local diff = ndx - adx
1203 n = math.floor((width-diff) / wd)
1204 dx = dx + (r2l and -diff-wd or diff)
1205 else
1206 n = math.floor(width / wd)
1207 if kind == 101 then
1208 local side = width % wd /2
1209 dx = dx + (r2l and -side-wd or side)
1210 elseif kind == 102 then
1211 ix = width % wd / (n+1)
1212 dx = dx + (r2l and -ix-wd or ix)
1213 end
1214 end
1215 wd = r2l and -wd or wd

50

1216 ix = r2l and -ix or ix
1217 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1218 for i=1,n do
1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix
1221 end
1222 end
1223 end
1224 end
1225 dx = dx + (r2l and 0 or width)
1226 elseif curr.id == node.id"kern" then
1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)
1228 elseif curr.id == node.id"math" then
1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)
1230 elseif curr.id == node.id"vlist" then
1231 dx = dx - (r2l and curr.width/factor or 0)
1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and 0 or curr.width/factor)
1234 elseif curr.id == node.id"hlist" then
1235 dx = dx - (r2l and curr.width/factor or 0)
1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and 0 or curr.width/factor)
1238 end
1239 curr = node.getnext(curr)
1240 end
1241 return res
1242 end
1243 function luamplib.outlinetext (text)
1244 local fmt = process_tex_text(text)
1245 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)
1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252

lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require'lua-uni-graphemes'
1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)
1258 end
1259 return t
1260 end
1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step = { }

51

1263 if grph then
1264 t = luamplib.getunicodegraphemes(s)
1265 else
1266 t = { }
1267 for _, c in utf8.codes(s) do
1268 table.insert(t, utf8.char(c))
1269 end
1270 end
1271 if b <= e then
1272 b, step = b+1, 1
1273 else
1274 e, step = e+1, -1
1275 end
1276 for i = b, e, step do
1277 table.insert(tt, t[i])
1278 end
1279 s = table.concat(tt):gsub('"','"&ditto&"')
1280 return string.format('"%s"', s)
1281 end
1282

metapost preambles

1283 luamplib.preambles = {
1284 preamble = [[
1285 boolean mplib ; mplib := true ;
1286 let dump = endinput ;
1287 let normalfontsize = fontsize;
1288 input %s ;
1289]],
1290 mplibcode = [[
1291 texscriptmode := 2;
1292 def rawtextext primary t = runscript("luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript("luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript("luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript("luamplibverbtex{"&t&"}") enddef;
1296 if known context_mlib:
1297 defaultfont := "cmtt10";
1298 let infont = normalinfont;
1299 let fontsize = normalfontsize;
1300 vardef thelabel@#(expr p,z) =
1301 if string p :
1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :
1304 p shifted (z + labeloffset*mfun_laboff@# -
1305 (mfun_labxf@#*lrcorner p + mfun_labyf@#*ulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*llcorner p))
1307 fi
1308 enddef;
1309 else:

52

1310 vardef textext@# primary t = rawtextext (t) enddef;
1311 def message expr t =
1312 if string t: runscript("mp.report[=["&t&"]=]") else: errmessage "Not a string" fi
1313 enddef;
1314 def withtransparency (expr a, t) =
1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t
1317 enddef;
1318 vardef ddecimal primary p =
1319 decimal xpart p & " " & decimal ypart p
1320 enddef;
1321 vardef boundingbox primary p =
1322 if (path p) or (picture p) :
1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p
1324 else :
1325 origin
1326 fi -- cycle
1327 enddef;
1328 fi
1329 def resolvedcolor(expr s) =
1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef;
1332 def colordecimals primary c =
1333 if cmykcolor c:
1334 decimal cyanpart c & ":" & decimal magentapart c & ":" &
1335 decimal yellowpart c & ":" & decimal blackpart c
1336 elseif rgbcolor c:
1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:
1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi
1340 else:
1341 decimal c
1342 fi
1343 enddef;
1344 def externalfigure primary filename =
1345 draw rawtextext("\includegraphics{"& filename &"}")
1346 enddef;
1347 def TEX = textext enddef;
1348 def mplibtexcolor primary c =
1349 runscript("return luamplib.gettexcolor('"& c &"')")
1350 enddef;
1351 def mplibrgbtexcolor primary c =
1352 runscript("return luamplib.gettexcolor('"& c &"','rgb')")
1353 enddef;
1354 def mplibgraphictext primary t =
1355 begingroup;
1356 mplibgraphictext_ (t)
1357 enddef;
1358 def mplibgraphictext_ (expr t) text rest =

53

1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;
1361 picture graphictextpic; graphictextpic := nullpicture;
1362 numeric fb; string fc, dc; fb:=2; fc:="white"; dc:="black";
1363 let scale = scaled;
1364 def fakebold primary c = hide(fb:=c;) enddef;
1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;
1366 def drawcolor primary c = hide(dc:=colordecimals c;) enddef;
1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;
1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;
1371 let fillcolor = fakebold; let drawcolor = fakebold;
1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1373 image(draw runscript("return luamplib.graphictext([===["&t&"]===],"
1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)
1375 endgroup;
1376 enddef;
1377 def mplibglyph expr c of f =
1378 runscript (
1379 "return luamplib.glyph('"
1380 & if numeric f: decimal fi f
1381 & "','"
1382 & if numeric c: decimal fi c
1383 & "')"
1384)
1385 enddef;
1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;
1387 def mplibdrawglyph expr g =
1388 luamplib_tmp_num_ := 0;
1389 for item within g:
1390 fill pathpart item
1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1392 endfor
1393 enddef;
1394 let mplibfillglyph = mplibdrawglyph;
1395 def mplibstrokeglyph expr g =
1396 luamplib_tmp_num_ := 0;
1397 for item within g:
1398 draw pathpart item
1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1400 endfor
1401 enddef;
1402 def mplibfillandstrokeglyph expr g =
1403 luamplib_tmp_num_ := 0;
1404 for item within g:
1405 draw pathpart item withpostscript
1406 if incr luamplib_tmp_num_ < length g: "collect"; else: "both" fi
1407 endfor

54

1408 enddef;
1409 def withmplibcolors (expr f, s) =
1410 runscript("return luamplib.fillandstrokecolor('" &
1411 if not string f: colordecimals fi f & "','" &
1412 if not string s: colordecimals fi s & "')")
1413 enddef;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =
1415 def mplib_do_outline_options_f = f enddef;
1416 def mplib_do_outline_options_d = d enddef;
1417 def mplib_do_outline_options_r = r enddef;
1418 enddef;
1419 def mplib_do_outline_text_set_f (text f) text r =
1420 def mplib_do_outline_options_f = f enddef;
1421 def mplib_do_outline_options_r = r enddef;
1422 enddef;
1423 def mplib_do_outline_text_set_u (text f) text r =
1424 def mplib_do_outline_options_f = f enddef;
1425 enddef;
1426 def mplib_do_outline_text_set_d (text d) text r =
1427 def mplib_do_outline_options_d = d enddef;
1428 def mplib_do_outline_options_r = r enddef;
1429 enddef;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =
1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef;
1435 def mplib_do_outline_text_set_n text r =
1436 def mplib_do_outline_options_r = r enddef;
1437 enddef;
1438 def mplib_do_outline_text_set_p = enddef;
1439 def mplib_fill_outline_text =
1440 for n=1 upto mpliboutlinenum:
1441 i:=0;
1442 for item within mpliboutlinepic[n]:
1443 i:=i+1;
1444 fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
1445 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect"; fi
1446 endfor
1447 endfor
1448 enddef;
1449 def mplib_draw_outline_text =
1450 for n=1 upto mpliboutlinenum:
1451 for item within mpliboutlinepic[n]:
1452 draw pathpart item mplib_do_outline_options_d;
1453 endfor
1454 endfor
1455 enddef;
1456 def mplib_filldraw_outline_text =

55

1457 for n=1 upto mpliboutlinenum:
1458 i:=0;
1459 for item within mpliboutlinepic[n]:
1460 i:=i+1;
1461 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):
1462 fill pathpart item mplib_do_outline_options_f withpostscript "collect";
1463 else:
1464 draw pathpart item mplib_do_outline_options_f withpostscript "both";
1465 fi
1466 endfor
1467 endfor
1468 enddef;
1469 vardef mpliboutlinetext@# (expr t) text rest =
1470 save kind; string kind; kind := str @#;
1471 save i; numeric i;
1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;
1473 def mplib_do_outline_options_d = enddef;
1474 def mplib_do_outline_options_f = enddef;
1475 def mplib_do_outline_options_r = enddef;
1476 runscript("return luamplib.outlinetext[===["&t&"]===]");
1477 image (addto currentpicture also image (
1478 if kind = "f":
1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;
1481 elseif kind = "d":
1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;
1484 elseif kind = "b":
1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;
1487 mplib_draw_outline_text;
1488 elseif kind = "u":
1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;
1491 elseif kind = "r":
1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;
1494 mplib_fill_outline_text;
1495 elseif kind = "p":
1496 mplib_do_outline_text_set_p;
1497 mplib_draw_outline_text;
1498 else:
1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;
1501 fi;
1502) mplib_do_outline_options_r;)
1503 enddef ;
1504 def withmppattern primary p =
1505 withprescript "mplibpattern=" & if numeric p: decimal fi p

56

1506 enddef;
1507 primarydef t withpattern p =
1508 image(
1509 if cycle t:
1510 fill
1511 else:
1512 draw
1513 fi
1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)
1515 enddef;
1516 vardef mplibtransformmatrix (text e) =
1517 save t; transform t;
1518 t = identity e;
1519 runscript("luamplib.transformmatrix = {"
1520 & decimal xxpart t & ","
1521 & decimal yxpart t & ","
1522 & decimal xypart t & ","
1523 & decimal yypart t & ","
1524 & decimal xpart t & ","
1525 & decimal ypart t & ","
1526 & "}");
1527 enddef;
1528 primarydef p withfademethod s =
1529 if picture p:
1530 image(
1531 draw p;
1532 draw center p withprescript "mplibfadestate=stop";
1533)
1534 else:
1535 p withprescript "mplibfadestate=stop"
1536 fi
1537 withprescript "mplibfadetype=" & s
1538 withprescript "mplibfadebbox=" &
1539 decimal (xpart llcorner p -1/4) & ":" &
1540 decimal (ypart llcorner p -1/4) & ":" &
1541 decimal (xpart urcorner p +1/4) & ":" &
1542 decimal (ypart urcorner p +1/4)
1543 enddef;
1544 def withfadeopacity (expr a,b) =
1545 withprescript "mplibfadeopacity=" &
1546 decimal a & ":" &
1547 decimal b
1548 enddef;
1549 def withfadevector (expr a,b) =
1550 withprescript "mplibfadevector=" &
1551 decimal xpart a & ":" &
1552 decimal ypart a & ":" &
1553 decimal xpart b & ":" &
1554 decimal ypart b

57

1555 enddef;
1556 let withfadecenter = withfadevector;
1557 def withfaderadius (expr a,b) =
1558 withprescript "mplibfaderadius=" &
1559 decimal a & ":" &
1560 decimal b
1561 enddef;
1562 def withfadebbox (expr a,b) =
1563 withprescript "mplibfadebbox=" &
1564 decimal xpart a & ":" &
1565 decimal ypart a & ":" &
1566 decimal xpart b & ":" &
1567 decimal ypart b
1568 enddef;
1569 primarydef p asgroup s =
1570 image(
1571 draw center p
1572 withprescript "mplibgroupbbox=" &
1573 decimal (xpart llcorner p -1/4) & ":" &
1574 decimal (ypart llcorner p -1/4) & ":" &
1575 decimal (xpart urcorner p +1/4) & ":" &
1576 decimal (ypart urcorner p +1/4)
1577 withprescript "gr_state=start"
1578 withprescript "gr_type=" & s;
1579 draw p;
1580 draw center p withprescript "gr_state=stop";
1581)
1582 enddef;
1583 def withgroupbbox (expr a,b) =
1584 withprescript "mplibgroupbbox=" &
1585 decimal xpart a & ":" &
1586 decimal ypart a & ":" &
1587 decimal xpart b & ":" &
1588 decimal ypart b
1589 enddef;
1590 def withgroupname expr s =
1591 withprescript "mplibgroupname=" & s
1592 enddef;
1593 def usemplibgroup primary s =
1594 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group."& s &"\endcsname}")
1595 shifted runscript("return luamplib.trgroupshifts['" & s & "']")
1596 enddef;
1597 path mplib_shade_path ;
1598 numeric mplib_shade_step ; mplib_shade_step := 0 ;
1599 numeric mplib_shade_fx, mplib_shade_fy ;
1600 numeric mplib_shade_lx, mplib_shade_ly ;
1601 numeric mplib_shade_nx, mplib_shade_ny ;
1602 numeric mplib_shade_dx, mplib_shade_dy ;
1603 numeric mplib_shade_tx, mplib_shade_ty ;

58

1604 primarydef p withshadingmethod m =
1605 p
1606 if picture p :
1607 withprescript "sh_operand_type=picture"
1608 if textual p:
1609 withprescript "sh_transform=no"
1610 mplib_with_shade_method (boundingbox p, m)
1611 else:
1612 withprescript "sh_transform=yes"
1613 mplib_with_shade_method (pathpart p, m)
1614 fi
1615 else :
1616 withprescript "sh_transform=yes"
1617 mplib_with_shade_method (p, m)
1618 fi
1619 enddef;
1620 def mplib_with_shade_method (expr p, m) =
1621 hide(mplib_with_shade_method_analyze(p))
1622 withprescript "sh_domain=0 1"
1623 withprescript "sh_color=into"
1624 withprescript "sh_color_a=" & colordecimals white
1625 withprescript "sh_color_b=" & colordecimals black
1626 withprescript "sh_first=" & ddecimal point 0 of p
1627 withprescript "sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_lx)
1628 withprescript "sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)
1629 if m = "linear" :
1630 withprescript "sh_type=linear"
1631 withprescript "sh_factor=1"
1632 withprescript "sh_center_a=" & ddecimal llcorner p
1633 withprescript "sh_center_b=" & ddecimal urcorner p
1634 else :
1635 withprescript "sh_type=circular"
1636 withprescript "sh_factor=1.2"
1637 withprescript "sh_center_a=" & ddecimal center p
1638 withprescript "sh_center_b=" & ddecimal center p
1639 withprescript "sh_radius_a=" & decimal 0
1640 withprescript "sh_radius_b=" & decimal mplib_max_radius(p)
1641 fi
1642 enddef;
1643 def mplib_with_shade_method_analyze(expr p) =
1644 mplib_shade_path := p ;
1645 mplib_shade_step := 1 ;
1646 mplib_shade_fx := xpart point 0 of p ;
1647 mplib_shade_fy := ypart point 0 of p ;
1648 mplib_shade_lx := mplib_shade_fx ;
1649 mplib_shade_ly := mplib_shade_fy ;
1650 mplib_shade_nx := 0 ;
1651 mplib_shade_ny := 0 ;
1652 mplib_shade_dx := abs(mplib_shade_fx - mplib_shade_lx) ;

59

1653 mplib_shade_dy := abs(mplib_shade_fy - mplib_shade_ly) ;
1654 for i=1 upto length(p) :
1655 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;
1656 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;
1657 if mplib_shade_tx > mplib_shade_dx :
1658 mplib_shade_nx := i + 1 ;
1659 mplib_shade_lx := xpart point i of p ;
1660 mplib_shade_dx := mplib_shade_tx ;
1661 fi ;
1662 if mplib_shade_ty > mplib_shade_dy :
1663 mplib_shade_ny := i + 1 ;
1664 mplib_shade_ly := ypart point i of p ;
1665 mplib_shade_dy := mplib_shade_ty ;
1666 fi ;
1667 endfor ;
1668 enddef;
1669 vardef mplib_max_radius(expr p) =
1670 max (
1671 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1672 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1673 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1674 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1675)
1676 enddef;
1677 def withshadingstep (text t) =
1678 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1679 withprescript "sh_step=" & decimal mplib_shade_step
1680 t
1681 enddef;
1682 def withshadingradius expr a =
1683 withprescript "sh_radius_a=" & decimal (xpart a)
1684 withprescript "sh_radius_b=" & decimal (ypart a)
1685 enddef;
1686 def withshadingorigin expr a =
1687 withprescript "sh_center_a=" & ddecimal a
1688 withprescript "sh_center_b=" & ddecimal a
1689 enddef;
1690 def withshadingvector expr a =
1691 withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
1692 withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)
1693 enddef;
1694 def withshadingdirection expr a =
1695 withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1696 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1697 enddef;
1698 def withshadingtransform expr a =
1699 withprescript "sh_transform=" & a
1700 enddef;
1701 def withshadingcenter expr a =

60

1702 withprescript "sh_center_a=" & ddecimal (
1703 center mplib_shade_path shifted (
1704 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,
1705 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1706)
1707)
1708 enddef;
1709 def withshadingdomain expr d =
1710 withprescript "sh_domain=" & ddecimal d
1711 enddef;
1712 def withshadingfactor expr f =
1713 withprescript "sh_factor=" & decimal f
1714 enddef;
1715 def withshadingfraction expr a =
1716 if mplib_shade_step > 0 :
1717 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1718 fi
1719 enddef;
1720 def withshadingcolors (expr a, b) =
1721 if mplib_shade_step > 0 :
1722 withprescript "sh_color=into"
1723 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1724 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1725 else :
1726 withprescript "sh_color=into"
1727 withprescript "sh_color_a=" & colordecimals a
1728 withprescript "sh_color_b=" & colordecimals b
1729 fi
1730 enddef;
1731 def mpliblength primary t =
1732 runscript("return utf8.len[===[" & t & "]===]")
1733 enddef;
1734 def mplibsubstring expr p of t =
1735 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1736 & decimal xpart p & ","
1737 & decimal ypart p & ")")
1738 enddef;
1739 def mplibuclength primary t =
1740 runscript("return #luamplib.getunicodegraphemes[===[" & t & "]===]")
1741 enddef;
1742 def mplibucsubstring expr p of t =
1743 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1744 & decimal xpart p & ","
1745 & decimal ypart p & ",true)")
1746 enddef;
1747]],
1748 legacyverbatimtex = [[
1749 def specialVerbatimTeX (text t) = runscript("luamplibprefig{"&t&"}") enddef;
1750 def normalVerbatimTeX (text t) = runscript("luamplibinfig{"&t&"}") enddef;

61

1751 let VerbatimTeX = specialVerbatimTeX;
1752 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&
1753 "runscript(" &ditto& "luamplib.in_the_fig=true" &ditto& ");";
1754 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1755 "runscript(" &ditto&
1756 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&
1757 "luamplib.in_the_fig=false" &ditto& ");";
1758]],
1759 textextlabel = [[
1760 let luampliboriginalinfont = infont;
1761 primarydef s infont f =
1762 if (s < char 32)
1763 or (s = char 35) % #
1764 or (s = char 36) % $
1765 or (s = char 37) % %
1766 or (s = char 38) % &
1767 or (s = char 92) % \
1768 or (s = char 94) % ^
1769 or (s = char 95) % _
1770 or (s = char 123) % {
1771 or (s = char 125) % }
1772 or (s = char 126) % ~
1773 or (s = char 127) :
1774 s luampliboriginalinfont f
1775 else :
1776 rawtextext(s)
1777 fi
1778 enddef;
1779 def fontsize expr f =
1780 begingroup
1781 save size; numeric size;
1782 size := mplibdimen("1em");
1783 if size = 0: 10pt else: size fi
1784 endgroup
1785 enddef;
1786]],
1787 }
1788

process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.

1789 luamplib.verbatiminput = false
1790 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1791 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1792 function luamplib.process_mplibcode (data, instancename)
1793 texboxes.localid = 4096

This is needed for legacy behavior
1794 if luamplib.legacyverbatimtex then
1795 luamplib.figid, tex_code_pre_mplib = 1, {}

62

1796 end
1797 local everymplib = luamplib.everymplib[instancename]
1798 local everyendmplib = luamplib.everyendmplib[instancename]
1799 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1800 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.
1801 if luamplib.verbatiminput then
1802 data = data:gsub("\\mpcolor%s+(.-%b{})","mplibcolor(\"%1\")")
1803 :gsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")
1804 :gsub("\\mpdim%s+(\\%a+)","mplibdimen(\"%1\")")
1805 :gsub(btex_etex, "btex %1 etex ")
1806 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1807 else

If not mplibverbatim, expand mplibcode data, so that users can use TEX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.
1808 local t = { } -- to store btex, verbatimtex, string
1809 data = data:gsub(btex_etex, function(str)
1810 t[#t+1] = str
1811 return format("btex \\unexpanded{!l!u!a!%s!m!p!l!} etex ", #t) -- space
1812 end)
1813 :gsub(verbatimtex_etex, function(str)
1814 t[#t+1] = str
1815 return format("verbatimtex \\unexpanded{!l!u!a!%s!m!p!l!} etex;", #t) -- semicolon
1816 end)
1817 :gsub('"(.-)"', function(str)
1818 t[#t+1] = str
1819 return format('"\\unexpanded{!l!u!a!%s!m!p!l!}"', #t)
1820 end)
1821 :gsub("\\%%", "\0PerCent\0")
1822 :gsub("%%.-\n","\n")
1823 :gsub("%zPerCent%z", "\\%%")
1824 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1825 data = texgettoks"mplibtmptoks"

Next line to address issue #55
1826 :gsub("##", "#")
1827 :gsub("!l!u!a!(%d+)!m!p!l!", function(str) return t[tonumber(str)] or str end)
1828 end
1829 process(data, instancename)
1830 end
1831

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.
1832 local figcontents = { post = { } }
1833 local function put2output(a,...)
1834 figcontents[#figcontents+1] = type(a) == "string" and format(a,...) or a

63

1835 end
1836 local function pdf_startfigure(n,llx,lly,urx,ury)
1837 put2output("\\mplibstarttoPDF{%f}{%f}{%f}{%f}",llx,lly,urx,ury)
1838 end
1839 local function pdf_stopfigure()
1840 put2output("\\mplibstoptoPDF")
1841 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.
1842 local function pdf_literalcode (...)
1843 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1844 end
1845 local start_pdf_code = pdfmode
1846 and function() pdf_literalcode"q" end
1847 or function() put2output"\\special{pdf:bcontent}" end
1848 local stop_pdf_code = pdfmode
1849 and function() pdf_literalcode"Q" end
1850 or function() put2output"\\special{pdf:econtent}" end
1851

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.
1852 local function put_tex_boxes (object,prescript)
1853 local box = prescript.mplibtexboxid:explode":"
1854 local n,tw,th = box[1],tonumber(box[2]),tonumber(box[3])
1855 if n and tw and th then
1856 local op = object.path
1857 local first, second, fourth = op[1], op[2], op[4]
1858 local tx, ty = first.x_coord, first.y_coord
1859 local sx, rx, ry, sy = 1, 0, 0, 1
1860 if tw ~= 0 then
1861 sx = (second.x_coord - tx)/tw
1862 rx = (second.y_coord - ty)/tw
1863 if sx == 0 then sx = 0.00001 end
1864 end
1865 if th ~= 0 then
1866 sy = (fourth.y_coord - ty)/th
1867 ry = (fourth.x_coord - tx)/th
1868 if sy == 0 then sy = 0.00001 end
1869 end
1870 start_pdf_code()
1871 pdf_literalcode("%f %f %f %f %f %f cm",sx,rx,ry,sy,tx,ty)
1872 put2output("\\mplibputtextbox{%i}",n)
1873 stop_pdf_code()
1874 end
1875 end
1876

Colors
1877 local do_preobj_CR
1878 do

64

1879 local prev_override_color
1880 function do_preobj_CR(object,prescript)
1881 if object.postscript == "collect" then return end
1882 local override = prescript and prescript.mpliboverridecolor
1883 if override then
1884 if pdfmode then
1885 pdf_literalcode(override)
1886 override = nil
1887 else
1888 put2output("\\special{%s}",override)
1889 prev_override_color = override
1890 end
1891 else
1892 local cs = object.color
1893 if cs and #cs > 0 then
1894 pdf_literalcode(luamplib.colorconverter(cs))
1895 prev_override_color = nil
1896 elseif not pdfmode then
1897 override = prev_override_color
1898 if override then
1899 put2output("\\special{%s}",override)
1900 end
1901 end
1902 end
1903 return override
1904 end
1905 end
1906

For transparency, shading, fading, and pattern

1907 local pdfmanagement = is_defined'pdfmanagement_add:nnn'
1908 local pdfobjs, pdfetcs = {}, {}
1909 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain"
1910 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain"
1911 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain"
1912 local function update_pdfobjs (os, stream)
1913 local key = os
1914 if stream then key = key..stream end
1915 local on = key and pdfobjs[key]
1916 if on then
1917 return on,false
1918 end
1919 if pdfmode then
1920 if stream then
1921 on = pdf.immediateobj("stream",stream,os)
1922 elseif os then
1923 on = pdf.immediateobj(os)
1924 else
1925 on = pdf.reserveobj()

65

1926 end
1927 else
1928 on = pdfetcs.cnt or 1
1929 if stream then
1930 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1931 elseif os then
1932 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,os))
1933 else
1934 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1935 end
1936 pdfetcs.cnt = on + 1
1937 end
1938 if key then
1939 pdfobjs[key] = on
1940 end
1941 return on,true
1942 end
1943 pdfetcs.resfmt = pdfmode and "%s 0 R" or "@mplibpdfobj%s"
1944 if pdfmode then
1945 pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
1946 local getpageres = pdfetcs.getpageres
1947 local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
1948 local initialize_resources = function (name)
1949 local tabname = format("%s_res",name)
1950 pdfetcs[tabname] = { }
1951 if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
1952 local obj = pdf.reserveobj()
1953 setpageres(format("%s/%s %i 0 R", getpageres() or "", name, obj))
1954 luatexbase.add_to_callback("finish_pdffile", function()
1955 pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabname])))
1956 end,
1957 format("luamplib.%s.finish_pdffile",name))
1958 end
1959 end
1960 pdfetcs.fallback_update_resources = function (name, res)
1961 local tabname = format("%s_res",name)
1962 if not pdfetcs[tabname] then
1963 initialize_resources(name)
1964 end
1965 if luatexbase.callbacktypes.finish_pdffile then
1966 local t = pdfetcs[tabname]
1967 t[#t+1] = res
1968 else
1969 local tpr, n = getpageres() or "", 0
1970 tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)
1971 if n == 0 then
1972 tpr = format("%s/%s<<%s>>", tpr, name, res)
1973 end
1974 setpageres(tpr)

66

1975 end
1976 end
1977 else
1978 texsprint {
1979 "\\luamplibatfirstshipout{",
1980 "\\special{pdf:obj @MPlibTr<<>>}",
1981 "\\special{pdf:obj @MPlibSh<<>>}",
1982 "\\special{pdf:obj @MPlibCS<<>>}",
1983 "\\special{pdf:obj @MPlibPt<<>>}}",
1984 }
1985 pdfetcs.resadded = { }
1986 pdfetcs.fallback_update_resources = function (name,res,obj)
1987 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
1988 if not pdfetcs.resadded[name] then
1989 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
1990 pdfetcs.resadded[name] = obj
1991 end
1992 end
1993 end
1994

Transparency

1995 local function add_extgs_resources (on, new)
1996 local key = format("MPlibTr%s", on)
1997 if new then
1998 local val = format(pdfetcs.resfmt, on)
1999 if pdfmanagement then
2000 texsprint {
2001 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "}{", val, "}"
2002 }
2003 else
2004 local tr = format("/%s %s", key, val)
2005 if is_defined(pdfetcs.pgfextgs) then
2006 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2007 elseif is_defined"TRP@list" then
2008 texsprint(catat11,{
2009 [[\if@filesw\immediate\write\@auxout{]],
2010 [[\string\g@addto@macro\string\TRP@list{]],
2011 tr,
2012 [[}}\fi]],
2013 })
2014 if not get_macro"TRP@list":find(tr) then
2015 texsprint(catat11,[[\global\TRP@reruntrue]])
2016 end
2017 else
2018 pdfetcs.fallback_update_resources("ExtGState",tr,"@MPlibTr")
2019 end
2020 end
2021 end

67

2022 return key
2023 end
2024
2025 local do_preobj_TR
2026 do
2027 local transparancy_modes = {
2028 [0] = "Normal",
2029 "Normal", "Multiply", "Screen", "Overlay",
2030 "SoftLight", "HardLight", "ColorDodge", "ColorBurn",
2031 "Darken", "Lighten", "Difference", "Exclusion",
2032 "Hue", "Saturation", "Color", "Luminosity",
2033 "Compatible",
2034 normal = "Normal", multiply = "Multiply", screen = "Screen",
2035 overlay = "Overlay", softlight = "SoftLight", hardlight = "HardLight",
2036 colordodge = "ColorDodge", colorburn = "ColorBurn", darken = "Darken",
2037 lighten = "Lighten", difference = "Difference", exclusion = "Exclusion",
2038 hue = "Hue", saturation = "Saturation", color = "Color",
2039 luminosity = "Luminosity", compatible = "Compatible",
2040 }
2041 function do_preobj_TR(object,prescript)
2042 if object.postscript == "collect" then return end
2043 local opaq = prescript and prescript.tr_transparency
2044 if opaq then
2045 local key, on, os, new
2046 local mode = prescript.tr_alternative or 1
2047 mode = transparancy_modes[tonumber(mode) or mode:lower()]
2048 if not mode then
2049 mode = prescript.tr_alternative
2050 warn("unsupported blend mode: '%s'", mode)
2051 end
2052 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)
2053 for i,v in ipairs{ {mode,opaq},{"Normal",1} } do
2054 os = format("<</BM/%s/ca %s/CA %s/AIS false>>",v[1],v[2],v[2])
2055 on, new = update_pdfobjs(os)
2056 key = add_extgs_resources(on,new)
2057 if i == 1 then
2058 pdf_literalcode("/%s gs",key)
2059 else
2060 return format("/%s gs",key)
2061 end
2062 end
2063 end
2064 end
2065 end
2066

Shading with metafun format.

2067 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates,steps,fractions)
2068 for _,v in ipairs{ca,cb} do

68

2069 for i,vv in ipairs(v) do
2070 for ii,vvv in ipairs(vv) do
2071 v[i][ii] = tonumber(vvv) and format("%.3f",vvv) or vvv
2072 end
2073 end
2074 end
2075 local fun2fmt,os = "<</FunctionType 2/Domain[%s]/C0[%s]/C1[%s]/N 1>>"
2076 if steps > 1 then
2077 local list,bounds,encode = { },{ },{ }
2078 for i=1,steps do
2079 if i < steps then
2080 bounds[i] = format("%.3f", fractions[i] or 1)
2081 end
2082 encode[2*i-1] = 0
2083 encode[2*i] = 1
2084 os = fun2fmt:format(domain,tableconcat(ca[i],' '),tableconcat(cb[i],' '))
2085 :gsub(decimals,rmzeros)
2086 list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
2087 end
2088 os = tableconcat {
2089 "<</FunctionType 3",
2090 format("/Bounds[%s]", tableconcat(bounds,' ')),
2091 format("/Encode[%s]", tableconcat(encode,' ')),
2092 format("/Functions[%s]", tableconcat(list, ' ')),
2093 format("/Domain[%s]>>", domain),
2094 } :gsub(decimals,rmzeros)
2095 else
2096 os = fun2fmt:format(domain,tableconcat(ca[1],' '),tableconcat(cb[1],' '))
2097 :gsub(decimals,rmzeros)
2098 end
2099 local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
2100 os = tableconcat {
2101 format("<</ShadingType %i", shtype),
2102 format("/ColorSpace %s", colorspace),
2103 format("/Function %s", objref),
2104 format("/Coords[%s]", coordinates),
2105 "/Extend[true true]/AntiAlias true>>",
2106 } :gsub(decimals,rmzeros)
2107 local on, new = update_pdfobjs(os)
2108 if new then
2109 local key, val = format("MPlibSh%s", on), format(pdfetcs.resfmt, on)
2110 if pdfmanagement then
2111 texsprint {
2112 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}{", val, "}"
2113 }
2114 else
2115 local res = format("/%s %s", key, val)
2116 pdfetcs.fallback_update_resources("Shading",res,"@MPlibSh")
2117 end

69

2118 end
2119 return on
2120 end
2121
2122 local do_preobj_SH
2123 do
2124 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2125 run_tex_code({
2126 [[\color_model_new:nnn]],
2127 format("{mplibcolorspace_%s}", names:gsub(",","_")),
2128 format("{DeviceN}{names={%s}}", names),
2129 [[\edef\mplib_@tempa{\pdf_object_ref_last:}]],
2130 }, ccexplat)
2131 local colorspace = get_macro'mplib_@tempa'
2132 t[names] = colorspace
2133 return colorspace
2134 end })
2135 local function color_normalize(ca,cb)
2136 if #cb == 1 then
2137 if #ca == 4 then
2138 cb[1], cb[2], cb[3], cb[4] = 0, 0, 0, 1-cb[1]
2139 else -- #ca = 3
2140 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2141 end
2142 elseif #cb == 3 then -- #ca == 4
2143 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], 0
2144 end
2145 end
2146 function do_preobj_SH(object,prescript)
2147 local shade_no
2148 local sh_type = prescript and prescript.sh_type
2149 if not sh_type then
2150 return
2151 else
2152 local domain = prescript.sh_domain or "0 1"
2153 local centera = (prescript.sh_center_a or "0 0"):explode()
2154 local centerb = (prescript.sh_center_b or "0 0"):explode()
2155 local transform = prescript.sh_transform == "yes"
2156 local sx,sy,sr,dx,dy = 1,1,1,0,0
2157 if transform then
2158 local first = (prescript.sh_first or "0 0"):explode()
2159 local setx = (prescript.sh_set_x or "0 0"):explode()
2160 local sety = (prescript.sh_set_y or "0 0"):explode()
2161 local x,y = tonumber(setx[1]) or 0, tonumber(sety[1]) or 0
2162 if x ~= 0 and y ~= 0 then
2163 local path = object.path
2164 local path1x = path[1].x_coord
2165 local path1y = path[1].y_coord
2166 local path2x = path[x].x_coord

70

2167 local path2y = path[y].y_coord
2168 local dxa = path2x - path1x
2169 local dya = path2y - path1y
2170 local dxb = setx[2] - first[1]
2171 local dyb = sety[2] - first[2]
2172 if dxa ~= 0 and dya ~= 0 and dxb ~= 0 and dyb ~= 0 then
2173 sx = dxa / dxb ; if sx < 0 then sx = - sx end
2174 sy = dya / dyb ; if sy < 0 then sy = - sy end
2175 sr = math.sqrt(sx^2 + sy^2)
2176 dx = path1x - sx*first[1]
2177 dy = path1y - sy*first[2]
2178 end
2179 end
2180 end
2181 local ca, cb, colorspace, steps, fractions
2182 ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode":" }
2183 cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode":" }
2184 steps = tonumber(prescript.sh_step) or 1
2185 if steps > 1 then
2186 fractions = { prescript.sh_fraction_1 or 0 }
2187 for i=2,steps do
2188 fractions[i] = prescript[format("sh_fraction_%i",i)] or (i/steps)
2189 ca[i] = (prescript[format("sh_color_a_%i",i)] or "0"):explode":"
2190 cb[i] = (prescript[format("sh_color_b_%i",i)] or "1"):explode":"
2191 end
2192 end
2193 if prescript.mplib_spotcolor then
2194 ca, cb = { }, { }
2195 local names, pos, objref = { }, -1, ""
2196 local script = object.prescript:explode"\13+"
2197 for i=#script,1,-1 do
2198 if script[i]:find"mplib_spotcolor" then
2199 local t, name, value = script[i]:explode"="[2]:explode":"
2200 value, objref, name = t[1], t[2], t[3]
2201 if not names[name] then
2202 pos = pos+1
2203 names[name] = pos
2204 names[#names+1] = name
2205 end
2206 t = { }
2207 for j=1,names[name] do t[#t+1] = 0 end
2208 t[#t+1] = value
2209 tableinsert(#ca == #cb and ca or cb, t)
2210 end
2211 end
2212 for _,t in ipairs{ca,cb} do
2213 for _,tt in ipairs(t) do
2214 for i=1,#names-#tt do tt[#tt+1] = 0 end
2215 end

71

2216 end
2217 if #names == 1 then
2218 colorspace = objref
2219 else
2220 colorspace = pdfetcs.clrspcs[tableconcat(names,",")]
2221 end
2222 else
2223 local model = 0
2224 for _,t in ipairs{ca,cb} do
2225 for _,tt in ipairs(t) do
2226 model = model > #tt and model or #tt
2227 end
2228 end
2229 for _,t in ipairs{ca,cb} do
2230 for _,tt in ipairs(t) do
2231 if #tt < model then
2232 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2233 end
2234 end
2235 end
2236 colorspace = model == 4 and "/DeviceCMYK"
2237 or model == 3 and "/DeviceRGB"
2238 or model == 1 and "/DeviceGray"
2239 or err"unknown color model"
2240 end
2241 if sh_type == "linear" then
2242 local coordinates = format("%f %f %f %f",
2243 dx + sx*centera[1], dy + sy*centera[2],
2244 dx + sx*centerb[1], dy + sy*centerb[2])
2245 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates,steps,fractions)
2246 elseif sh_type == "circular" then
2247 local factor = prescript.sh_factor or 1
2248 local radiusa = factor * prescript.sh_radius_a
2249 local radiusb = factor * prescript.sh_radius_b
2250 local coordinates = format("%f %f %f %f %f %f",
2251 dx + sx*centera[1], dy + sy*centera[2], sr*radiusa,
2252 dx + sx*centerb[1], dy + sy*centerb[2], sr*radiusb)
2253 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates,steps,fractions)
2254 else
2255 err"unknown shading type"
2256 end
2257 end
2258 return shade_no
2259 end
2260 end
2261

Shading Patterns: we can apply shading to textual pictures as well as paths.

2262 if not pdfmode then

72

2263 pdfetcs.patternresources = {}
2264 end
2265 local function add_pattern_resources (key, val)
2266 if pdfmanagement then
2267 texsprint {
2268 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}{", val, "}"
2269 }
2270 else
2271 local res = format("/%s %s", key, val)
2272 if is_defined(pdfetcs.pgfpattern) then
2273 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2274 else
2275 pdfetcs.fallback_update_resources("Pattern",res,"@MPlibPt")
2276 if not pdfmode then
2277 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2278 end
2279 end
2280 end
2281 end
2282 function luamplib.dolatelua (on, os)
2283 local h, v = pdf.getpos()
2284 h = format("%f", h/factor) :gsub(decimals,rmzeros)
2285 v = format("%f", v/factor) :gsub(decimals,rmzeros)
2286 if pdfmode then
2287 pdf.obj(on, format("<<%s/Matrix[1 0 0 1 %s %s]>>", os, h, v))
2288 pdf.refobj(on)
2289 else
2290 local shift = os:explode()
2291 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then
2292 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shading]], h, v)
2293 end
2294 end
2295 end
2296 local function do_preobj_shading (object, prescript)
2297 if not prescript or not prescript.sh_operand_type then return end
2298 local on = do_preobj_SH(object, prescript)
2299 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))
2300 on = update_pdfobjs()
2301 if pdfmode then
2302 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",os,"]]) }" })
2303 else

Why @xpos @ypos do not work properly⁇?
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth,\the\paperheight}

2304 if is_defined"RecordProperties" then

73

2305 put2output(tableconcat{
2306 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z
2307 \\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 \z
2308 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2309 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2310]>>}"
2311 })
2312 else
2313 local shift = prescript.sh_matrixshift or "0 0"
2314 texsprint{ "\\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 ",shift,"]>>}" }
2315 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",shift,"]]) }" })
2316 end
2317 end
2318 local key, val = format("MPlibPt%s", on), format(pdfetcs.resfmt, on)
2319 add_pattern_resources(key,val)
2320 pdf_literalcode("/Pattern cs/%s scn", key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2321 prescript.sh_type = nil
2322 end
2323

Tiling Patterns
2324 pdfetcs.patterns = { }
2325 local function gather_resources (optres)
2326 local t, do_pattern = { }, not optres
2327 local names = {"ExtGState","ColorSpace","Shading"}
2328 if do_pattern then
2329 names[#names+1] = "Pattern"
2330 end
2331 if pdfmode then
2332 if pdfmanagement then
2333 for _,v in ipairs(names) do
2334 if ltx.__pdf.Page.Resources[v] then
2335 t[#t+1] = format("/%s %s 0 R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2336 end
2337 end
2338 else
2339 local res = pdfetcs.getpageres() or ""
2340 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2341 res = res .. texgettoks'mplibtmptoks'
2342 if do_pattern then return res end
2343 res = res:explode"/+"
2344 for _,v in ipairs(res) do
2345 v = v:match"^%s*(.-)%s*$"
2346 if not v:find"Pattern" and not optres:find(v) then
2347 t[#t+1] = "/" .. v
2348 end
2349 end
2350 end

74

2351 else
2352 if pdfmanagement then
2353 for _,v in ipairs(names) do
2354 run_tex_code ({
2355 "\\mplibtmptoks\\expanded{{",
2356 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
2357 "{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
2358 },ccexplat)
2359 t[#t+1] = texgettoks'mplibtmptoks'
2360 end
2361 elseif is_defined(pdfetcs.pgfextgs) then
2362 run_tex_code ({
2363 "\\mplibtmptoks\\expanded{{",
2364 "\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
2365 "\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
2366 do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or "",
2367 "}}",
2368 }, catat11)
2369 t[#t+1] = texgettoks'mplibtmptoks'
2370 if pdfetcs.resadded.Shading then
2371 t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
2372 end
2373 else
2374 for _,v in ipairs(names) do
2375 local vv = pdfetcs.resadded[v]
2376 if vv then
2377 t[#t+1] = format("/%s %s", v, vv)
2378 end
2379 end
2380 end
2381 end
2382 if do_pattern then return tableconcat(t) end
2383 -- get pattern resources
2384 local mytoks
2385 if pdfmanagement then
2386 run_tex_code ({
2387 "\\mplibtmptoks\\expanded{{",
2388 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}",
2389 "{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "}}",
2390 },ccexplat)
2391 mytoks = texgettoks"mplibtmptoks"
2392 if not pdfmode then
2393 mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
2394 end
2395 elseif is_defined(pdfetcs.pgfextgs) then
2396 if pdfmode then
2397 mytoks = get_macro"pgf@sys@pgf@resource@list@patterns"
2398 else
2399 local tt, abc = {}, get_macro"pgfutil@abc" or ""

75

2400 for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
2401 tt[#tt+1] = v
2402 end
2403 mytoks = tableconcat(tt)
2404 end
2405 else
2406 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2407 mytoks = tt and tableconcat(tt)
2408 end
2409 if mytoks and mytoks ~= "" then
2410 t[#t+1] = format("/Pattern<<%s>>",mytoks)
2411 end
2412 return tableconcat(t)
2413 end
2414 function luamplib.registerpattern (boxid, name, opts)
2415 local box = texgetbox(boxid)
2416 local wd = format("%.3f",box.width/factor)
2417 local hd = format("%.3f",(box.height+box.depth)/factor)
2418 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2419 if opts.xstep == 0 then opts.xstep = nil end
2420 if opts.ystep == 0 then opts.ystep = nil end
2421 if opts.colored == nil then
2422 opts.colored = opts.coloured
2423 if opts.colored == nil then
2424 opts.colored = true
2425 end
2426 end
2427 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2428 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2429 if opts.matrix and opts.matrix:find"%a" then
2430 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2431 process(data,"@mplibtransformmatrix")
2432 local t = luamplib.transformmatrix
2433 opts.matrix = format("%f %f %f %f", t[1], t[2], t[3], t[4])
2434 opts.xshift = opts.xshift or format("%f",t[5])
2435 opts.yshift = opts.yshift or format("%f",t[6])
2436 end
2437 local attr = {
2438 "/Type/Pattern",
2439 "/PatternType 1",
2440 format("/PaintType %i", opts.colored and 1 or 2),
2441 "/TilingType 2",
2442 format("/XStep %s", opts.xstep or wd),
2443 format("/YStep %s", opts.ystep or hd),
2444 format("/Matrix[%s %s %s]", opts.matrix or "1 0 0 1", opts.xshift or 0, opts.yshift or 0),
2445 }
2446 local optres = opts.resources or ""
2447 optres = optres .. gather_resources(optres)
2448 local patterns = pdfetcs.patterns

76

2449 if pdfmode then
2450 if opts.bbox then
2451 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2452 end
2453 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2454 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2455 patterns[name] = { id = index, colored = opts.colored }
2456 else
2457 local cnt = #patterns + 1
2458 local objname = "@mplibpattern" .. cnt
2459 local metric = format("bbox %s", opts.bbox or format("0 0 %s %s",wd,hd))
2460 texsprint {
2461 "\\expandafter\\newbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2462 "\\global\\setbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2463 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2464 "\\special{pdf:bcontent}",
2465 "\\special{pdf:bxobj ", objname, " ", metric, "}",
2466 "\\raise\\dp\\csname luamplib.patternbox.", cnt, "\\endcsname",
2467 "\\box\\csname luamplib.patternbox.", cnt, "\\endcsname",
2468 "\\special{pdf:put @resources <<", optres, ">>}",
2469 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2470 "\\special{pdf:econtent}}",
2471 }
2472 patterns[cnt] = objname
2473 patterns[name] = { id = cnt, colored = opts.colored }
2474 end
2475 end
2476
2477 local do_preobj_PAT
2478 do
2479 local function pattern_colorspace (cs)
2480 local on, new = update_pdfobjs(format("[/Pattern %s]", cs))
2481 if new then
2482 local key, val = format("MPlibCS%i",on), format(pdfetcs.resfmt,on)
2483 if pdfmanagement then
2484 texsprint {
2485 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}{", val, "}"
2486 }
2487 else
2488 local res = format("/%s %s", key, val)
2489 if is_defined(pdfetcs.pgfcolorspace) then
2490 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2491 else
2492 pdfetcs.fallback_update_resources("ColorSpace",res,"@MPlibCS")
2493 end
2494 end
2495 end
2496 return on
2497 end

77

2498 function do_preobj_PAT(object, prescript)
2499 local name = prescript and prescript.mplibpattern
2500 if not name then return end
2501 local patterns = pdfetcs.patterns
2502 local patt = patterns[name]
2503 local index = patt and patt.id or err("cannot get pattern object '%s'", name)
2504 local key = format("MPlibPt%s",index)
2505 if patt.colored then
2506 pdf_literalcode("/Pattern cs /%s scn", key)
2507 else
2508 local color = prescript.mpliboverridecolor
2509 if not color then
2510 local t = object.color
2511 color = t and #t>0 and luamplib.colorconverter(t)
2512 end
2513 if not color then return end
2514 local cs
2515 if color:find" cs " or color:find"@pdf.obj" then
2516 local t = color:explode()
2517 if pdfmode then
2518 cs = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2519 color = t[3]
2520 else
2521 cs = t[2]
2522 color = t[3]:match"%[(.+)%]"
2523 end
2524 else
2525 local t = colorsplit(color)
2526 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2527 color = tableconcat(t," ")
2528 end
2529 pdf_literalcode("/MPlibCS%i cs %s /%s scn", pattern_colorspace(cs), color, key)
2530 end
2531 if not patt.done then
2532 local val = pdfmode and format("%s 0 R",index) or patterns[index]
2533 add_pattern_resources(key,val)
2534 end
2535 patt.done = true
2536 end
2537 end
2538

Fading

2539 pdfetcs.fading = { }
2540 local function do_preobj_FADE (object, prescript)
2541 local fd_type = prescript and prescript.mplibfadetype
2542 local fd_stop = prescript and prescript.mplibfadestate
2543 if not fd_type then
2544 return fd_stop -- returns "stop" (if picture) or nil

78

2545 end
2546 local bbox = prescript.mplibfadebbox:explode":"
2547 local dx, dy = -bbox[1], -bbox[2]
2548 local vec = prescript.mplibfadevector; vec = vec and vec:explode":"
2549 if not vec then
2550 if fd_type == "linear" then
2551 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right
2552 else
2553 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4])/2
2554 vec = {centerx, centery, centerx, centery} -- center for both circles
2555 end
2556 end
2557 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
2558 if fd_type == "linear" then
2559 coords = format("%f %f %f %f", tableunpack(coords))
2560 elseif fd_type == "circular" then
2561 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]
2562 local radius = (prescript.mplibfaderadius or "0:"..math.sqrt(width^2+height^2)/2):explode":"
2563 tableinsert(coords, 3, radius[1])
2564 tableinsert(coords, radius[2])
2565 coords = format("%f %f %f %f %f %f", tableunpack(coords))
2566 else
2567 err("unknown fading method '%s'", fd_type)
2568 end
2569 fd_type = fd_type == "linear" and 2 or 3
2570 local opaq = (prescript.mplibfadeopacity or "1:0"):explode":"
2571 local on, os, new
2572 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray", {{opaq[1]}}, {{opaq[2]}}, coords, 1)
2573 os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
2574 on = update_pdfobjs(os)
2575 bbox = format("0 0 %f %f", bbox[3]+dx, bbox[4]+dy)
2576 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
2577 :gsub(decimals,rmzeros)
2578 os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
2579 on = update_pdfobjs(os)
2580 local resources = format(pdfetcs.resfmt, on)
2581 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
2582 local attr = tableconcat{
2583 "/Subtype/Form",
2584 "/BBox[", bbox, "]",
2585 "/Matrix[1 0 0 1 ", format("%f %f", -dx,-dy), "]",
2586 "/Resources ", resources,
2587 "/Group ", format(pdfetcs.resfmt, on),
2588 } :gsub(decimals,rmzeros)
2589 on = update_pdfobjs(attr, streamtext)
2590 os = "<</SMask<</S/Luminosity/G " .. format(pdfetcs.resfmt, on) .. ">>>>"
2591 on, new = update_pdfobjs(os)
2592 local key = add_extgs_resources(on,new)
2593 start_pdf_code()

79

2594 pdf_literalcode("/%s gs", key)
2595 if fd_stop then return "standalone" end
2596 return "start"
2597 end
2598

Transparency Group

2599 pdfetcs.tr_group = { shifts = { } }
2600 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2601 local function do_preobj_GRP (object, prescript)
2602 local grstate = prescript and prescript.gr_state
2603 if not grstate then return end
2604 local trgroup = pdfetcs.tr_group
2605 if grstate == "start" then
2606 trgroup.name = prescript.mplibgroupname or "lastmplibgroup"
2607 trgroup.isolated, trgroup.knockout = false, false
2608 for _,v in ipairs(prescript.gr_type:explode",+") do
2609 trgroup[v] = true
2610 end
2611 trgroup.bbox = prescript.mplibgroupbbox:explode":"
2612 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2613 elseif grstate == "stop" then
2614 local llx,lly,urx,ury = tableunpack(trgroup.bbox)
2615 put2output(tableconcat{
2616 "\\egroup",
2617 format("\\wd\\mplibscratchbox %fbp", urx-llx),
2618 format("\\ht\\mplibscratchbox %fbp", ury-lly),
2619 "\\dp\\mplibscratchbox 0pt",
2620 })
2621 local grattr = format("/Group<</S/Transparency/I %s/K %s>>",trgroup.isolated,trgroup.knockout)
2622 local res = gather_resources()
2623 local bbox = format("%f %f %f %f", llx,lly,urx,ury) :gsub(decimals,rmzeros)
2624 if pdfmode then
2625 put2output(tableconcat{
2626 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",
2627 "/BBox[", bbox, "]", grattr, "} resources{", res, "}\\mplibscratchbox",
2628 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2629 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}]],
2630 [[\wd\mplibscratchbox 0pt\ht\mplibscratchbox 0pt\dp\mplibscratchbox 0pt]],
2631 [[\box\mplibscratchbox]],
2632 "}\\endgroup",
2633 "\\expandafter\\xdef\\csname luamplib.group.", trgroup.name, "\\endcsname{",
2634 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2635 "\\useboxresource \\the\\lastsavedboxresourceindex",
2636 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2637 "\\box\\mplibscratchbox}",
2638 })
2639 else
2640 trgroup.cnt = (trgroup.cnt or 0) + 1

80

2641 local objname = format("@mplibtrgr%s", trgroup.cnt)
2642 put2output(tableconcat{
2643 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",
2644 "\\unhbox\\mplibscratchbox",
2645 "\\special{pdf:put @resources <<", res, ">>}",
2646 "\\special{pdf:exobj <<", grattr, ">>}",
2647 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2648 "\\special{pdf:uxobj ", objname, "}",
2649 "}\\endgroup",
2650 })
2651 token.set_macro("luamplib.group."..trgroup.name, tableconcat{
2652 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2653 "\\special{pdf:uxobj ", objname, "}",
2654 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2655 "\\box\\mplibscratchbox",
2656 }, "global")
2657 end
2658 trgroup.shifts[trgroup.name] = { llx, lly }
2659 end
2660 return grstate
2661 end
2662 function luamplib.registergroup (boxid, name, opts)
2663 local box = texgetbox(boxid)
2664 local wd, ht, dp = node.getwhd(box)
2665 local res = (opts.resources or "") .. gather_resources()
2666 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }
2667 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2668 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2669 if opts.matrix and opts.matrix:find"%a" then
2670 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2671 process(data,"@mplibtransformmatrix")
2672 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2673 end
2674 local grtype = 3
2675 if opts.bbox then
2676 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2677 grtype = 2
2678 end
2679 if opts.matrix then
2680 attr[#attr+1] = format("/Matrix[%s]", opts.matrix)
2681 grtype = opts.bbox and 4 or 1
2682 end
2683 if opts.asgroup then
2684 local t = { isolated = false, knockout = false }
2685 for _,v in ipairs(opts.asgroup:explode",+") do t[v] = true end
2686 attr[#attr+1] = format("/Group<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout)
2687 end
2688 local trgroup = pdfetcs.tr_group
2689 trgroup.shifts[name] = { get_macro'MPllx', get_macro'MPlly' }

81

2690 local whd
2691 if pdfmode then
2692 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2693 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2694 token.set_macro("luamplib.group."..name, tableconcat{
2695 "\\useboxresource ", index,
2696 }, "global")
2697 whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2698 else
2699 trgroup.cnt = (trgroup.cnt or 0) + 1
2700 local objname = format("@mplibtrgr%s", trgroup.cnt)
2701 texsprint {
2702 "\\expandafter\\newbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2703 "\\global\\setbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2704 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2705 "\\special{pdf:bcontent}",
2706 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",
2707 "\\unhbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2708 "\\special{pdf:put @resources <<", res, ">>}",
2709 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2710 "\\special{pdf:econtent}}",
2711 }
2712 token.set_macro("luamplib.group."..name, tableconcat{
2713 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "}}",
2714 "\\wd\\mplibscratchbox ", wd, "sp",
2715 "\\ht\\mplibscratchbox ", ht, "sp",
2716 "\\dp\\mplibscratchbox ", dp, "sp",
2717 "\\box\\mplibscratchbox",
2718 }, "global")
2719 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2720 end
2721 info("w/h/d of group '%s': %s", name, whd)
2722 end
2723

luamplib.convert: flushing figures

2724 do
2725 local function stop_special_effects(fade,opaq,over)
2726 if fade then -- fading
2727 stop_pdf_code()
2728 end
2729 if opaq then -- opacity
2730 pdf_literalcode(opaq)
2731 end
2732 if over then -- color
2733 if over:find"pdf:bc" then
2734 put2output"\\special{pdf:ec}"
2735 else
2736 put2output"\\special{color pop}"

82

2737 end
2738 end
2739 end
2740

For parsing prescript materials.
2741 local function script2table(s)
2742 local t = {}
2743 for _,i in ipairs(s:explode("\13+")) do
2744 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2745 if k and v and k ~= "" and not t[k] then
2746 t[k] = v
2747 end
2748 end
2749 return t
2750 end
2751

Codes below to insert PDF lieterals are mostly from ConTEXt general, with small changes when
needed.
2752 local function pdf_textfigure(font,size,text,width,height,depth)
2753 text = text:gsub(".",function(c)
2754 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2755 end)
2756 put2output("\\mplibtextext{%s}{%f}{%s}{%s}{%s}",font,size,text,0,0)
2757 end
2758
2759 local bend_tolerance = 131/65536
2760
2761 local rx, sx, sy, ry, tx, ty, divider = 1, 0, 0, 1, 0, 0, 1
2762
2763 local function pen_characteristics(object)
2764 local t = mplib.pen_info(object)
2765 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty
2766 divider = sx*sy - rx*ry
2767 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2768 end
2769
2770 local function concat(px, py) -- no tx, ty here
2771 return (sy*px-ry*py)/divider,(sx*py-rx*px)/divider
2772 end
2773
2774 local function curved(ith,pth)
2775 local d = pth.left_x - ith.right_x
2776 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and
2777 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2778 d = pth.left_y - ith.right_y
2779 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2780 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2781 return false

83

2782 end
2783 end
2784 return true
2785 end
2786
2787 local function flushnormalpath(path,open)
2788 local pth, ith
2789 for i=1,#path do
2790 pth = path[i]
2791 if not ith then
2792 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2793 elseif curved(ith,pth) then
2794 pdf_literalcode("%f %f %f %f %f %f c",
2795 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2796 else
2797 pdf_literalcode("%f %f l",pth.x_coord,pth.y_coord)
2798 end
2799 ith = pth
2800 end
2801 if not open then
2802 local one = path[1]
2803 if curved(pth,one) then
2804 pdf_literalcode("%f %f %f %f %f %f c",
2805 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2806 else
2807 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2808 end
2809 elseif #path == 1 then -- special case .. draw point
2810 local one = path[1]
2811 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2812 end
2813 end
2814
2815 local function flushconcatpath(path,open)
2816 pdf_literalcode("%f %f %f %f %f %f cm", sx, rx, ry, sy, tx ,ty)
2817 local pth, ith
2818 for i=1,#path do
2819 pth = path[i]
2820 if not ith then
2821 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2822 elseif curved(ith,pth) then
2823 local a, b = concat(ith.right_x,ith.right_y)
2824 local c, d = concat(pth.left_x,pth.left_y)
2825 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2826 else
2827 pdf_literalcode("%f %f l",concat(pth.x_coord, pth.y_coord))
2828 end
2829 ith = pth
2830 end

84

2831 if not open then
2832 local one = path[1]
2833 if curved(pth,one) then
2834 local a, b = concat(pth.right_x,pth.right_y)
2835 local c, d = concat(one.left_x,one.left_y)
2836 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2837 else
2838 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2839 end
2840 elseif #path == 1 then -- special case .. draw point
2841 local one = path[1]
2842 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2843 end
2844 end
2845

Finally, flush figures by inserting PDF literals.
2846 local function flush (result,flusher)
2847 if result then
2848 local figures = result.fig
2849 if figures then
2850 for f=1, #figures do
2851 info("flushing figure %s",f)
2852 local figure = figures[f]
2853 local objects = figure:objects()
2854 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or 0)
2855 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2856 local bbox = figure:boundingbox()
2857 local llx, lly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2858 if urx < llx then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.
(issue #70) Original code of ConTEXt general was:

-- invalid
pdf_startfigure(fignum,0,0,0,0)
pdf_stopfigure()

2859 else

For legacy behavior, insert ‘pre-fig’ TEX code here.
2860 if tex_code_pre_mplib[f] then
2861 put2output(tex_code_pre_mplib[f])
2862 end
2863 pdf_startfigure(fignum,llx,lly,urx,ury)
2864 start_pdf_code()
2865 if objects then
2866 local savedpath = nil
2867 local savedhtap = nil
2868 for o=1,#objects do
2869 local object = objects[o]

85

2870 local objecttype = object.type

The following 10 lines are part of btex...etex patch. Again, colors are processed at this stage.
2871 local prescript = object.prescript
2872 prescript = prescript and script2table(prescript) -- prescript is now a table
2873 local cr_over = do_preobj_CR(object,prescript) -- color
2874 local tr_opaq = do_preobj_TR(object,prescript) -- opacity
2875 local fading_ = do_preobj_FADE(object,prescript) -- fading
2876 local trgroup = do_preobj_GRP(object,prescript) -- transparency group
2877 local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
2878 local shading_ = do_preobj_shading(object,prescript) -- shading pattern
2879 if prescript and prescript.mplibtexboxid then
2880 put_tex_boxes(object,prescript)
2881 elseif objecttype == "start_bounds" or objecttype == "stop_bounds" then --skip
2882 elseif objecttype == "start_clip" then
2883 local evenodd = not object.istext and object.postscript == "evenodd"
2884 start_pdf_code()
2885 flushnormalpath(object.path,false)
2886 pdf_literalcode(evenodd and "W* n" or "W n")
2887 elseif objecttype == "stop_clip" then
2888 stop_pdf_code()
2889 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2890 elseif objecttype == "special" then

Collect TEX codes that will be executed after flushing. Legacy behavior.
2891 if prescript and prescript.postmplibverbtex then
2892 figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
2893 end
2894 elseif objecttype == "text" then
2895 local ot = object.transform -- 3,4,5,6,1,2
2896 start_pdf_code()
2897 pdf_literalcode("%f %f %f %f %f %f cm",ot[3],ot[4],ot[5],ot[6],ot[1],ot[2])
2898 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
2899 stop_pdf_code()
2900 elseif not trgroup and fading_ ~= "stop" then
2901 local evenodd, collect, both = false, false, false
2902 local postscript = object.postscript
2903 if not object.istext then
2904 if postscript == "evenodd" then
2905 evenodd = true
2906 elseif postscript == "collect" then
2907 collect = true
2908 elseif postscript == "both" then
2909 both = true
2910 elseif postscript == "eoboth" then
2911 evenodd = true
2912 both = true
2913 end
2914 end
2915 if collect then

86

2916 if not savedpath then
2917 savedpath = { object.path or false }
2918 savedhtap = { object.htap or false }
2919 else
2920 savedpath[#savedpath+1] = object.path or false
2921 savedhtap[#savedhtap+1] = object.htap or false
2922 end
2923 else

Removed from ConTEXt general: color stuff.

2924 local ml = object.miterlimit
2925 if ml and ml ~= miterlimit then
2926 miterlimit = ml
2927 pdf_literalcode("%f M",ml)
2928 end
2929 local lj = object.linejoin
2930 if lj and lj ~= linejoin then
2931 linejoin = lj
2932 pdf_literalcode("%i j",lj)
2933 end
2934 local lc = object.linecap
2935 if lc and lc ~= linecap then
2936 linecap = lc
2937 pdf_literalcode("%i J",lc)
2938 end
2939 local dl = object.dash
2940 if dl then
2941 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2942 if d ~= dashed then
2943 dashed = d
2944 pdf_literalcode(dashed)
2945 end
2946 elseif dashed then
2947 pdf_literalcode("[] 0 d")
2948 dashed = false
2949 end
2950 local path = object.path
2951 local transformed, penwidth = false, 1
2952 local open = path and path[1].left_type and path[#path].right_type
2953 local pen = object.pen
2954 if pen then
2955 if pen.type == 'elliptical' then
2956 transformed, penwidth = pen_characteristics(object) -- boolean, value
2957 pdf_literalcode("%f w",penwidth)
2958 if objecttype == 'fill' then
2959 objecttype = 'both'
2960 end
2961 else -- calculated by mplib itself
2962 objecttype = 'fill'

87

2963 end
2964 end

Added : shading
2965 local shade_no = do_preobj_SH(object,prescript) -- shading
2966 if shade_no then
2967 pdf_literalcode"q /Pattern cs"
2968 objecttype = false
2969 end
2970 if transformed then
2971 start_pdf_code()
2972 end
2973 if path then
2974 if savedpath then
2975 for i=1,#savedpath do
2976 local path = savedpath[i]
2977 if transformed then
2978 flushconcatpath(path,open)
2979 else
2980 flushnormalpath(path,open)
2981 end
2982 end
2983 savedpath = nil
2984 end
2985 if transformed then
2986 flushconcatpath(path,open)
2987 else
2988 flushnormalpath(path,open)
2989 end
2990 if objecttype == "fill" then
2991 pdf_literalcode(evenodd and "h f*" or "h f")
2992 elseif objecttype == "outline" then
2993 if both then
2994 pdf_literalcode(evenodd and "h B*" or "h B")
2995 else
2996 pdf_literalcode(open and "S" or "h S")
2997 end
2998 elseif objecttype == "both" then
2999 pdf_literalcode(evenodd and "h B*" or "h B")
3000 end
3001 end
3002 if transformed then
3003 stop_pdf_code()
3004 end
3005 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.
3006 if path then
3007 if transformed then
3008 start_pdf_code()

88

3009 end
3010 if savedhtap then
3011 for i=1,#savedhtap do
3012 local path = savedhtap[i]
3013 if transformed then
3014 flushconcatpath(path,open)
3015 else
3016 flushnormalpath(path,open)
3017 end
3018 end
3019 savedhtap = nil
3020 evenodd = true
3021 end
3022 if transformed then
3023 flushconcatpath(path,open)
3024 else
3025 flushnormalpath(path,open)
3026 end
3027 if objecttype == "fill" then
3028 pdf_literalcode(evenodd and "h f*" or "h f")
3029 elseif objecttype == "outline" then
3030 pdf_literalcode(open and "S" or "h S")
3031 elseif objecttype == "both" then
3032 pdf_literalcode(evenodd and "h B*" or "h B")
3033 end
3034 if transformed then
3035 stop_pdf_code()
3036 end
3037 end

Added to ConTEXt general: post-object colors and shading stuff. Beware q ... Q scope.

3038 if shade_no then -- shading
3039 pdf_literalcode("W%s n /MPlibSh%s sh Q",evenodd and "*" or "",shade_no)
3040 end
3041 end
3042 end
3043 if fading_ == "start" then
3044 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3045 elseif trgroup == "start" then
3046 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3047 elseif fading_ == "stop" then
3048 local se = pdfetcs.fading.specialeffects
3049 if se then stop_special_effects(se[1], se[2], se[3]) end
3050 elseif trgroup == "stop" then
3051 local se = pdfetcs.tr_group.specialeffects
3052 if se then stop_special_effects(se[1], se[2], se[3]) end
3053 else
3054 stop_special_effects(fading_, tr_opaq, cr_over)
3055 end

89

3056 if fading_ or trgroup then -- extgs resetted
3057 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
3058 end
3059 end
3060 end
3061 stop_pdf_code()
3062 pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.
3063 for _,v in ipairs(figcontents) do
3064 if type(v) == "table" then
3065 texsprint"\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint"}"
3066 else
3067 texsprint(v)
3068 end
3069 end
3070 if #figcontents.post > 0 then texsprint(figcontents.post) end
3071 figcontents = { post = { } }
3072 end
3073 end
3074 end
3075 end
3076 end
3077
3078 function luamplib.convert (result, flusher)
3079 flush(result, flusher)
3080 return true -- done
3081 end
3082 end
3083
3084 function luamplib.colorconverter (cr)
3085 local n = #cr
3086 if n == 4 then
3087 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]
3088 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g 0 G"
3089 elseif n == 3 then
3090 local r, g, b = cr[1], cr[2], cr[3]
3091 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3092 else
3093 local s = cr[1]
3094 return format("%.3f g %.3f G",s,s), "0 g 0 G"
3095 end
3096 end

2.2 TEX package

First we need to load some packages.

3097 \ifcsname ProvidesPackage\endcsname

90

We need LATEX 2024-06-01 as we use ltx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.
3098 \NeedsTeXFormat{LaTeX2e}
3099 \ProvidesPackage{luamplib}
3100 [2026/01/14 v2.38.2 mplib package for LuaTeX]
3101 \fi
3102 \ifdefined\newluafunction\else
3103 \input ltluatex
3104 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by LATEX kernel.
In Plain, atbegshi.sty is loaded.
3105 \ifnum\outputmode=0
3106 \ifdefined\AddToHookNext
3107 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}
3108 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}
3109 \def\luamplibateveryshipout{\AddToHook{shipout/background}}
3110 \else
3111 \input atbegshi.sty
3112 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3113 \let\luamplibatfirstshipout\AtBeginShipoutFirst
3114 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3115 \fi
3116 \fi

Loading of lua code.
3117 \directlua{require("luamplib")}

legacy commands. Seems we don’t need it, but no harm.
3118 \ifx\pdfoutput\undefined
3119 \let\pdfoutput\outputmode
3120 \fi
3121 \ifx\pdfliteral\undefined
3122 \protected\def\pdfliteral{\pdfextension literal}
3123 \fi

Set the format for metapost.
3124 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.
3125 \ifnum\pdfoutput>0
3126 \let\mplibtoPDF\pdfliteral
3127 \else
3128 \def\mplibtoPDF#1{\special{pdf:literal direct #1}}
3129 \ifcsname PackageInfo\endcsname
3130 \PackageInfo{luamplib}{only dvipdfmx is supported currently}
3131 \else
3132 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}

91

3133 \fi
3134 \fi

To make mplibcode typeset always in horizontal mode.
3135 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3136 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3137 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.
3138 \def\mplibsetupcatcodes{%
3139 %catcode`\{=12 %catcode`\}=12
3140 \catcode`\#=12 \catcode`\^=12 \catcode`\~=12 \catcode`_=12
3141 \catcode`\&=12 \catcode`\$=12 \catcode`\%=12 \catcode`\^^M=12
3142 }

Make btex...etex box zero-metric.
3143 \def\mplibputtextbox#1{\vbox to 0pt{\vss\hbox to 0pt{\raise\dp#1\copy#1\hss}}}

use Transparency Group
3144 \protected\def\usemplibgroup#1#{\usemplibgroupmain}
3145 \def\usemplibgroupmain#1{%
3146 \prependtomplibbox\hbox dir TLT\bgroup
3147 \csname luamplib.group.#1\endcsname
3148 \egroup
3149 }
3150 \protected\def\mplibgroup#1{%
3151 \begingroup
3152 \def\MPllx{0}\def\MPlly{0}%
3153 \def\mplibgroupname{#1}%
3154 \mplibgroupgetnexttok
3155 }
3156 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3157 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3158 \def\mplibgroupbranch{%
3159 \ifx [\nexttok
3160 \expandafter\mplibgroupopts
3161 \else
3162 \ifx\mplibsptoken\nexttok
3163 \expandafter\expandafter\expandafter\mplibgroupskipspace
3164 \else
3165 \let\mplibgroupoptions\empty
3166 \expandafter\expandafter\expandafter\mplibgroupmain
3167 \fi
3168 \fi
3169 }
3170 \def\mplibgroupopts[#1]{\def\mplibgroupoptions{#1}\mplibgroupmain}
3171 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3172 \protected\def\endmplibgroup{\egroup
3173 \directlua{ luamplib.registergroup(
3174 \the\mplibscratchbox, '\mplibgroupname', {\mplibgroupoptions}
3175)}%

92

3176 \endgroup
3177 }

Patterns
3178 {\def\:{\global\let\mplibsptoken= } \: }
3179 \protected\def\mppattern#1{%
3180 \begingroup
3181 \def\mplibpatternname{#1}%
3182 \mplibpatterngetnexttok
3183 }
3184 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3185 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3186 \def\mplibpatternbranch{%
3187 \ifx [\nexttok
3188 \expandafter\mplibpatternopts
3189 \else
3190 \ifx\mplibsptoken\nexttok
3191 \expandafter\expandafter\expandafter\mplibpatternskipspace
3192 \else
3193 \let\mplibpatternoptions\empty
3194 \expandafter\expandafter\expandafter\mplibpatternmain
3195 \fi
3196 \fi
3197 }
3198 \def\mplibpatternopts[#1]{%
3199 \def\mplibpatternoptions{#1}%
3200 \mplibpatternmain
3201 }
3202 \def\mplibpatternmain{%
3203 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3204 }
3205 \protected\def\endmppattern{%
3206 \egroup
3207 \directlua{ luamplib.registerpattern(
3208 \the\mplibscratchbox, '\mplibpatternname', {\mplibpatternoptions}
3209)}%
3210 \endgroup
3211 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3212 \def\mpfiginstancename{@mpfig}
3213 \protected\def\mpfig{%
3214 \begingroup
3215 \futurelet\nexttok\mplibmpfigbranch
3216 }
3217 \def\mplibmpfigbranch{%
3218 \ifx *\nexttok
3219 \expandafter\mplibprempfig
3220 \else
3221 \ifx [\nexttok

93

3222 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig
3223 \else
3224 \expandafter\expandafter\expandafter\mplibmainmpfig
3225 \fi
3226 \fi
3227 }
3228 \def\mplibgobbleoptsmpfig[#1]{\mplibmainmpfig}
3229 \def\mplibmainmpfig{%
3230 \begingroup
3231 \mplibsetupcatcodes
3232 \mplibdomainmpfig
3233 }
3234 \long\def\mplibdomainmpfig#1\endmpfig{%
3235 \endgroup
3236 \directlua{
3237 local legacy = luamplib.legacyverbatimtex
3238 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""
3239 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3240 luamplib.legacyverbatimtex = false
3241 luamplib.everymplib["\mpfiginstancename"] = ""
3242 luamplib.everyendmplib["\mpfiginstancename"] = ""
3243 luamplib.process_mplibcode(
3244 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===].." "..everyendmpfig.." endfig;",
3245 "\mpfiginstancename")
3246 luamplib.legacyverbatimtex = legacy
3247 luamplib.everymplib["\mpfiginstancename"] = everympfig
3248 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3249 }%
3250 \endgroup
3251 }
3252 \def\mplibprempfig#1{%
3253 \begingroup
3254 \mplibsetupcatcodes
3255 \mplibdoprempfig
3256 }
3257 \long\def\mplibdoprempfig#1\endmpfig{%
3258 \endgroup
3259 \directlua{
3260 local legacy = luamplib.legacyverbatimtex
3261 local everympfig = luamplib.everymplib["\mpfiginstancename"]
3262 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]
3263 luamplib.legacyverbatimtex = false
3264 luamplib.everymplib["\mpfiginstancename"] = ""
3265 luamplib.everyendmplib["\mpfiginstancename"] = ""
3266 luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\mpfiginstancename")
3267 luamplib.legacyverbatimtex = legacy
3268 luamplib.everymplib["\mpfiginstancename"] = everympfig
3269 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3270 }%

94

3271 \endgroup
3272 }
3273 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.
3274 \unless\ifcsname ver@luamplib.sty\endcsname
3275 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3276 \protected\def\mplibcode{%
3277 \begingroup
3278 \futurelet\nexttok\mplibcodebranch
3279 }
3280 \def\mplibcodebranch{%
3281 \ifx [\nexttok
3282 \expandafter\mplibcodegetinstancename
3283 \else
3284 \global\let\currentmpinstancename\empty
3285 \expandafter\mplibcodeindeed
3286 \fi
3287 }
3288 \def\mplibcodeindeed{%
3289 \begingroup
3290 \mplibsetupcatcodes
3291 \mplibdocode
3292 }
3293 \long\def\mplibdocode#1\endmplibcode{%
3294 \endgroup
3295 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\currentmpinstancename")}%
3296 \endgroup
3297 }
3298 \protected\def\endmplibcode{endmplibcode}
3299 \else

The LATEX-specific part: a new environment.
3300 \newenvironment{mplibcode}[1][]{%
3301 \xdef\currentmpinstancename{#1}%
3302 \mplibtmptoks{}\ltxdomplibcode
3303 }{}
3304 \def\ltxdomplibcode{%
3305 \begingroup
3306 \mplibsetupcatcodes
3307 \ltxdomplibcodeindeed
3308 }
3309 \def\mplib@mplibcode{mplibcode}
3310 \long\def\ltxdomplibcodeindeed#1\end#2{%
3311 \endgroup
3312 \mplibtmptoks\expandafter{\the\mplibtmptoks#1}%
3313 \def\mplibtemp@a{#2}%
3314 \ifx\mplib@mplibcode\mplibtemp@a
3315 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3316 \end{mplibcode}%

95

3317 \else
3318 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3319 \expandafter\ltxdomplibcode
3320 \fi
3321 }
3322 \fi

User settings.
3323 \def\mplibshowlog#1{\directlua{
3324 local s = string.lower("#1")
3325 if s == "enable" or s == "true" or s == "yes" then
3326 luamplib.showlog = true
3327 else
3328 luamplib.showlog = false
3329 end
3330 }}
3331 \def\mpliblegacybehavior#1{\directlua{
3332 local s = string.lower("#1")
3333 if s == "enable" or s == "true" or s == "yes" then
3334 luamplib.legacyverbatimtex = true
3335 else
3336 luamplib.legacyverbatimtex = false
3337 end
3338 }}
3339 \def\mplibverbatim#1{\directlua{
3340 local s = string.lower("#1")
3341 if s == "enable" or s == "true" or s == "yes" then
3342 luamplib.verbatiminput = true
3343 else
3344 luamplib.verbatiminput = false
3345 end
3346 }}
3347 \newtoks\mplibtmptoks

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables
3348 \ifcsname ver@luamplib.sty\endcsname
3349 \protected\def\everymplib{%
3350 \begingroup
3351 \mplibsetupcatcodes
3352 \mplibdoeverymplib
3353 }
3354 \protected\def\everyendmplib{%
3355 \begingroup
3356 \mplibsetupcatcodes
3357 \mplibdoeveryendmplib
3358 }
3359 \newcommand\mplibdoeverymplib[2][]{%
3360 \endgroup
3361 \directlua{
3362 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===]

96

3363 }%
3364 }
3365 \newcommand\mplibdoeveryendmplib[2][]{%
3366 \endgroup
3367 \directlua{
3368 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3369 }%
3370 }
3371 \else
3372 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#1}}
3373 \protected\def\everymplib#1#{%
3374 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3375 \begingroup
3376 \mplibsetupcatcodes
3377 \mplibdoeverymplib
3378 }
3379 \long\def\mplibdoeverymplib#1{%
3380 \endgroup
3381 \directlua{
3382 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3383 }%
3384 }
3385 \protected\def\everyendmplib#1#{%
3386 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3387 \begingroup
3388 \mplibsetupcatcodes
3389 \mplibdoeveryendmplib
3390 }
3391 \long\def\mplibdoeveryendmplib#1{%
3392 \endgroup
3393 \directlua{
3394 luamplib.everyendmplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3395 }%
3396 }
3397 \fi

TEX macros for dimen/color
3398 \def\mpdim#1{ runscript("luamplibdimen{#1}") }
3399 \def\mpcolor#1#{\domplibcolor{#1}}
3400 \def\domplibcolor#1#2{ runscript("luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.
3401 \def\mplibnumbersystem#1{\directlua{
3402 local t = "#1"
3403 if t == "binary" then t = "decimal" end
3404 luamplib.numbersystem = t
3405 }}

Settings for .mp cache files.
3406 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,}

97

3407 \def\mplibdomakenocache#1,{%
3408 \ifx\empty#1\empty
3409 \expandafter\mplibdomakenocache
3410 \else
3411 \ifx*#1\else
3412 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3413 \expandafter\expandafter\expandafter\mplibdomakenocache
3414 \fi
3415 \fi
3416 }
3417 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,}
3418 \def\mplibdocancelnocache#1,{%
3419 \ifx\empty#1\empty
3420 \expandafter\mplibdocancelnocache
3421 \else
3422 \ifx*#1\else
3423 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%
3424 \expandafter\expandafter\expandafter\mplibdocancelnocache
3425 \fi
3426 \fi
3427 }
3428 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.
3429 \def\mplibtextextlabel#1{\directlua{
3430 local s = string.lower("#1")
3431 if s == "enable" or s == "true" or s == "yes" then
3432 luamplib.textextlabel = true
3433 else
3434 luamplib.textextlabel = false
3435 end
3436 }}
3437 \def\mplibcodeinherit#1{\directlua{
3438 local s = string.lower("#1")
3439 if s == "enable" or s == "true" or s == "yes" then
3440 luamplib.codeinherit = true
3441 else
3442 luamplib.codeinherit = false
3443 end
3444 }}
3445 \def\mplibglobaltextext#1{\directlua{
3446 local s = string.lower("#1")
3447 if s == "enable" or s == "true" or s == "yes" then
3448 luamplib.globaltextext = true
3449 else
3450 luamplib.globaltextext = false
3451 end
3452 }}

The followings are from ConTEXt general, mostly.

98

We use a dedicated scratchbox.
3453 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.
3454 \def\mplibstarttoPDF#1#2#3#4{%
3455 \prependtomplibbox
3456 \hbox dir TLT\bgroup
3457 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3458 \xdef\MPurx{#3}\xdef\MPury{#4}%
3459 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3460 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3461 \parskip0pt%
3462 \leftskip0pt%
3463 \parindent0pt%
3464 \everypar{}%
3465 \setbox\mplibscratchbox\vbox\bgroup
3466 \noindent
3467 }
3468 \def\mplibstoptoPDF{%
3469 \par
3470 \egroup %
3471 \setbox\mplibscratchbox\hbox %
3472 {\hskip-\MPllx bp%
3473 \raise-\MPlly bp%
3474 \box\mplibscratchbox}%
3475 \setbox\mplibscratchbox\vbox to \MPheight
3476 {\vfill
3477 \hsize\MPwidth
3478 \wd\mplibscratchbox0pt%
3479 \ht\mplibscratchbox0pt%
3480 \dp\mplibscratchbox0pt%
3481 \box\mplibscratchbox}%
3482 \wd\mplibscratchbox\MPwidth
3483 \ht\mplibscratchbox\MPheight
3484 \box\mplibscratchbox
3485 \egroup
3486 }

Text items have a special handler.
3487 \def\mplibtextext#1#2#3#4#5{%
3488 \begingroup
3489 \setbox\mplibscratchbox\hbox
3490 {\font\temp=#1 at #2bp%
3491 \temp
3492 #3}%
3493 \setbox\mplibscratchbox\hbox
3494 {\hskip#4 bp%
3495 \raise#5 bp%
3496 \box\mplibscratchbox}%
3497 \wd\mplibscratchbox0pt%

99

3498 \ht\mplibscratchbox0pt%
3499 \dp\mplibscratchbox0pt%
3500 \box\mplibscratchbox
3501 \endgroup
3502 }

Input luamplib.cfg when it exists.
3503 \openin0=luamplib.cfg
3504 \ifeof0 \else
3505 \closein0
3506 \input luamplib.cfg
3507 \fi

Code for tagpdf
3508 \def\luamplibtagtextboxset#1#2{#2}
3509 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3510 \let\luamplibtagasgroupset\relax
3511 \let\luamplibtagasgroupput\luamplibtagtextboxset
3512 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3513 \ifcsname ver@tagpdf.sty\endcsname \else
3514 \ExplSyntaxOn
3515 \keys_define:nn{luamplib/tagging}
3516 {
3517 ,alt .code:n = { }
3518 ,actualtext .code:n = { }
3519 ,artifact .code:n = { }
3520 ,text .code:n = { }
3521 ,off .code:n = { }
3522 ,tag .code:n = { }
3523 ,adjust-BBox .code:n = { }
3524 ,tagging-setup .code:n = { }
3525 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3526 ,instancename .meta:n = { instance = {#1} }
3527 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3528 }
3529 \RenewDocumentCommand\mplibcode{O{}}
3530 {
3531 \tl_gclear:N \currentmpinstancename
3532 \keys_set:ne{luamplib/tagging}{#1}
3533 \mplibtmptoks{}\ltxdomplibcode
3534 }
3535 \cs_set_eq:NN \mplibalttext \use_none:n
3536 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center} raises an Error! aswe issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by LATEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@@par, and \endgraf, we here attempt to address
the issue by adding the following line, which LATEX’s \everypar should have done.
3537 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse

100

3538 \ExplSyntaxOff
3539 \endinput\fi
3540 \ExplSyntaxOn
3541 \tl_new:N \l__luamplib_tag_envname_tl
3542 \tl_new:N \l__luamplib_tag_alt_tl
3543 \tl_new:N \l__luamplib_tag_alt_dflt_tl
3544 \tl_new:N \l__luamplib_tag_actual_tl
3545 \tl_new:N \l__luamplib_tag_struct_tl
3546 \tl_set:Nn\l__luamplib_tag_struct_tl {Figure}
3547 \bool_new:N \l__luamplib_tag_usetext_bool
3548 \bool_new:N \l__luamplib_tag_bboxcorr_bool
3549 \seq_new:N \l__luamplib_tag_bboxcorr_seq
3550 \tl_new:N \l__luamplib_tag_bbox_draw_tl
3551 \tl_new:N \l__luamplib_BBox_llx_tl
3552 \tl_new:N \l__luamplib_BBox_lly_tl
3553 \tl_new:N \l__luamplib_BBox_urx_tl
3554 \tl_new:N \l__luamplib_BBox_ury_tl
3555 \msg_new:nnn {luamplib}{figure-text-reuse}
3556 {
3557 tex-text~box~#1~probably~is~incorrectly~tagged.~
3558 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3559 Check~the~resulting~PDF.
3560 }
3561 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3562 {
3563 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3564 Using~mplibgroup~with~text~mode~is~not~recommended.~
3565 Check~the~resulting~PDF.
3566 }
3567 \msg_new:nnn{luamplib}{alt-text-missing}
3568 {
3569 Alternate~text~for~#1~is~missing.~
3570 Using~the~default~value~'#2'~instead.
3571 }

Sockets for tex-text boxes.
3572 \socket_new:nn{tagsupport/luamplib/textext/set}{2}
3573 \socket_new:nn{tagsupport/luamplib/textext/put}{2}
3574 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3575 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.
3576 \bool_if:NTF \l__luamplib_tag_usetext_bool
3577 {
3578 \tag_mc_end_push:
3579 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}
3580 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.

101

3581 \tag_mc_begin:n{tag=text}
3582 #2
3583 \tag_mc_end:
3584 \tag_struct_end:
3585 \tag_mc_begin_pop:n{}
3586 }
3587 {
3588 \tag_suspend:n{\luamplibtagtextboxset}
3589 #2
3590 \tag_resume:n{\luamplibtagtextboxset}
3591 }
3592 }
3593 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}
3594 {
3595 \bool_lazy_and:nnTF
3596 { \l__luamplib_tag_usetext_bool }
3597 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3598 {
3599 \tag_resume:n{\mplibputtextbox}
3600 \tag_mc_end:
3601 \cs_if_exist:cTF {luamplib.taggedbox.#1}
3602 {
3603 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3604 #2
3605 \cs_undefine:c {luamplib.taggedbox.#1}
3606 }
3607 {
3608 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3609 \tag_mc_begin:n{}
3610 \int_set:Nn \l_tmpa_int {#1}
3611 \tag_mc_reset_box:N \l_tmpa_int
3612 #2
3613 \tag_mc_end:
3614 }
3615 \tag_mc_begin:n{artifact}
3616 }
3617 {
3618 \int_set:Nn \l_tmpa_int {#1}
3619 \tag_mc_reset_box:N \l_tmpa_int
3620 #2
3621 }
3622 }
3623 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3624 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3625 \cs_set_nopar:Npn \luamplibtagtextboxset
3626 {
3627 \tag_socket_use:nnn{luamplib/textext/set}
3628 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in

102

the artifact MC-chunks.
3629 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2
3630 {
3631 \bool_set_eq:NN \l_tmpa_bool \l__luamplib_tag_usetext_bool
3632 \bool_set_false:N \l__luamplib_tag_usetext_bool
3633 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}
3634 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}
3635 \bool_set_eq:NN \l__luamplib_tag_usetext_bool \l_tmpa_bool
3636 }
3637 \cs_set_nopar:Npn \mplibputtextbox #1
3638 {
3639 \vbox to 0pt{\vss\hbox to 0pt{
3640 \socket_use:nnn{tagsupport/luamplib/textext/put}{#1}{\raise\dp#1\copy#1}
3641 \hss}}
3642 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.
3643 \cs_set_nopar:Npn \luamplibtagasgroupset
3644 {
3645 \bool_set_false:N \l__luamplib_tag_usetext_bool
3646 }
3647 \cs_set_nopar:Npn \luamplibtagasgroupput
3648 {
3649 \bool_if:NT \l__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3650 \tag_socket_use:nnn{luamplib/mplibgroup/put}
3651 }

A socket for mplibgroup. Again, we issue a warning upon text mode.
3652 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3653 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}
3654 {
3655 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3656 {
3657 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}
3658 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}
3659 }
3660 \tag_mc_end:
3661 \tag_mc_begin:n{tag=text}
3662 #2
3663 \tag_mc_end:
3664 \tag_mc_begin:n{artifact}
3665 }
3666 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute
3667 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1
3668 {
3669 \tl_set:Ne \l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3670 \tex_savepos:D

103

3671 \property_record:ee{\l_tmpa_tl}{xpos,ypos}
3672 \tl_set:Ne \l__luamplib_BBox_llx_tl
3673 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{xpos}{0}sp } }
3674 \tl_set:Ne \l__luamplib_BBox_lly_tl
3675 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{ypos}{0}sp - \dp#1 } }
3676 \tl_set:Ne \l__luamplib_BBox_urx_tl
3677 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_llx_tl bp + \wd#1 } }
3678 \tl_set:Ne \l__luamplib_BBox_ury_tl
3679 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_lly_tl bp + \ht#1 + \dp#1 } }
3680 \bool_if:NT \l__luamplib_tag_bboxcorr_bool
3681 {
3682 \int_zero:N \l_tmpa_int
3683 \tl_map_inline:nn
3684 {
3685 \l__luamplib_BBox_llx_tl
3686 \l__luamplib_BBox_lly_tl
3687 \l__luamplib_BBox_urx_tl
3688 \l__luamplib_BBox_ury_tl
3689 }
3690 {
3691 \int_incr:N \l_tmpa_int
3692 \tl_set:Ne ##1
3693 {
3694 \fp_eval:n
3695 {
3696 ##1
3697 +
3698 \dim_to_decimal_in_bp:n { \seq_item:NV \l__luamplib_tag_bboxcorr_seq \l_tmpa_int }
3699 }
3700 }
3701 }
3702 }
3703 \tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
3704 {
3705 /O /Layout /BBox [
3706 \l__luamplib_BBox_llx_tl\c_space_tl
3707 \l__luamplib_BBox_lly_tl\c_space_tl
3708 \l__luamplib_BBox_urx_tl\c_space_tl
3709 \l__luamplib_BBox_ury_tl
3710]
3711 }
3712 \bool_if:NT \l__tag_graphic_debug_bool
3713 {
3714 \iow_log:e
3715 {
3716 luamplib/tagging~debug:~BBox~of~structure~\tag_get:n{struct_num}~is~
3717 \l__luamplib_BBox_llx_tl\c_space_tl
3718 \l__luamplib_BBox_lly_tl\c_space_tl
3719 \l__luamplib_BBox_urx_tl\c_space_tl

104

3720 \l__luamplib_BBox_ury_tl
3721 }
3722 \sys_if_output_pdf:TF
3723 {
3724 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3725 {
3726 \pdfextension save\relax
3727 \opacity_select:n{0.5} \color_select:n{red}
3728 \pdfextension literal~text
3729 {
3730 \l__luamplib_BBox_llx_tl\c_space_tl
3731 \l__luamplib_BBox_lly_tl\c_space_tl
3732 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3733 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3734 re~f
3735 }
3736 \pdfextension restore\relax
3737 }
3738 }
3739 {
3740 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3741 {
3742 \special{pdf:bcontent}
3743 \opacity_select:n{0.5} \color_select:n{red}
3744 \special{pdf:code~
3745 1~0~0~1~
3746 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{xpos}{0}sp + \wd#1 }~
3747 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{ypos}{0}sp }~
3748 cm
3749 }
3750 \special{pdf:code~
3751 \l__luamplib_BBox_llx_tl\c_space_tl
3752 \l__luamplib_BBox_lly_tl\c_space_tl
3753 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3754 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3755 re~f
3756 }
3757 \special{pdf:econtent}
3758 }
3759 }
3760 }
3761 }

Sockets for main process

3762 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}
3763 \socket_new:nn{tagsupport/luamplib/figure/end}{2}
3764 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3765 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}
3766 {

105

3767 \tag_mc_end_push:
3768 \tl_if_empty:NT\l__luamplib_tag_alt_tl
3769 {
3770 \tl_if_empty:eTF{#1}
3771 { \tl_set:Nn \l__luamplib_tag_alt_tl {metapost~figure} }
3772 { \tl_set:Ne \l__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#1}} }
3773 \msg_warning:nnVV{luamplib}{alt-text-missing}
3774 \l__luamplib_tag_envname_tl \l__luamplib_tag_alt_tl
3775 }
3776 \tag_struct_begin:n
3777 {
3778 tag=\l__luamplib_tag_struct_tl,
3779 alt=\l__luamplib_tag_alt_tl,
3780 }
3781 \tag_mc_begin:n{}
3782 }
3783 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}
3784 {
3785 __luamplib_tag_bbox_attribute:n {#1}
3786 #2
3787 \tl_use:N \l__luamplib_tag_bbox_draw_tl
3788 \tag_mc_end:
3789 \tag_struct_end:
3790 \tag_mc_begin_pop:n{}
3791 }
3792 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3793 {
3794 \tag_mc_end_push:
3795 \tag_struct_begin:n
3796 {
3797 tag=Span,
3798 actualtext=\l__luamplib_tag_actual_tl,
3799 }
3800 \tag_mc_begin:n{}
3801 }
3802 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3803 {
3804 #2
3805 \tag_mc_end:
3806 \tag_struct_end:
3807 \tag_mc_begin_pop:n{}
3808 }
3809 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3810 {
3811 \tag_mc_end_push:
3812 \tag_mc_begin:n{artifact}
3813 }
3814 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3815 {

106

3816 #2
3817 \tag_mc_end:
3818 \tag_mc_begin_pop:n{}
3819 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/tagging]{...} anywhere in
the document.
3820 \socket_new:nn{tagsupport/luamplib/figure/init}{0}
3821 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}
3822 {
3823 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}
3824 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}
3825 }
3826 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3827 {
3828 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3829 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.
3830 \prependtomplibbox \mplibnoforcehmode
3831 \mode_if_vertical:T { \noindent \aftergroup\par }
3832 }
3833 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}
3834 {
3835 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3836 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3837 }
3838 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}
3839 {
3840 \bool_set_true:N \l__luamplib_tag_usetext_bool
3841 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3842 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3843 \prependtomplibbox \mplibnoforcehmode
3844 \mode_if_vertical:T { \noindent \aftergroup\par }
3845 }
3846 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}
3847 {
3848 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3849 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3850 }
3851 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options
3852 \keys_define:nn{luamplib/tagging}
3853 {
3854 ,alt .code:n =
3855 {
3856 \tl_set:Ne\l__luamplib_tag_alt_tl{\text_purify:n{#1}}
3857 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3858 }

107

3859 ,actualtext .code:n =
3860 {
3861 \tl_set:Ne\l__luamplib_tag_actual_tl{\text_purify:n{#1}}
3862 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}
3863 }
3864 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3865 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }
3866 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3867 ,tag .code:n =
3868 {
3869 \str_case:nnF {#1}
3870 {
3871 {false} { \keys_set:nn {luamplib/tagging} {off} }
3872 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3873 }
3874 {
3875 \tl_set:Nn\l__luamplib_tag_struct_tl{#1}
3876 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3877 }
3878 }
3879 ,adjust-BBox .code:n =
3880 {
3881 \bool_set_true:N \l__luamplib_tag_bboxcorr_bool
3882 \seq_set_split:Nnn \l__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3883 }
3884 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3885 }
3886 \keys_define:nn {luamplib/instance}
3887 {
3888 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3889 ,instancename .meta:n = { instance = {#1} }
3890 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3891 }

Redefine our macros

3892 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3893 {
3894 \prependtomplibbox
3895 \hbox dir~TLT\bgroup
3896 \tag_socket_use:nn{luamplib/figure/begin}\l__luamplib_tag_alt_dflt_tl
3897 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3898 \xdef\MPurx{#3}\xdef\MPury{#4}%
3899 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3900 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3901 \parskip0pt
3902 \leftskip0pt
3903 \parindent0pt
3904 \everypar{}%
3905 \setbox\mplibscratchbox\vbox\bgroup

108

3906 \tag_suspend:n{\mplibstarttoPDF}
3907 \noindent
3908 }
3909 \cs_set_nopar:Npn \mplibstoptoPDF
3910 {
3911 \par
3912 \egroup
3913 \setbox\mplibscratchbox\hbox
3914 {\hskip-\MPllx bp
3915 \raise-\MPlly bp
3916 \box\mplibscratchbox}%
3917 \setbox\mplibscratchbox\vbox to \MPheight
3918 {\vfill
3919 \hsize\MPwidth
3920 \wd\mplibscratchbox0pt
3921 \ht\mplibscratchbox0pt
3922 \dp\mplibscratchbox0pt
3923 \box\mplibscratchbox}%
3924 \wd\mplibscratchbox\MPwidth
3925 \ht\mplibscratchbox\MPheight
3926 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3927 \egroup
3928 }
3929 \RenewDocumentCommand\mplibcode{O{}}
3930 {
3931 \tl_set:Nn \l__luamplib_tag_envname_tl {mplibcode}
3932 \tl_gclear:N \currentmpinstancename
3933 \keys_set_known:neN {luamplib/tagging} {#1} \l_tmpa_tl
3934 \keys_set:nV {luamplib/instance} \l_tmpa_tl
3935 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \currentmpinstancename
3936 \tag_socket_use:n{luamplib/figure/init}
3937 \mplibtmptoks{}\ltxdomplibcode
3938 }
3939 \RenewDocumentCommand\mpfig{s O{}}
3940 {
3941 \begingroup
3942 \tl_set:Nn \l__luamplib_tag_envname_tl {mpfig}
3943 \keys_set_known:ne {luamplib/tagging} {#2}
3944 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \mpfiginstancename
3945 \tag_socket_use:n{luamplib/figure/init}
3946 \IfBooleanTF{#1} { \mplibprempfig * }
3947 { \mplibmainmpfig }
3948 }
3949 \RenewDocumentCommand\usemplibgroup{O{} m}
3950 {
3951 \begingroup
3952 \tl_set:Nn \l__luamplib_tag_envname_tl {usemplibgroup}
3953 \keys_set_known:ne {luamplib/tagging} {#1}
3954 \tag_socket_use:n{luamplib/figure/init}

109

3955 \prependtomplibbox\hbox dir~TLT\bgroup
3956 \tag_socket_use:nn{luamplib/figure/begin}{#2}
3957 \setbox\mplibscratchbox\hbox\bgroup
3958 \bool_if:NF \l__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }
3959 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
3960 \egroup
3961 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
3962 \egroup
3963 \endgroup
3964 }

Allow setting alt/actual text within metapost code. Of course we can use them in TEX code as
well.
3965 \cs_new_nopar:Npn \mplibalttext #1
3966 {
3967 \tl_set:Ne \l__luamplib_tag_alt_tl {\text_purify:n{#1}}
3968 }
3969 \cs_new_nopar:Npn \mplibactualtext #1
3970 {
3971 \tl_set:Ne \l__luamplib_tag_actual_tl {\text_purify:n{#1}}
3972 }
3973 \ExplSyntaxOff

That’s all folks!

110

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if
you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses formost software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foun-
dation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Pub-
lic Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) Youmust cause anywork that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete correspondingmachine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission tomodify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty

12. Because the program is licensed free of charge, there is no warranty for
the program, to the extent permitted by applicable law. Except when oth-
erwise stated in writing the copyright holders and/or other parties pro-
vide the program “as is” without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to
the qality and performance of the program is with you. Should the pro-
gram prove defective, you assume the cost of all necessary servicing, repair
or correction.

13. In no event unless reqired by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redis-
tribute the program as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or conseqential damages arising
out of the use or inability to use the program (including but not limited to
loss of data or data being rendered inaccurate or losses sustained by you
or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the pos-
sibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNUGeneral Public License alongwith
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

111

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 mpliblength, mplibuclength
	1.2.15 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

