The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun
Support: https://github.com/lualatex/luamplib

2026/01/14 v2.38.2

Abstract

Package to have METAPOST code typeset directly in a document with LuaTgX

Contents
1 Documentation
1.1 TEX e
1.1.1 \mplibforcehmodeo
1.1.2 \everymplib, \everyendmplib
1.1.3 \mplibsetformat
1.1.4 \mplibnumbersystem
1.1.5 \mplibshowlog e
1.1.6 \mpliblegacybehavior
1.1.7 \mplibtextextlabel
1.1.8 \mplibcodeinherit
1.1.9 \mplibglobaltextext
1.1.10 Separate METAPOST instances
1.1.11 \mplibverbatim.o
1.1.12 \mpdim . . oL e e e e e e e e e e e
1.1.13 \MPCOlor e e e e e e e e e
1.1.14 \mpfig, \endmpfig e
1.1.15 Aboutcachefiles
1.1.16 About figure box metric Lo oL
1.1.17 luamplibefg . . . 00 oL
1.1.18 TaggedPDF
1.2 METAPOST
1.2.1 mplibdimen, mplibcolor
1.2.2 mplibtexcolor, mplibrgbtexcolor
1.2.3 withmplibcolors
1.2.4 withtransparency e e e e e e e

O O 00N N NN NV Gk R R W WWw W N

-
= \O

o e
e

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod 12

1.2.6 withfademethod 13

1.2.7 mplibgraphictext e 14

1.2.8 mplibglyph e 15

1.2.9 mplibdrawglyph, anditsfriends 15

1.2.10 mpliboutlinetext e 16

1.2.11 \mppattern, withmppattern. 16

1.2.12 0 @SEIOUDP « v v v v e 18

1.2.13 \mplibgroup e e e 19

1.2.14 mpliblength, mplibuclength 20

1.2.15 mplibsubstring, mplibucsubstring. 21

1.3 Lua . .. e e 21
1.3.1 FUNSCript o o o e e e e e e e e e e e e e 21

1.3.2 luamplib.instanceso 21

1.3.3 luamplib.process_mplibcode., 22

2 Implementation 22
21 Luamodule. e 22

2.2 TeXpackage 90

3 The GNU GPL License v2 111

1 Documentation

This package aims at providing a simple way to typeset directly METAPOST code in a document
with LuaTgX. LuaTiX is built with the Lua mplib library, that runs METAPOST code. This package
is basically a wrapper for the Lua mplib functions and some TgX functions to have the output
of the mplib functions in the pdf.

Using this package is easy: in Plain, type your METAPOST code between the macros
\mplibcode and \endmplibcode, and in KIEX in the mplibcode environment.

The resulting METAPOST figures are put in a TgX hbox with dimensions adjusted to the META-
POST code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib.tex files from
ConTgXt. They have been adapted to IEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

« possibility to use btex ... etex to typeset TgX code. textext (string) is a more versatile
macro equivalent to TEX (string) from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

« possibility to use verbatimtex ... etex, though it’s behavior cannot be the same as the
stand-alone mpost. Of course you cannot include \documentclass, \usepackage etc. When

these TgX commands are found in verbatimtex ... etex, the entire code will be ignored.
The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

« in the past, the package required PDF mode in order to have some output. Starting
with version 2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool
currently supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TgX, METAPOST, and Lua interfaces.

1.1 TEX
1.1.1 \mplibforcehmode

When this macro is declared, every METAPOST figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.!

1.1.2 \everymplib{...3}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the lua table containing METAPOST code which will be
automatically inserted at the beginning and ending of each METAPOST code chunk.

\everymplib{ beginfig(@); }

\everyendmplib{ endfig; }
\begin{mplibcode} Q
% beginfig/endfig not needed

draw fullcircle scaled 1cm;
\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for METAPOST: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{ (format name)}.

N.B. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided by metafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below §1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning,.

transparency (texdoc metafun §8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=(number)" to the sentence. (0 < (number) < 1)

From v2.36, withtransparency is available with plain as well. See below § 1.2.4.

'Actually these commands redefine \prependtomplibbox. So you can redefine this command with anything suit-
able before a box. But see § 1.1.18 on Tagged PDF.

shading (texdoc metafun § 8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TgX side. For instance, when withshadecolors("orange”, 2/3red) is given, the first color
"orange"” will be interpreted as a color, xcolor or [3color’s expression.

From v2.36, shading is available with plain format as well with extended functionality.

See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where (string) should be "” (empty), "isolated”, "knockout”, or "isolated,knockout”. Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well, with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable}* is declared, log messages returned by the META-
POST process will be printed to the .log file. This is the TEX side interface for luamplib. showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

By default, \mpliblegacybehavior{enable} is already declared for backward compatibility, in
which case TgX code in verbatimtex ... etex that comes just before beginfig() will be inserted
before the following METAPOST figure box. In this way, each figure box can be freely moved
horizontally or vertically. Also, a box number can be assigned to a figure box, allowing it to be
reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(@); ... endfig;
verbatimtex \leavevmode etex; beginfig(1); ... endfig;
verbatimtex \leavevmode\lower Tex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;
\endmplibcode

*As for user’s setting, enable, true and yes are identical; disable, false and no are identical.
SBut the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

N.B. \endgraf should be used instead of \par inside mplibcode environment.

On the other hand, TgX code in verbatimtex ... etex between beginfig() and endfig will be
inserted after flushing out the METAPOST figure. As shown in the example below, VerbatimTeX
(string) is a synonym of verbatimtex ... etex.t

\mplibcode
D := sqrt(2)*x9;

beginfig(0); <::::>
draw fullcircle scaled D;

VerbatimTeX("\gdef\Dia{" & decimal D & "3}"); diameter: 22.62764bp.
endfig;
\endmplibcode
diameter: \Dia bp.

By contrast, when \mpliblegacybehavior{disable} is declared, any verbatimtex ... etex will
be executed, along with btex . .. etex, sequentially one by one. So, some TgX code in verbatimtex
... etex will have effects on following btex ... etex codes.

\begin{mplibcode}

beginfig(0);
draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,9); % bold face
draw btex GHI etex shifted (2cm,9); % bold face
endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text”, origin) thereafter is exactly the same as label(textext
"my text"”, origin).

N.B. Inthe background, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TgX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (¥), 36 ($),
37 (%), 38 (&), 92 (\), 94 (*), 95 (L), 123 ({), 125 (3), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TgX.

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants, and
macros defined by previous METAPOST code chunks. On the contrary, \mplibcodeinherit{disable}

‘But the recommended way to access METAPOST variables from TgX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

will make each code chunk being treated as an independent instance, never affected by previous
code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other METAPOST macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. This optional
command still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(®);} \everyendmplib{ endfig;}

\mplibcode @
label(btex $\sqrt{2}$ etex, origin);

draw fullcircle scaled 20;

picture pic; pic := currentpicture;
\endmplibcode
\mplibcode

currentpicture := pic scaled 2;
\endmplibcode

1.1.10 Separate METAPOST instances

luamplib v2.22 has added the support for several named METAPOST instances in KIEX mplibcode
environment. Plain TgX users also can use this functionality. The syntax for BIEX is:

\begin{mplibcode}[instanceName]
% some mp code
\end{mplibcode}

The behavior is as follows.

+ All the variables and functions are shared only among all the environments belonging
to the same instance.

+ \mplibcodeinherit only affects environments with no instance name set (since if a name
is set, the code is intended to be reused at some point).

« btex ... etex boxes are also shared and do not require \mplibglobaltextext.
« When an instance names is set, respective \currentmpinstancename is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.
Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceNamel{...}
\everyendmplib[instanceNamel{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TgX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},@)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}

’

1.1.13 \mpcolor[...1{...}

With \mpcolor command, color names or expressions of color, xcolor and 3color module/pack-
ages can be used in the mplibcode environment (after withcolor command). See the example
above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color command. For spot
colors, 3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and xespotcolor (in DVI
mode) packages are supported as well.

N.B. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a METAPOST image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a METAPOST color expression
if possible, users can issue the sentence as follows without worring about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}

’

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for KTEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TgX macros \mpfig ... \endmpfig and its starred version \mpfig= ...

\endmpfig to save typing toil. The former is roughly the same as follows:
\begin{mplibcode}[@mpfig]

beginfig(0)
token list declared by \everymplib[@mpfig]

token list declared by \everyendmplib[@mpfig]
endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:

\begin{mplibcode}[@mpfig]

\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, METAPOST codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor .5[red,white]); }

\mpfig* input boxes \endmpfig

\mpfig
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

« \mplibmakenocache{(filename)[, (filename),...1}

« \mplibcancelnocache{(filename)[, (filename),...1}

where (filename) is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,
$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{(directory path)}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MP11x, \MP11ly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the KIEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=(text) startsa Figure tag by default and sets an alternate text of the figure from the (text).
BBox info will be added automatically to the PDF. This key is needed for ordinary META-
posT figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within METAPOST code as well: VerbatimTeX
"\mplibalttext{(text)}";

actualtext=(text) startsa Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the (text). If in vertical mode, horizontal mode will be forced by \noindent command.>
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
METAPOST code as well: VerbatimTeX "\mplibactualtext{(text)}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TgX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be
forced by \noindent command.® BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TgX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TeX-text boxes is strongly
discouraged.

Note that the text in a TgX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For

5Tt is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.
SThe key text also shares the limitation mentioned in the previous footnote.

example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)
draw btex [taggingoff] $\sqrt 2% etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;
draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;
endfig;
\end{mplibcode}

BEEEN

off Given this key, nothing will be tagged by luamplib.

tag=(name) You can choose a tag name, default value being Figure.” For instance, you can set
‘tag=Formula, alt=(text)’ to get a Formula element with its alternate text.®

adjust-BBox=(dimens) You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=(key-val list) This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{(key-val list)}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
\er.1<.j£mplibcode}

\mpfig[alt=drawing of a square box]

\er.1c.ir;1pf ig

\usemplibgroup[alt=drawing of a trianglel{...}

\mppattern{...} % see below
\mpfig[off] % do not tag this figure
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=(name) or instancename=(name)
is also allowed in addition to the raw instance name as shown above.

"The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses BTEX’s regular math formula tagging, for which the text key is needed.

10

1.2 METAPOST
1.2.1 mplibdimen ..., mplibcolor ...

These are METAPOST interfaces for the TgX commands \mpdim and \mpcolor (see above §1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
METAPOST operators can also be used in external .mp files, which cannot have TgX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a METAPOST operator that converts a TgX
color expression to a METAPOST color expression, that can be used anywhere color expression
is expected as well as after the withcolor command. For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TgX color.
Therefore the example shown above would raise a METAPOST error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor (string) always returns rgb-model expressions.

N.B. Spot colors are forced to cmyk or rgb model, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using the macro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
((fill color expr), (stroke color expr)). When the argument is in string type, it is regarded as
the color expression of TgX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40
withpen pencircle scaled 2
withmplibcolors ("orange!60"”, 2/3red)

’

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency(number | string, number) is provided for plain format as well as metafun. The
first argument accepts a number or a name of alternative transparency methods (see texdoc
metafun § 8.2 Figure 8.1). The second argument accepts a number denoting opacity.

\mpfig
fill unitsquare scaled 40

11

withcolor 2/3[blue,white]

withcolor red

fill fullcircle scaled 40 I
withtransparency (1, 0.5) % or ("normal”, 0.5)

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same as metafun’s new shading method (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro name which only works with metafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

« textual pictures as well as paths can have shading effect. The term textual picture means
a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see below
§ 1.2.7 on this macro), or infont operator, though technically only the last one is a true
textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear”

withshadingvector (9,3)
withshadingstep (
withshadingfraction 1/2 “‘ ’

withshadingcolors (red,green) }_
) ;.f)
withshadingstep (

withshadingfraction 1

withshadingcolors (green,blue)

)

’

« When you give shading effect to a picture generated by ‘infont’ operator, the result of
withshadingvector will be the same as that of withshadingdirection, as luamplib considers
only the bounding box of the picture in this case.

As shown, the syntax is (path) | (textual picture) withshadingmethod (string), where the latter
shall be either "linear” or "circular”. Other macros for optional values are:

withshadingvector (pair) Starting and ending points (as time value) on the path.

withshadingdirection (pair) Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin (pair) The center of starting and ending circles. Default value: center p

12

withshadingradius (pair) Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor (number) Multiplier of the radii. This is no-op in linear mode. Default value:
1.2

withshadingcenter (pair) Values for shifting starting center. For instance, (9,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform (string) where (string) shall be "yes" (respect transform) or "no” (ignore
transform). Default value: "no” for pictures made by infont operator; "yes" for all other
cases.

withshadingdomain (pair) Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction (number) Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors (color expr, color expr) Starting and ending colors. Default value is (white,
black). String-type argument is regarded as the color expression of TgX side.

1.2.6 ... withfademethod ...

This is a METAPOST operator which makes the color of an object gradiently transparent. The
syntax is (path) | (picture) withfademethod (string), the latter being either "linear” or "circular”.
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand
of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.

Related macros to control optional values are:

withfadeopacity (number, number) sets the starting opacity and the ending opacity, default
value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector (pair, pair) sets the starting and ending points. Default value in the linear
mode is (1lcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius (number, number) sets the radii of starting and ending circles. This is no-op in
the linear mode. Default value is (9, abs(center p - urcorner p)), meaning that fading
starts from the center and ends at the four corners of the bounding box.

13

withfadebbox (pair, pair) setsthe bounding box of the fading area, default value being (11corner
p, urcorner p). Though this option is not needed in most cases, there could be cases when
users want to explicitly control the bounding box. Particularly, see the description below
at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bp]{mill} etex;
draw mill
withfademethod "circular”
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, @)

’

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext (string) is a METAPOST operator, the effect of which is similar to that of Con-
TEXt’s graphictext or our own mpliboutlinetext (see below §1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny”

rotated 20 scaled 3 q
fakebold 2.3 % fontspec option @@

fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue

’

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white"” and
"black” respectively.” When the color expressions are given in string type, they are regarded
as color, xcolor or L3color’s expressions. All from mplibgraphictext to the end of sentence will
compose an anonymous picture, which can be drawn or assigned to a variable. Incidentally,
withfillcolor and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be com-
patible with graphictext.

N.B. In some cases, especially when processing complicated TgX code, mplibgraphictext
will produce better results than ConTgXt or even than our own mpliboutlinetext, not to mention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.’® Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
*But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

14

1.2.8 mplibglyph ... of ...

From v2.30, we provide a new METAPOST operator mplibglyph, which returns a METAPOST picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, METAPOST primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(@)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf” % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]” % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TgX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph will be quite similar to the result of glyph
primitive, METAPOST’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph (picture) command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

N.B. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect” to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd” to the last path in
the picture.

N.B. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what you want: in such cases, you have to issue the command
draw (the last path) withpostscript "both” (or "eoboth” to apply even-odd rule)."!

As this could be somewhat annoying to users, we provide the following commands as well:
mplibfillandstrokeglyph (picture), mplibstrokeglyph (picture), and mplibfillglyph (picture), the
last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)

’

" metafun provides macros nofill, eofill, fillup, eofillup etc. (see metafun manual § 2.11), which luamplib with
plain format does not provide currently.

15

1.2.10 mpliboutlinetext (...)

From v2.31, a new METAPOST operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see the metafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqgrt{2+\alphal}$")

(withcolor \mpcolor{red!30}) ,\/2 @
(withpen pencircle scaled .2 withcolor red)
scaled 3

’

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

N.B. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{(name)} ... \endmppattern define a tiling pattern associated with the
(name). METAPOST command withmppattern, the syntax being (cyclic path) | (textual picture)
withmppattern (string), will fill the given path or text with the tiling pattern of the (name) by
replicating it horizontally and vertically.'”” As said before at § 1.2.5, the textual picture here
means any text typeset by TgX, mostly the result of the btex command (and its derivatives) or
the infont operator.

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
L % options: see below
xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}
1
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]

draw (left--right) scaled 5
withcolor 2/3[red,white]

\endmpfig
\endmppattern % or \end{mppattern}

"withpattern is an operator virtually the same as withmppattern, but the former forces a METAPOST picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), (cyclic path) withmppattern (string) works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern

Key Value Type Explanation

xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells

yshift number vertical shifting of pattern cells

bbox table or string 11x, 1ly, urx, ury values™

matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

colored or coloured boolean false for uncolored pattern. default: true

*in string type, numbers are separated by spaces

\mpfig
draw fullcircle scaled 50
withpostscript "collect”

’

draw fullcircle scaled 120
withmppattern "mypatt”
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth”

\endmpfig

The available options are listed in Table 1.

For the sake of convenience, the width and height values of tiling patterns will be written
down into the log file. (depth is always zero.) Users can refer to them for option setting.

As for matrix option, METAPOST code such as "rotated 30 slanted .2" is allowed as well as
string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’
operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘“shifted’ operator.

When you use special effect such as transparency in a pattern, resources option is needed:
for instance, resources="/ExtGState 1 @ R". However, as luamplib automatically includes the
resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern which shall
have no color at all. Uncolored pattern will be painted later by the color of a METAPOST object.
An example:

\begin{mppattern}{pattnocolor}
[
colored = false,
matrix = "slanted .3 rotated 30",
]
\tiny\TeX
\end{mppattern}

17

\begin{mplibcode}
beginfig(1)
picture tex;
tex = mpliboutlinetext.p ("\bfseries \TeX");
for i=1 upto mpliboutlinenum:
mplibfillandstrokeglyph mpliboutlinepic[i]
scaled 8
withmppattern "pattnocolor”
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern

’

endfor
endfig;
\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)
draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor
withmplibcolors (
1/3[white,red], % paints the pattern
2/3 red
)
endfig;
\end{mplibcode}

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well as metafun format. The syntax
is exactly the same: (picture) | (path) asgroup "" | "isolated” | "knockout” | "isolated,knockout”,
which will return a METAPOST picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.
The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TgX code or in other METAPOST code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TgX and METAPOST macros as follows:

withgroupname (string) associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

18

\usemplibgroup{(name)} is a TgX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the group will be shifted to the origin.

usemplibgroup (string) is a METAPOST command which will add a transparency group of the
name to the currentpicture. Contrary to the TgX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox (pair,pair) sets the bounding box of the transparency group, default value be-
ing (llcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot 1ft 11corner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TgX and METAPOST commands:

\mpfig
draw image(
fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;
)
asgroup
withgroupname "mygroup”
withtransparency (1, 1/2)

nn

draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

\noindent

\clap{\vrule width 10bp height .25bp depth .25bp}%
\clap{\vrule width .5bp height 5bp depth 5bp}%
\usemplibgroup{mygroup}

\mpfig +
usemplibgroup "mygroup”
withtransparency (1, 1/4)

draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

Also note that normally the reused transparency groups are not affected by outer color
commands. However, if you have made the original transparency group using withoutcolor
command, colors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TgX macros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros

19

Table 2: options for \mplibgroup

Key Value Type Explanation

asgroup string "" "isolated"”, "knockout”, or "isolated, knockout”
bbox table or string 11x, 11y, urx, ury values™

matrix table or string xx, yx, xy, yy values™ or MP transform code
resources string PDF resources if needed

*1in string type, numbers are separated by spaces

from TgX side. The syntax is similar to the \mppattern command (see above § 1.2.11).
An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
L % options: see below
asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 30 rotated 45 ;
draw (left--right) scaled 30 rotated -45 ;
\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}
\mpfig

usemplibgroup "mygrx" scaled 1.5
withtransparency (1, 0.5)

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As shown, you can reuse the mplibgroup using the TgX command \usemplibgroup or the
METAPOST command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TgX code (not by METAPOST
code) respects original height and depth.

1.2.14 mpliblength ..., mplibuclength ...

mpliblength (string) returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the METAPOST primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abgdéf"” returns 6, not 8.

20

On the other hand, mplibuclength (string) returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Apfel”, where A is encoded using two codepoints
(U+oo41 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.15 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring (pair) of (string) is a unicode-aware version equivalent to the METAPOST’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abgdéf"” returns "¢dé”, and
mplibsubstring (5,2) of "abcdéf” returns "édg".

On the other hand, mplibucsubstring (pair) of (string) returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (8,1) of "Apfel”, where A is en-
coded using two codepoints (U+o041 and U+0308), returns "A”, not "A". This operator requires
lua-uni-algos package.

1.3 Lua
1.3.1 runscript ...

Using the primitive runscript (string), you can run a Lua code chunk from METAPOST side and
get some METAPOST code returned by Lua if you want. As the functionality is provided by the
mplib library itself, luamplib does not have much to say about it.

One thing is worth mentioning, however: if you return a Lua table to the METAPOST process,
it is automatically converted to a relevant METAPOST value type such as pair, color, cmykcolor
or transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,03}" will give you the METAPOST color expression
(1,0,0) automatically.

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib. instances, through which
METAPOST variables are also easily accessible from Lua side, as documented in LuaTgX manual
§11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b =1 > 2;
numeric n; n = 3;
string s; s = "MetaPost”;
path p; p = unitsquare;

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")

21

Table 3: elements in luamplib table (partial)

Key Type Related TgX macro
codeinherit boolean \mplibcodeinherit
everyendmplib table \everyendmplib
everymplib table \everymplib
getcachedir function ({string)) \mplibcachedir
globaltextext boolean \mplibglobaltextext
legacyverbatimtex boolean \mpliblegacybehavior
noneedtoreplace table \mplibmakenocache
numbersystem string \mplibnumbersystem
setformat function ({string)) \mplibsetformat
showlog boolean \mplibshowlog
textextlabel boolean \mplibtextextlabel
verbatiminput boolean \mplibverbatim

local t = myinstance:get_path "p”
for k,v in pairs(t) do

print(k, type(v)=="table' and table.concat(v,' ') or v)
end

3

Of course, this sort of Lua code can also be executed inside METAPOST code using runscript.
Again, of course you can access a METAPOST value using your own TgX macro. For example:

\def\mpnumeric#1{\directlua{
tex.sprint(tostring(luamplib.instances.myinstance:get_numeric”#1"))

33

\mpnumeric{n}\relax

1.3.3 Lua function luamplib.process_mplibcode
Users can execute a METAPOST code chunk from Lua side by using this function:
luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("”) which means that it
has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can have effects on the
process of process_mplibcode.

2 Implementation

2.1 Lua module

1
2 luatexbase.provides_module {

22

3 hame = "luamplib”,

4 version = "2.38.2",

5 date = "2026/01/14"

6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7

8

Use the luamplib namespace, since mplib is for the METAPOST library itself. ConTgXt uses
metapost.
9 luamplib
10 local luamplib
11
12 local format, abs = string.format, math.abs
13

luamplib or { }
luamplib

Use our own function for warn/info/err.
14 local function termorlog (target, text, kind)
15 if text then

16 local mod, write, append = "luamplib”, texio.write_nl, texio.write
17 kind = kind

18 or target == "term” and "Warning (more info in the log)”

19 or target == "log" and "Info"

20 or target == "term and log"” and "Warning"

21 or "Error”

22 target = kind == "Error” and "term and log"” or target

23 local t = text:explode”\n+"
24 write(target, format(”Module %s %s:", mod, kind))
25 if #t == 1 then

26 append(target, format(" %s", t[11))

27 else

28 for _,1line in ipairs(t) do

29 write(target, line)

30 end

31 write(target, format("(%s) ", mod))

32 end

33 append(target, format("” on input line %s", tex.inputlineno))
34 write(target, "")

35 if kind == "Error” then error() end

36 end

37 end

38 local function warn (...) -- beware '%’' symbol

39 termorlog(”term and log”, select("#",...) > 1 and format(...) or ...)
40 end

41 local function info (...)

42 termorlog("log”, select("#",...) > 1 and format(...) or ...)
43 end

44 local function err (...)

45 termorlog("error”, select("#",...) > 1 and format(...) or ...)
46 end

47

23

48 luamplib.showlog = luamplib.showlog or false
49

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack

53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox

56 local texruntoks = tex.runtoks
57if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest”)

59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro

62 local mplib = require ('mplib’)

63 local kpse = require ('kpse')

64 local 1fs = require ('lfs’)

65 local lfsattributes = 1fs.attributes

66 local 1fsisdir = 1fs.isdir
67 local 1fsmkdir = 1fs.mkdir
68 local 1fstouch = 1fs.touch
69 local ioopen = io.open

70

Some helper functions, prepared for the case when 1-file etc is not loaded.
71 local file = file or { }
72 Llocal replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if 1fsisdir(name) then

77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")

79 if fh then

8o fh:close(); os.remove(name)

81 return true

82 end

83 end

84 end

85 local mk_full_path = 1fs.mkdirp or 1fs.mkdirs or function(path)
86 local full = ""

87 for sub in path:gmatch("(/*[*\\/]+)") do

88 full = full .. sub

89 1fsmkdir(full)

9o end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib

24

regarding make_text, we might have to make cache files modified from input files.

First of all, determine the directory to store cache files.
93 local outputdir, cachedir
94 if 1fstouch then
95 for i,v in ipairs{’'TEXMFVAR', 'TEXMF_OUTPUT_DIRECTORY',’."','TEXMFOUTPUT'} do

96 local var = i == 3 and v or kpse.var_value(v)

97 if var and var ~= "" then

98 for _,vv in next, var:explode(os.type == "unix” and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")
100 if not 1fsisdir(dir) then

101 mk_full_path(dir)

102 end

103 if is_writable(dir) then

104 outputdir = dir

105 break

106 end

107 end

108 if outputdir then break end

109 end

110 end

111 end

1

112 outputdir = outputdir or '
113 function luamplib.getcachedir(dir)

114 dir = dir:gsub("##","#")

115 dir = dir:gsub("*~",

116 os.type == "windows"” and os.getenv("UserProfile") or os.getenv("”HOME"))
117 if 1fstouch and dir then

118 if 1fsisdir(dir) then

119 if is_writable(dir) then

120 cachedir = dir

121 else

122 warn("Directory '%s’' is not writable!”, dir)
123 end

124 else

125 warn("Directory '%s’' does not exist!"”, dir)
126 end

127 end

128 end

Some basic METAPOST files not necessary to make cache files.

129 local noneedtoreplace = {

130 ["boxes.mp”] = true, -- ["format.mp”"] = true,

131 ["graph.mp”] = true, ["marith.mp"] = true, ["mfplain.mp”] = true,

132 ["mpost.mp”] = true, ["plain.mp”] = true, ["rboxes.mp”] = true,

133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,

134 ["metafun.mp”] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"”] = true,
135 ["mp-apos.mpiv”] = true, ["mp-asnc.mpiv”] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv”] = true, ["mp-butt.mpiv"] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv”] = true, ["mp-core.mpiv"] = true,

25

138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv”] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv”] = true, ["mp-luas.mpiv"] = true,
141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv”] = true, ["mp-step.mpiv”] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,

144 3

145 luamplib.noneedtoreplace = noneedtoreplace

146

Pattern formats to replace btex and verbatimtex . .. etex in input files, if needed.

147 local name_b = "%f[%a_]1"

148 local name_e = "%f[*%a_]1"

149 local btex_etex = name_b.."btex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e

150 local verbatimtex_etex = name_b.."verbatimtex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e

151

Function luamplib.finder
152 local currenttime = os.time()
153 do
154 local luamplibtime = 1fsattributes(kpse.find_file"luamplib.lua”, "modification")

format.mp is much complicated, so specially treated.

155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")

157 if not fh then return file end

158 local data = fh:read("*all”); fh:close()

159 fh = ioopen(newfile,"w")

160 if not fh then return file end

161 fh:write(

162 "let normalinfont = infont;\n",

163 "primarydef str infont name = rawtextext(str) enddef;\n",

164 data,

165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$*{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"

168); fh:close()

169 1fstouch(newfile,currenttime,ofmodify)

170 return newfile

171 end

172 local function replaceinputmpfile (name,file)
173 local ofmodify = 1fsattributes(file,”modification”)
174 if not ofmodify then return file end

175 local newfile = name:gsub("%W","”_")

176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then

178 local nf = 1fsattributes(newfile)

179 if nf and nf.mode == "file" and

180 ofmodify == nf.modification and luamplibtime < nf.access then

181 return nf.size == @ and file or newfile

182 end

26

183 end

184 if name == "format.mp” then return replaceformatmp(file,newfile,ofmodify) end
185 local fh = ioopen(file,”r")
186 if not fh then return file end

187 local data = fh:read("*all"); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTgX
manual, which is not the case of standalone METAPOST though.

188 local count,cnt = 9,0

189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
190 count = count + cnt

191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt

193 if count == @ then

194 noneedtoreplace[name] = true

195 fh = ioopen(newfile,"w");

196 if fh then

197 fh:close()

198 1fstouch(newfile,currenttime,ofmodify)

199 end

200 return file

201 end

202 fh = ioopen(newfile,"w")

203 if not fh then return file end

204 fh:write(data); fh:close()

205 1fstouch(newfile,currenttime,ofmodify)

206 return newfile

207 end

As the finder function for mplib, use the kpse library and make it behave like as if METAPOST
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse

209 do

210 local exe = 0

211 while arg[exe-1] do

212 exe = exe-1

213 end

214 mpkpse = kpse.new(arg[exe], "mpost"”)
215 end

216 local special_ftype = {
217 pfb = "typel fonts”,

218 enc = "enc files”,

219}

220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then

222 if name and name ~= "mpout.log” then

223 kpse.record_output_file(name) -- recorder
224 end

225 return name

226 else

27

227 ftype = special_ftype[ftypel or ftype

228 local file = mpkpse:find_file(name, ftype)

229 if file then

230 if 1fstouch and ftype == "mp"” and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)

232 end

233 else

234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end

236 if file then

237 kpse.record_input_file(file) -- recorder

238 end

239 return file

240 end

241 end

242 end

243

For the main function: process
plain or metafun, though we cannot support metafun format fully.
244 local currentformat = "plain”
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false

249 local mplibinstances = {}

250 luamplib.instances = mplibinstances

251 local has_instancename = false

252
253 local process

254 do

255 local function reporterror (result, prevlog)

256 if not result then

257 err("no result object returned”)

258 else

259 local t, e, 1 = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)

260 local log =1 or t or "no-term”

261 log = log:gsub("%(Please type a command or say ‘end’'%)",""):gsub("\n+","\n")
262 if result.status > @ then

263 local first = log:match”(.-\n! .-)\n! "
264 if first then

265 termorlog("term”, first)

266 termorlog(”log”, log, "Warning")

267 else

268 warn(log)

269 end

270 if result.status > 1 then

28

271 err(e or "see above messages”)

272 end
273 elseif prevlog then
274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match”"\n>>? .+"

276 if show then

277 termorlog(”term”, show, "Info (more info in the log)")
278 info(log)

279 elseif luamplib.showlog and log:find"%g" then

280 info(log)

281 end

282 end

283 return log

284 end

285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.

286 if not math.initialseed then math.randomseed(currenttime) end

287 local function luamplibload (name)

288 local mpx = mplib.new {

289 ini_version = true,

290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.

291 make_text = luamplib.maketext,

292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex. jobname,

295 random_seed = math.random(4095),

296 utf8_mode = true,

297 extensions =1,

298 }

Append our own METAPOST preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{

300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),
301 luamplib.preambles.mplibcode,

302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib. textextlabel and luamplib.preambles.textextlabel or ""
304 }

305 local result, log

306 if not mpx then

307 result = { status = 99, error = "out of memory"}

308 else

309 result = mpx:execute(preamble)

310 end

29

https://github.com/lualatex/luamplib/issues/21

311 log = reporterror(result)
312 return mpx, result, log
313 end

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)

315 local currfmt

316 if instancename and instancename ~= "" then
317 currfmt = instancename

318 has_instancename = true

319 else

320 currfmt = tableconcat{

321 currentformat,

322 luamplib.numbersystem or "scaled”,

323 tostring(luamplib. textextlabel),

324 tostring(luamplib.legacyverbatimtex),
325 3

326 has_instancename = false

327 end

328 local mpx = mplibinstances[currfmt]

329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then

331 mpx: finish()

332 end

333 local log = ""

334 if standalone or not mpx then

335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx

337 end

338 local converted, result = false, {}

339 if mpx and data then

340 result = mpx:execute(data)

341 local log = reporterror(result, log)

342 if log then

343 if result.fig then

344 converted = luamplib.convert(result)
345 end

346 end

347 else

348 err”Mem file unloadable. Maybe generated with a different version of mplib?”
349 end

350 return converted, result

351 end

352 end

353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0

355

make_text and some run_script uses LuaTgX’s tex. runtoks.

30

356 local catlatex = luatexbase.registernumber(”catcodetable@latex”)
357 local catat1l = luatexbase.registernumber("”catcodetable@atletter”)

tex. scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-
iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536x(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is
true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.

363 local texboxes = { globalid = 0, localid = 4096 }

364 local process_tex_text

365 do

366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z

368 withprescript "mplibtexboxid=%i:%f:%f")’

369 function process_tex_text (str, maketext)

370 if str then

371 if not maketext then str = str:gsub("\r.-$","") end

372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global” or ""

374 local tex_box_id

375 if global == "" then

376 tex_box_id = texboxes.localid + 1

377 texboxes.localid = tex_box_id

378 else

379 local boxid = texboxes.globalid + 1

380 texboxes.globalid = boxid

381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount’'allocationnumber’

383 end

384 if str:find"*%[taggingoff%]" then

385 str = str:gsub("*%[taggingoff%]%sx","")

386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))

388 else

389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))

391 end

392 local box = texgetbox(tex_box_id)

393 local wd = box.width / factor

394 local ht box.height / factor

31

395 local dp = box.depth / factor

396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
397 end

398 return ""

399 end

400 end

401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-
mands should be used with graphical objects. Attempt to support I3color as well.
402 if is_defined’color_select:n’' then
403 run_tex_code{

404 "\\newcatcodetable\\luamplibcctabexplat”,
405 "\\begingroup",

406 "\\catcode'@=11 ",

407 "\\catcode'_=11 ",

408 "\\catcode':=11 ",

409 "\\savecatcodetable\\1luamplibcctabexplat”,
410 "\\endgroup",

411}

412 end

413 1local ccexplat = luatexbase.registernumber”luamplibcctabexplat”
414

415 local process_color, process_mplibcolor

A common function for color functions

416 local function colorsplit (res)

417 local t, tt = { 3}, res:gsub("[%[%11","",2):explode()

418 local be = tt[1]:find"*%d" and 1 or 2

419 for i=be, #tt do

420 if not tonumber(tt[i]) then break end

421 t[#t+1] = tt[i]

422 end

423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata

424 run_tex_code{"\\extractcolorspecs{", tt[31, "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro”"mplibtmpb”:explode”,”

426 end

427 return t

428 end

429 do

430 local colfmt = ccexplat and "13color” or "xcolor”
431 local mplibcolorfmt = {

432 xcolor = tableconcat{

433 [[\begingroup\let\XC€mcolor\relax]],

434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}1],

435 [[\color%s\endgroupl],

436 b

437 13color = tableconcat{

438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}11,
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #23}}11,

32

440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}11,
441 [[\color_select:n%s\endgroupl],

442 b

443}

444 function process_color (str)

445 if str then

446 if not str:find("%b{3}") then

447 str = format("{%s}",str)

448 end

449 local myfmt = mplibcolorfmt[colfmt]

450 if colfmt == "13color"” and is_defined"color” then

451 if str:find("%b[]1") then

452 myfmt = mplibcolorfmt.xcolor

453 else

454 for _,v in ipairs(str:match”{(.+)}":explode"!") do
455 if not v:find("*%s*%d+%sx$") then

456 local pp = get_macro(format("1__color_named_%s_prop",v))
457 if not pp or pp == "" then

458 myfmt = mplibcolorfmt.xcolor

459 break

460 end

461 end

462 end

463 end

464 end

465 run_tex_code(myfmt: format(str), ccexplat or catatl1)
466 local t = texgettoks"mplibtmptoks”

467 if not pdfmode then

468 if t:find"*hsb" or not t:find"%d" then

469 t = "color push " .. t

470 elseif not t:find"*pdf"” then

471 t = t:gsub("%a+ (.+)","pdf:bc [%11")

472 end

473 end

474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end

476 return ""

477 end

478 function process_mplibcolor(str)

479 local res = process_color(str)

480 if res:find” cs " or res:find"@pdf.obj"” or res:find”color push” then return res end
481 res = colorsplit(res:match’"mpliboverridecolor=(.+)"")
482 return format("(%s)"”, tableconcat(res, ","))

483 end

484 end

485

for \mpdim or mplibdimen

486 local function process_dimen (str)

487

if str then

33

488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}1], str))
490 return format("begingroup %s endgroup”, texgettoks"mplibtmptoks")

491 end

492 return ""
493 end

494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then
497 run_tex_code(str)
498 end
499 return "
500 end

501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TgX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str

508 end
509 return ""
510 end

511 local function process_verbatimtex_infig (str)
512 if str then

513 return format('special "postmplibverbtex=%s";"', str)
514 end

515 return ""

516 end

517

For metafun format. see issue #79.
518mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.

523 catcodes = catcodes or {}

524 local catcodes = catcodes

525 catcodes.numbers = catcodes.numbers or {3}

526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers. texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers.luacatcodes = catcodes.numbers.luacatcodes or catlatex

34

529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes. numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers. txtcatcodes = catcodes.numbers.txtcatcodes or catlatex
533

Now luamplib.runscript

534 do

535 local runscript_funcs = {

536 luamplibtext = process_tex_text,

537 luamplibcolor = process_mplibcolor,

538 luamplibdimen = process_dimen,

539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,
542

A function from ConTgXt general.
543 local function mpprint(buffer,...)

544 for i=1,select("#",...) do

545 local value = select(i,...)

546 if value ~= nil then

547 local t = type(value)

548 if t == "number” then

549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string"” then

551 buffer[#buffer+1] = value

552 elseif t == "table" then

553 buffer[#buffer+1] = "(" .. tableconcat(value,”,"”) .. ")"
554 else -- boolean or whatever

555 buffer[#buffer+1] = tostring(value)

556 end

557 end

558 end

559 end

560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then

563 local f = runscript_funcs[id]
564 if f then

565 local t = f(str)

566 if t then return t end

567 end

568 end

569 local f = loadstring(code)
570 if type(f) == "function” then

571 local buffer = {}

572 function mp.print(...)
573 mpprint(buffer,...)
574 end

35

575 local res = {f()}

576 buffer = tableconcat(buffer)
577 if buffer and buffer ~= "" then
578 return buffer

579 end

580 buffer = {}

581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)

583 end

584 return ""

585 end

586 end

587

luamplib.maketext
588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.

500 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\@PerCent\0")

592 :gsub("%%.-\n", "")

593 :gsub("%%.-$", ")

594 :gsub("%zPerCent%z", "\\%%")

595 :gsub("\r.-$", ")

596 :gsub("%s+", " ")

597 end

598 function luamplib.maketext (str, what)

599 if str and str ~= "" then

600 str = protecttexcontents(str)

601 if what == 1 then

602 if not str:find("\\documentclass”..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then

607 if luamplib.in_the_fig then

608 return process_verbatimtex_infig(str)
609 else

610 return process_verbatimtex_prefig(str)
611 end

612 else

613 return process_verbatimtex_text(str)

614 end

615 end

616 else

617 return process_tex_text(str, true) -- bool is for 'chari3’
618 end

619 end

620 return ""

36

621 end
622 end
623

luamplib’s METAPOST color operators
624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match’"mpliboverridecolor=(.+)"'
626 if res:find” cs " or res:find"@pdf.obj" then
627 if not rgb then

628 warn("%s is a spot color. Forced to CMYK", str)
629 end

630 run_tex_code({

631 "\\color_export:nnN{",

632 str,

633 ",

634 rgb and "space-sep-rgb" or "space-sep-cmyk”,
635 "N\mplib_@tempa"”,

636 },ccexplat)

637 return get_macro”mplib_@tempa"”:explode()

638 end

639 local t = colorsplit(res)

640 if #t == 3 or not rgb then return t end

641 if #t == 4 then

642 return { 1 - math.min(1,t[1]1+t[41), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end

644 return { t[11, t[1], t[1] 3

645 end

646

647 luamplib. shadecolor = function (str)

648 local res = process_color(str):match'"mpliboverridecolor=(.+)"’

649 if res:find” cs " or res:find"@pdf.obj" then -- spot color shade: 13 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}

\ExplSyntax0On
\color_model_new:nnn { pantone3005 }
{ Separation }
{
name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}
}
\color_set:nnn{spotA}{pantone30053}{1}
\color_set:nnn{spotB}{pantone30053}{0.6}
\color_model_new:nnn { pantonel215 }
{ Separation }
{
name = PANTONE~1215~U ,

37

alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 03}
}
\color_set:nnn{spotC}H{pantone1215}{1}
\color_model_new:nnn { pantone2040 }
{ Separation }
{
name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}
}
\color_set:nnn{spotD}{pantone2040}{1}
\ExplSyntax0ff
\begin{document}
\begin{mplibcode}
beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm
withshadingmethod "linear”
withshadingvector (0,1)
withshadingstep (
withshadingfraction .5
withshadingcolors ("spotB”,"spotC")
)
withshadingstep (
withshadingfraction 1
withshadingcolors ("spotC”,"spotD")
)
endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntax0On
\color_model_new:nnn { pantonel215 }
{ Separation }
{
name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}
}
\color_model_new:nnn { pantone+black }
{ DeviceN }
{ names = {pantonel215,black} }
\color_set:nnn{purepantone}{pantonetblack}{1,0}
\color_set:nnn{pureblack} {pantonetblack}{0,1}

38

\ExplSyntax0ff
\begin{document?}
\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30
withshadingmethod "linear”
withshadingcolors ("purepantone”,"pureblack”)
\endmpfig
\end{document?}

650 run_tex_code({

651 [[\color_export:nnN{1]1, str, [[}{backend}\mplib_etempall,

652 },ccexplat)

653 local name, value = get_macro’'mplib_@tempa':match'{(.-)}{(.-)}’
654 local t, obj = res:explode()

655 if pdfmode then

656 obj = format("%s @ R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else

658 obj = t[2]

659 end

"

660 return format('(1) withprescript”mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end

662 return colorsplit(res)

663 end

664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"~[%d%.:]+$" then

668 col = col:explode”:"

669 for i=1,#col do

670 col[i] = format("#%.3f", collil)

671 end

672 if pdfmode then

673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col,” ")

676 end

677 return format("[%s]", tableconcat(col,” "))

678 end

679 col = process_color(col):match’"mpliboverridecolor=(.+)""'
680 if pdfmode then

681 local t = col:explode()

682 local b = filldraw == "fill" and 1 or #t/2+1

683 local e = b == 1 and #t/2 or #t

684 return tableconcat(t,” ", b, e)

685 end

686 return format("[%s]", tableconcat(colorsplit(col),” "))
687 end

39

688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")

690 stroke = graphictextcolor(stroke, "stroke")

691 local bc = pdfmode and "" or "pdf:bc "

692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)
693 end

694 end

695

Remove trailing zeros for smaller PDF

696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub(”%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext

699 local function getrulemetric (box, curr, bp)

700 local running = -1073741824

701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd

703 ht = ht == running and box.height or ht

704 dp = dp == running and box.depth or dp

705 if bp then

706 return wd/factor, ht/factor, dp/factor

707 end

708 return wd, ht, dp
709 end

710

luamplib’s mplibgraphictext operator

711 do

712 local emboldenfonts = { }

713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width

715 if not width then

716 local f

717 local function getglyph(n)

718 while n do

719 if n.head then

720 getglyph(n.head)

721 elseif n.font and n.font > @ then
722 f = n.font; break

723 end

724 n = node.getnext(n)

725 end

726 end

727 getglyph(curr)

728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width

730 end

731 return width

40

732 end

733 local function getrulewhatsit (line, wd, ht, dp)

734 line, wd, ht, dp = 1ine/1000, wd/factor, ht/factor, dp/factor
735 local pl

736 local fmt = "%f w %f %f %f %f re %s"

737 if pdfmode then

738 pl = node.new("whatsit”,"pdf_literal”)

739 pl.mode = 0

740 else

741 fmt = "pdf:content "..fmt

742 pl = node.new("whatsit”,"special”)

743 end

744 pl.data = fmt:format(line, @, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue"”

746 node.setglue(ss, @, 65536, 65536, 2, 2)
747 pl.next = ss

748 return pl

749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined"ver@tagpdf.sty” then

752 tag_update_attrs = function (n, curr)

753 while n do

754 n.attr = curr.attr

755 if n.head then

756 tag_update_attrs(n.head, curr)

757 end

758 n = node.getnext(n)

759 end

760 end

761 else

762 tag_update_attrs = function() end

763 end

764 local function embolden (box, curr, fakebold)

765 local head = curr

766 while curr do

767 if curr.head then

768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then

770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then

772 if curr.leader.head then

773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule” then

775 local glue = node.effective_glue(curr, box)

776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist"” then

41

779 wd = glue

780 else

781 ht, dp = 0, glue

782 end

783 local pl = getrulewhatsit(line, wd, ht, dp)

784 local pack = box.id == node.id"hlist"” and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")

786 tag_update_attrs(list,curr)

787 head = node.insert_after(head, curr, list)

788 head, curr = node.remove(head, curr)

789 end

790 elseif curr.id == node.id"rule"” and curr.subtype == 0 then
791 local line = getemboldenwidth(curr, fakebold)

792 local wd,ht,dp = getrulemetric(box, curr)

793 if box.id == node.id"vlist” then

794 ht, dp = 0, ht+dp

795 end

796 local pl = getrulewhatsit(line, wd, ht, dp)

797 local list

798 if box.id == node.id"hlist"” then

799 list = node.hpack(pl, wd, "exactly")

800 else

801 list = node.vpack(pl, ht+dp, "exactly")

802 end

803 tag_update_attrs(list,curr)

804 head = node.insert_after(head, curr, list)

805 head, curr = node.remove(head, curr)

806 elseif curr.id == node.id"glyph” and curr.font > @ then
807 local f = curr.font

808 local key = format("%s:%s",f,fakebold)

809 local i = emboldenfonts[key]

810 if not i then

811 local ft = font.getfont(f) or font.getcopy(f)

812 if pdfmode then

813 width = ft.size * fakebold / factor * 10

814 emboldenfonts.width = width

815 ft.mode, ft.width = 2, width

816 i = font.define(ft)

817 else

818 if ft.format ~= "opentype” and ft.format ~= "truetype” then
819 goto skip_typel

820 end

821 local name = ft.name:gsub('"",""):gsub(";$',"")
822 name = format('%s;embolden=%s; ', name,fakebold)
823 _, i = fonts.constructors.readanddefine(name, ft.size)
824 end

825 emboldenfonts[key] = i

826 end

827 curr.font = i

42

828 end

829 ::skip_typel::

830 curr = node.getnext(curr)
831 end

832 return head

833 end

834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)

836 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil

838 local box = texgetbox(id)

839 box.head = embolden(box, box.head, fakebold)

840 local colors = luamplib.fillandstrokecolor(fc, dc)

841 return format('%s %s)', fmt, colors)
842 end

843 end

844

luamplib’s mplibglyph operator

845 do

846 local function mperr (str)

847 return format("hide(errmessage %q)", str)
848 end

849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then

852 r=r - 360

853 elseif r < -180 then
854 r=r + 360

855 end

856 return r

857 end

858 local function turning (t)
859 local r, n =0, #t
860 for i=1,2 do

861 tableinsert(t, t[il)

862 end

863 for i=1,n do

864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end

866 return r/360

867 end

868 local function glyphimage(t, fmt)
869 local a,p,r = {{},{}}

870 for i,v in ipairs(t) do

871 local cmd = v[#v]

872 if cmd == "m"” then

873 p = {format('(%s,%s)',v[1]1,v[21)}
874 r = {{x=v[1]1,y=v[21}}

43

875 else

876 local nt = t[i+1]

877 local last = not nt or nt[#nt] == "m"

878 if emd == "1" then

879 local pt = t[i-1]

880 local seco = pt[#pt] == "m"

881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else

883 tableinsert(p, format('--(%s,%s)',v[1]1,v[2]))
884 tableinsert(r, {x=v[1],y=v[21})

885 end

886 if last then

887 tableinsert(p, '--cycle')

888 end

889 elseif cmd == "c" then

890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1]1,v[2]1,v[31,v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then
892 tableinsert(p, '..cycle')

893 else

894 tableinsert(p, format('..(%s,%s)',v[5],v[6]))
895 if last then

896 tableinsert(p, '--cycle')

897 end

898 tableinsert(r, {x=v[5],y=v[61})

899 end

900 else

901 return mperr"unknown operator”

902 end

903 if last then

904 tableinsert(ql turning(r) > @ and 1 or 2], tableconcat(p))
905 end

906 end

907 end

908 r={13
909 if fmt == "opentype"” then

910 for _,v in ipairs(q[1]) do

911 tableinsert(r, format('addto currentpicture contour %s;',v))

912 end

913 for _,v in ipairs(q[2]) do

914 tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
915 end

916 else

917 for _,v in ipairs(q[2]) do

918 tableinsert(r, format('addto currentpicture contour %s;',v))

919 end

920 for _,v in ipairs(q[1]) do

921 tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
922 end

923 end

44

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

960

963
964
965
966
967
968
969
970
971
972

return format('image(%s)', tableconcat(r))
end
if not table.tofile then require”lualibs-1lpeg"; require”lualibs-table”; end
function luamplib.glyph (f, c)
local filename, subfont, instance, kind, shapedata
local fid = tonumber(f) or font.id(f)
if fid > @ then
local fontdata = font.getfont(fid) or font.getcopy(fid)
filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
instance = fontdata.specification and fontdata.specification.instance
filename = filename and filename:gsub(”*harfloaded:","")
else
local name
f = f:match”*%sx(.+)%sx$"
name, subfont, instance = f:match”(.+)%((%d+)%)%[(.-)%]1$"
if not name then
name, instance = f:match”(.+)%[(.-)%1$" -- SourceHanSansK-VF.otf[Heavy]
end
if not name then
name, subfont = f:match”(.+)%((%d+)%)$" -- Times.ttc(2)
end
name = name or f
subfont = (subfont or 0)+1
instance = instance and instance:lower()
for _,ftype in ipairs{"opentype”, "truetype"} do
filename = kpse.find_file(name, ftype.."” fonts")
if filename then
kind = ftype; break
end
end
end
if kind ~= "opentype” and kind ~= "truetype” then
f = fid and fid > @ and tex.fontname(fid) or f
if kpse.find_file(f, "tfm") then
return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
else
return mperr”font not found”
end
end
local time = 1lfsattributes(filename,"modification”)
local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
local h = format(string.rep('%02x’', 256/8), string.byte(sha2.digest256(k), 1, -1))
local newname = format("%s/%s.lua”, cachedir or outputdir, h)
local newtime = lfsattributes(newname, "modification”) or @
if time == newtime then
shapedata = require(newname)
end
if not shapedata then
shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename, subfont,instance)

nn

45

973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?” end

974 table.tofile(newname, shapedata, "return”)
975 1fstouch(newname, time, time)
976 end

977 local gid = tonumber(c)
978 if not gid then

979 local uni = utf8.codepoint(c)

980 for i,v in pairs(shapedata.glyphs) do

981 if ¢ == v.name or uni == v.unicode then
982 gid = i; break

983 end

984 end

985 end

986 if not gid then return mperr”cannot get GID (glyph id)"” end
987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments

989 if not t then return "image()" end

990 for i,v in ipairs(t) do

991 if type(v) == "table" then

992 for ii,vv in ipairs(v) do

993 if type(vv) == "number” then

994 t[i][ii] = format("%.0f", vv x fac)
995 end

996 end

997 end

998 end

999 kind = shapedata.format or kind
1000 return glyphimage(t, kind)

1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do

1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z

1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert

1008 function outline_vert (res, box, curr, xshift, yshift)

1009 local b2u = box.dir == "LTL"

1010 local dy = (b2u and -box.depth or box.height)/factor

1011 local ody = dy

1012 while curr do

1013 if curr.id == node.id"rule"” then

1014 local wd, ht, dp = getrulemetric(box, curr, true)

1015 local hd = ht + dp

1016 if hd ~= 0 then

1017 dy = dy + (b2u and dp or -ht)

1018 if wd ~= @ and curr.subtype == @ then

1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)

46

1020 end

1021 dy = dy + (b2u and ht or -dp)

1022 end

1023 elseif curr.id == node.id"glue” then

1024 local vwidth = node.effective_glue(curr,box)/factor

1025 if curr.leader then

1026 local curr, kind = curr.leader, curr.subtype

1027 if curr.id == node.id"rule"” then

1028 local wd = getrulemetric(box, curr, true)

1029 if wd ~= 0 then

1030 local hd = vwidth

1031 local dy = dy + (b2u and @ or -hd)

1032 if hd ~= @ and curr.subtype == @ then

1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)
1034 end

1035 end

1036 elseif curr.head then

1037 local hd = (curr.height + curr.depth)/factor

1038 if hd <= vwidth then

1039 local dy, n, iy = dy, 9, ©

1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)

1042 local ndy = math.ceil(ady / hd) * hd

1043 local diff = ndy - ady

1044 n = math.floor((vwidth-diff) / hd)

1045 dy = dy + (b2u and diff or -diff)

1046 else

1047 n = math.floor(vwidth / hd)

1048 if kind == 101 then

1049 local side = vwidth % hd / 2

1050 dy = dy + (b2u and side or -side)

1051 elseif kind == 102 then

1052 iy = vwidth % hd / (n+1)

1053 dy = dy + (b2u and iy or -iy)

1054 end

1055 end

1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd

1058 iy = b2u and iy or -iy

1059 local func = curr.id == node.id"hlist” and outline_horz or outline_vert
1060 for i=1,n do

1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy =dy + hd + iy

1063 end

1064 end

1065 end

1066 end

1067 dy = dy + (b2u and vwidth or -vwidth)

1068 elseif curr.id == node.id"kern" then

47

1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)

1070 elseif curr.id == node.id"vlist” then

1071 dy = dy + (b2u and curr.depth or -curr.height)/factor

1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor

1074 elseif curr.id == node.id"hlist” then

1075 dy = dy + (b2u and curr.depth or -curr.height)/factor

1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor

1078 end

1079 curr = node.getnext(curr)

1080 end

1081 return res

1082 end

1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l1 = box.dir == "TRT"

1085 local dx = r2l and (discwd or box.width/factor) or 9

1086 local dirs = { { dir = r2l, dx = dx } }

1087 while curr do

1088 if curr.id == node.id"dir"” then

1089 local sign, dir = curr.dir:match”(.)(...)"

1090 local level, newdir = curr.level, r2l

1091 if sign == "+" then

1092 newdir = dir == "TRT"

1093 if r21 ~= newdir then

1094 local n = node.getnext(curr)

1095 while n do

1096 if n.id == node.id"dir” and n.level+1 == level then break end
1097 n = node.getnext(n)

1098 end

1099 n = n or node.tail(curr)

1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end

1102 dirs[level] = { dir = r21, dx = dx }

1103 else

1104 local level = level + 1

1105 newdir = dirs[level].dir

1106 if r2l ~= newdir then

1107 dx = dirs[level].dx

1108 end

1109 end

1110 r2l = newdir

1111 elseif curr.char and curr.font and curr.font > @ then

1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char

1114 local scale = ft.size / factor / 1000

1115 local slant = (ft.slant or 0)/1000

1116 local extend = (ft.extend or 1000)/1000

1117 local squeeze = (ft.squeeze or 1000)/1000

48

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

local expand =1 + (curr.expansion_factor or 0)/1000000
local xscale, yscale = scale x extend * expand, scale * squeeze
dx = dx - (r2l and curr.width/factor*expand or 9)
local xoff, yoff = (curr.xoffset or @)/factor, (curr.yoffset or 0)/factor
local xpos, ypos = dx + xshift + xoff, yshift + yoff
local vertical = ""
if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
if ft.shared.features.vertical then -- luatexko
vertical = "rotated 90"
local data = ft.characters[curr.char] or { }
if ft.hb then
local hoff, voff = (data.luatexko_hoff or @)/factor, (data.luatexko_voff or @)/factor
local charraise = (ft.luatexko_charraise or 0)/factor
Xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise
else
local cmds = data.commands or { {0,0}, {0,0} }
local voff, hoff = -emds[1]1[2]/factor, cmds[2][2]/factor
Xpos, ypos = xpos + hoff, ypos + voff
end
elseif curr ~= box.head then -- luatexja
vertical = "rotated 90"
local en = ft.parameters.quad/factor/2
Xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
end
end
local image
if ft.format == "opentype” or ft.format == "truetype" then
image = luamplib.glyph(curr.font, gid)
else
local name, scale = ft.name, 1
local vf = font.read_vf(name, ft.size)
if vf and vf.characters[gid] then
local cmds = vf.characters[gid].commands or {}
for _,v in ipairs(cmds) do
if v[1] == "char" then
gid = v[2]
elseif v[1] == "font” and vf.fonts[v[2]] then
name = vf.fonts[v[2]].name
scale = vf.fonts[v[2]].size / ft.size
end
end
end
image = format("glyph %s of %q scaled %f", gid, name, scale)
end
res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
#res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
dx = dx + (r2l and @ or curr.width/factorxexpand)
elseif curr.replace then
local width = node.dimensions(curr.replace)/factor

49

1167 dx = dx - (r2l and width or 9)

1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and @ or width)

1170 elseif curr.id == node.id"rule"” then

1171 local wd, ht, dp = getrulemetric(box, curr, true)
1172 if wd ~= @ then

1173 local hd = ht + dp

1174 dx = dx - (r2l and wd or 9)

1175 if hd ~= @ and curr.subtype == @ then

1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end

1178 dx = dx + (r2l and @ or wd)

1179 end

1180 elseif curr.id == node.id"glue"” then

1181 local width = node.effective_glue(curr, box)/factor
1182 dx = dx - (r2l and width or 9)

1183 if curr.leader then

1184 local curr, kind = curr.leader, curr.subtype

1185 if curr.id == node.id"rule"” then

1186 local wd, ht, dp = getrulemetric(box, curr, true)
1187 local hd = ht + dp

1188 if hd ~= 0 then

1189 wd = width

1190 if wd ~= @ and curr.subtype == @ then

1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end

1193 end

1194 elseif curr.head then

1195 local wd = curr.width/factor

1196 if wd <= width then

1197 local dx = r2l1 and dx+width or dx

1198 local n, ix = 0, ©

1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)

1201 local ndx = math.ceil(adx / wd) * wd

1202 local diff = ndx - adx

1203 n = math.floor((width-diff) / wd)

1204 dx = dx + (r2l and -diff-wd or diff)

1205 else

1206 n = math.floor(width / wd)

1207 if kind == 101 then

1208 local side = width % wd /2

1209 dx = dx + (r2l and -side-wd or side)

1210 elseif kind == 102 then

1211 ix = width % wd / (n+1)

1212 dx = dx + (r2l and -ix-wd or ix)

1213 end

1214 end

1215 wd = r2l and -wd or wd

50

1216 ix = r2l and -ix or ix

1217 local func = curr.id == node.id"hlist” and outline_horz or outline_vert
1218 for i=1,n do

1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix

1221 end

1222 end

1223 end

1224 end

1225 dx = dx + (r2l and @ or width)

1226 elseif curr.id == node.id"kern” then

1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)

1228 elseif curr.id == node.id"math” then

1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)

1230 elseif curr.id == node.id"vlist” then

1231 dx = dx - (r2l and curr.width/factor or 0)

1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and @ or curr.width/factor)

1234 elseif curr.id == node.id”hlist” then

1235 dx = dx - (r2l and curr.width/factor or @)

1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and @ or curr.width/factor)

1238 end

1239 curr = node.getnext(curr)

1240 end

1241 return res

1242 end

1243 function luamplib.outlinetext (text)

1244 local fmt = process_tex_text(text)

1245 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")

1246 local box = texgetbox(id)

1247 local res = outline_horz({ }, box, box.head, 0, 0)

1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end

1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252
lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require'lua-uni-graphemes'’

1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)

1258 end

1259 return t

1260 end

1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step ={ }

51

1263 if grph then
1264 t = luamplib.getunicodegraphemes(s)

1265 else

1266 t={713}

1267 for _, c in utf8.codes(s) do
1268 table.insert(t, utf8.char(c))
1269 end

1270 end

1271 if b <= e then
1272 b, step = b+1, 1

1273 else
1274 e, step = e+1, -1
1275 end

1276 for i = b, e, step do
1277 table.insert(tt, t[i])

1278 end

1279 s = table.concat(tt):gsub('"’, '"&ditto&"")
1280 return string.format('"%s"', s)

1281 end

1282

METAPOST preambles

1283 luamplib.preambles = {

1284 preamble =[[

1285 boolean mplib ; mplib := true ;

1286 let dump = endinput ;

1287 let normalfontsize = fontsize;

1288 input %s ;

1289 17,

1290 mplibcode = [[

1291 texscriptmode := 2;

1292 def rawtextext primary t = runscript(”luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript(”luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript(”luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript(”luamplibverbtex{"&t&"3}") enddef’;
1296 if known context_mlib:

1297 defaultfont := "cmtt10”;

1298 let infont = normalinfont;

1299 let fontsize = normalfontsize;

1300 vardef thelabel@#(expr p,z) =

1301 if string p :

1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :

1304 p shifted (z + labeloffset*mfun_laboffe@# -

1305 (mfun_labxf@#*1rcorner p + mfun_labyf@#xulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*11lcorner p))

1307 fi

1308 enddef’;

1309 else:

52

1310 vardef textext@# primary t = rawtextext (t) enddef;

1311 def message expr t =

1312 if string t: runscript(”mp.report[=["&t&"]1=]") else: errmessage "Not a string” fi
1313 enddef;

1314 def withtransparency (expr a, t) =

1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t

1317 enddef;

1318 vardef ddecimal primary p =

1319 decimal xpart p & " " & decimal ypart p

1320 enddef;

1321 vardef boundingbox primary p =

1322 if (path p) or (picture p) :

1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p
1324 else :
1325 origin

1326 fi -- cycle

1327 enddef’;

1328 fi

1329 def resolvedcolor(expr s) =

1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef’;

1332 def colordecimals primary c =

1333 if cmykcolor c:

1334 decimal cyanpart ¢ & ":" & decimal magentapart c & ":" &

1335 decimal yellowpart c & ":" & decimal blackpart c

1336 elseif rgbcolor c:

1337 decimal redpart ¢ & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:

1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi

1340 else:

1341 decimal c

1342 fi

1343 enddef’;

1344 def externalfigure primary filename =

1345 draw rawtextext("\includegraphics{"& filename &"}")
1346 enddef’;

1347 def TEX = textext enddef;

1348 def mplibtexcolor primary c =

1349 runscript(”return luamplib.gettexcolor('"& c &"')")
1350 enddef;

1351 def mplibrgbtexcolor primary c =

1352 runscript(”return luamplib.gettexcolor('"& c &"','rgh’')")
1353 enddef’;

1354 def mplibgraphictext primary t =

1355 begingroup;

1356 mplibgraphictext_ (t)

1357 enddef’;

1358 def mplibgraphictext_ (expr t) text rest =

53

1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;

1361 picture graphictextpic; graphictextpic := nullpicture;

1362 numeric fb; string fc, dc; fb:=2; fc:="white"”; dc:="black";

1363 let scale = scaled;

1364 def fakebold primary c = hide(fb:=c;) enddef;

1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;

1366 def drawcolor primary ¢ = hide(dc:=colordecimals c;) enddef;

1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;

1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;

1371 let fillcolor = fakebold; let drawcolor = fakebold;

1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1373 image(draw runscript(”return luamplib.graphictext([===["8&t&"]===1,"

1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)

1375 endgroup;

1376 enddef';

1377 def mplibglyph expr c of f =

1378 runscript (

1379 "return luamplib.glyph('"

1380 & if numeric f: decimal fi f

1381 & "',

1382 & if numeric c: decimal fi c

1383 & "')"

1384)

1385 enddef’;
1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;
1387 def mplibdrawglyph expr g =

1388
1389
1390
1391
1392

luamplib_tmp_num_ := @;
for item within g:

fill pathpart item

if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
endfor

1393enddef;
1394 let mplibfillglyph = mplibdrawglyph;
1395 def mplibstrokeglyph expr g =

1396
1397
1398
1399
1400

luamplib_tmp_num_ := 0;
for item within g:

draw pathpart item

if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
endfor

1401 enddef’;
1402 def mplibfillandstrokeglyph expr g =

1403
1404
1405
1406
1407

luamplib_tmp_num_ := @;
for item within g:

draw pathpart item withpostscript

if incr luamplib_tmp_num_ < length g: "collect”; else: "both” fi
endfor

54

1408 enddef’;
1409 def withmplibcolors (expr f, s) =

1410
1411

1412

runscript(”return luamplib.fillandstrokecolor(’'" &
if not string f: colordecimals fi f & "','" &
if not string s: colordecimals fi s & "')")

1413 enddef’;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =

1415
1416
1417

def mplib_do_outline_options_f = f enddef;
def mplib_do_outline_options_d = d enddef;
def mplib_do_outline_options_r = r enddef;

1418 enddef’;

1419 def mplib_do_outline_text_set_f (text f) text r

1420

1421

def mplib_do_outline_options_f = f enddef;
def mplib_do_outline_options_r = r enddef;

1422 enddef’;

1423 def mplib_do_outline_text_set_u (text f) text r =

1424

def mplib_do_outline_options_f = f enddef;

1425 enddef’;

1426 def mplib_do_outline_text_set_d (text d) text r

1427
1428

def mplib_do_outline_options_d = d enddef;
def mplib_do_outline_options_r = r enddef;

1429 enddef’;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =

1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef’;

1435 def mplib_do_outline_text_set_n text r =

1436

def mplib_do_outline_options_r = r enddef;

1437enddef;
1438 def mplib_do_outline_text_set_p = enddef’
1439 def mplib_fill_outline_text =

1440
1441
1442
1443
1444
1445
1446
1447

for n=1 upto mpliboutlinenum:
i:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect”; fi
endfor
endfor

1448 enddef’;
1449 def mplib_draw_outline_text =

1450
1451
1452
1453
1454

for n=1 upto mpliboutlinenum:
for item within mpliboutlinepic[n]:
draw pathpart item mplib_do_outline_options_d;
endfor
endfor

1455 enddef’;
1456 def mplib_filldraw_outline_text =

55

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

for n=1 upto mpliboutlinenum:
i:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):
fill pathpart item mplib_do_outline_options_f withpostscript "collect”;
else:
draw pathpart item mplib_do_outline_options_f withpostscript "both";
fi
endfor
endfor

1468 enddef';
1469 vardef mpliboutlinetext@# (expr t) text rest =

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

1502

save kind; string kind; kind := str @#;
save i; numeric i;
picture mpliboutlinepic[]; numeric mpliboutlinenum;
def mplib_do_outline_options_d = enddef;
def mplib_do_outline_options_f = enddef;
def mplib_do_outline_options_r = enddef;
runscript(”return luamplib.outlinetext[===["&t&"]===1");
image (addto currentpicture also image (
if kind = "f":
mplib_do_outline_text_set_f rest;
mplib_fill_outline_text;
elseif kind = "d":
mplib_do_outline_text_set_d rest;
mplib_draw_outline_text;
elseif kind = "b":
mplib_do_outline_text_set_b rest;
mplib_fill_outline_text;
mplib_draw_outline_text;
elseif kind = "u":
mplib_do_outline_text_set_u rest;
mplib_filldraw_outline_text;
elseif kind = "r":
mplib_do_outline_text_set_r rest;
mplib_draw_outline_text;
mplib_fill_outline_text;
elseif kind = "p":
mplib_do_outline_text_set_p;
mplib_draw_outline_text;
else:
mplib_do_outline_text_set_n rest;
mplib_fill_outline_text;
fi;
) mplib_do_outline_options_r;)

1503 enddef ;
1504 def withmppattern primary p =

1505

withprescript "mplibpattern=" & if numeric p: decimal fi p

56

1506 enddef’;

1507 primarydef t withpattern p =

1508
1509
1510
1511
1512
1513
1514

image(
if cycle t:
fill
else:
draw
fi

t withprescript "mplibpattern=" & if numeric p: decimal

1515 enddef’;

1516 vardef mplibtransformmatrix (text e) =

1517 save t; transform t;
1518 t = identity e;

1519

1520 & decimal xxpart t &
1521 & decimal yxpart t &
1522 & decimal xypart t &
1523 & decimal yypart t &
1524 & decimal xpart t &
1525 & decimal ypart t &
1526 & "}");

1527 enddef’;

1528 primarydef p withfademethod s =
1529 if picture p:

1530 image(

1531 draw p;

1532

1533)

1534 else:

1535

1536 fi

1537

1538

1539

1540

1541

1542

runscript(”luamplib.transformmatrix = {"

draw center p withprescript "mplibfadestate=stop”;

p withprescript "mplibfadestate=stop”

withprescript "mplibfadetype=" & s

withprescript "mplibfadebbox=" &
decimal (xpart llcorner p -1/4) & ":
decimal (ypart llcorner p -1/4) & "
decimal (xpart urcorner p +1/4) & "
decimal (ypart urcorner p +1/4)

1543 enddef’;

1544 def withfadeopacity (expr a,b) =
withprescript "mplibfadeopacity=" &

1545
1546
1547

decimal a & ":" &
decimal b

1548 enddef’;

1549 def withfadevector (expr a,b) =
withprescript "mplibfadevector=" &
decimal xpart a & ":" &
decimal ypart a & ":" &
decimal xpart b & ":" &

1550
1551
1552
1553
1554

decimal ypart b

non
’
non
’
non
’
non
’
non
’
non
’

n &
&
&

57

fip;)

1555 enddef';

1556 let withfadecenter = withfadevector;
1557 def withfaderadius (expr a,b) =

1558 withprescript "mplibfaderadius=" &
1559 decimal a & ":" &

1560 decimal b

1561 enddef;

1562 def withfadebbox (expr a,b) =

1563 Withprescript "mplibfadebbox=" &

1564 decimal xpart a & ":" &
1565 decimal ypart a & ":" &
1566 decimal xpart b & ":" &

1567 decimal ypart b

1568 enddef’;

1569 primarydef p asgroup s =
1570 image(

1571 draw center p

1572 withprescript "mplibgroupbbox=" &

1573 decimal (xpart llcorner p -1/4) & ":" &
1574 decimal (ypart llcorner p -1/4) & ":" &
1575 decimal (xpart urcorner p +1/4) & ":" &
1576 decimal (ypart urcorner p +1/4)

1577 withprescript "gr_state=start”

1578 withprescript "gr_type=" & s;

1579 draw p;

1580 draw center p withprescript "gr_state=stop”;
1581)

1582 enddef’;
1583 def withgroupbbox (expr a,b) =
1584 withprescript "mplibgroupbbox=" &

1585 decimal xpart a & ":" &
1586 decimal ypart a & ":" &
1587 decimal xpart b & ":" &

1588 decimal ypart b

1589 enddef’;

1590 def withgroupname expr s =

1591 Withprescript "mplibgroupname=" & s

1592 enddef’;

1593 def usemplibgroup primary s =

1594 draw maketext(”\luamplibtagasgroupput{"& s &"3}{\csname luamplib.group.”& s &"\endcsname}")
1595 shifted runscript(”return luamplib.trgroupshifts['" & s & "']")
1596 enddef’;

1597 path mplib_shade_path ;

1598 numeric mplib_shade_step ; mplib_shade_step := 0 ;

1599 numeric mplib_shade_fx, mplib_shade_fy ;

1600 numeric mplib_shade_1x, mplib_shade_ly ;

1601 numeric mplib_shade_nx, mplib_shade_ny ;

1602 numeric mplib_shade_dx, mplib_shade_dy ;

1603 numeric mplib_shade_tx, mplib_shade_ty ;

58

1604 primarydef p withshadingmethod m =

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

p
if picture p :

withprescript "sh_operand_type=picture”

if textual p:

withprescript "sh_transform=no”
mplib_with_shade_method (boundingbox p, m)

else:

withprescript "sh_transform=yes”
mplib_with_shade_method (pathpart p, m)

fi
else :

withprescript "sh_transform=yes”
mplib_with_shade_method (p, m)

fi

1619 enddef’;
1620 def mplib_with_shade_method (expr p, m) =
hide(mplib_with_shade_method_analyze(p))

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript

"sh_domain=0 1"
"sh_color=into"
"sh_color_a=" & colordecimals white
"sh_color_b=" & colordecimals black
"sh_first=" & ddecimal point @ of p
"sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_1x)
"sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)

if m = "linear”
"sh_type=linear”

withprescript
withprescript
withprescript
withprescript
else :
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
fi

1642 enddef';
1643 def mplib_with_shade_method_analyze(expr p) =

1644
1645
1646
1647
1648
1649
1650
1651
1652

mplib_shade_path :
mplib_shade_step :

mplib_shade_fx
mplib_shade_fy
mplib_shade_1x
mplib_shade_ly
mplib_shade_nx
mplib_shade_ny
mplib_shade_dx

"sh_factor=1"
"sh_center_a="
"sh_center_b="

"sh_type=circul
"sh_factor=1.2"
"sh_center_a="
"sh_center_b="
"sh_radius_a="
"sh_radius_b="

p;
15
:= xpart point
:= ypart point

& ddecimal 1llcorner p
& ddecimal urcorner p

ar.u

& ddecimal center p

& ddecimal center p

& decimal @

& decimal mplib_max_radius(p)

0 of p ;
0 of p ;

:= mplib_shade_fx ;
:= mplib_shade_fy ;

=0 ;
=0 ;
:= abs(mplib_s

hade_fx - mplib_shade_1x) ;

59

1653 mplib_shade_dy := abs(mplib_shade_fy - mplib_shade_ly) ;
1654 for i=1 upto length(p) :

1655 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;
1656 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;
1657 if mplib_shade_tx > mplib_shade_dx :

1658 mplib_shade_nx := i + 1 ;

1659 mplib_shade_lx := xpart point i of p ;
1660 mplib_shade_dx := mplib_shade_tx ;
1661 fi;

1662 if mplib_shade_ty > mplib_shade_dy :
1663 mplib_shade_ny :=1i + 1 ;

1664 mplib_shade_ly := ypart point i of p ;
1665 mplib_shade_dy := mplib_shade_ty ;
1666 fi ;

1667 endfor ;
1668 enddef’;
1669 vardef mplib_max_radius(expr p) =

1670 max (

1671 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1672 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1673 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1674 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1675)

1676 enddef’;

1677 def withshadingstep (text t) =

1678 hide(mplib_shade_step := mplib_shade_step + 1 ;)

1679 withprescript "sh_step=" & decimal mplib_shade_step

1680 t

1681 enddef;

1682 def withshadingradius expr a =

1683 withprescript "sh_radius_a=" & decimal (xpart a)

1684 Wwithprescript "sh_radius_b=" & decimal (ypart a)

1685 enddef';

1686 def withshadingorigin expr a =

1687 withprescript "sh_center_a=" & ddecimal a

1688 withprescript "sh_center_b=" & ddecimal a

1689 enddef’;

1690 def withshadingvector expr a =

1691 withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
1692 withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)
1693 enddef’;

1694 def withshadingdirection expr a =

1695 Withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1696 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1697 enddef;

1698 def withshadingtransform expr a =

1699 Withprescript "sh_transform=" & a

1700 enddef’;

1701 def withshadingcenter expr a =

60

1702 Withprescript "sh_center_a=" & ddecimal (
1703 center mplib_shade_path shifted (

1704 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,
1705 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1706)

1707)

1708 enddef';

1709 def withshadingdomain expr d =

1710 withprescript "sh_domain=" & ddecimal d
1711 enddef’;

1712 def withshadingfactor expr f =
1713 withprescript "sh_factor=" & decimal f

1714 enddef;

1715 def withshadingfraction expr a =

1716 if mplib_shade_step > 0 :

1717 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1718 fi

1719 enddef’;

1720 def withshadingcolors (expr a, b) =

1721 if mplib_shade_step > 0 :

1722 withprescript "sh_color=into”

1723 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1724 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1725 else :

1726 withprescript "sh_color=into”

1727 withprescript "sh_color_a=" & colordecimals a

1728 withprescript "sh_color_b=" & colordecimals b

1729 fi

1730 enddef;

1731 def mpliblength primary t =

1732 runscript(”"return utf8.len[===[" & t & "]===1")

1733 enddef’;

1734 def mplibsubstring expr p of t =

1735 runscript(”return luamplib.unicodesubstring([===[" & t & "1===1,"

1736 & decimal xpart p & ","

1737 & decimal ypart p & ")")

1738 enddef’;

1739 def mplibuclength primary t =

1740 runscript(”return #luamplib.getunicodegraphemes[===[" & t & "]===]")

1741 enddef;

1742 def mplibucsubstring expr p of t =

1743 runscript(”return luamplib.unicodesubstring([===[" & t & "]===],"

1744 & decimal xpart p & ",”

1745 & decimal ypart p & ",true)"”)

1746 enddef';

174717,

1748 legacyverbatimtex = [[

1749 def specialVerbatimTeX (text t) = runscript(”luamplibprefig{"&t&"}") enddef;
1750 def normalVerbatimTeX (text t) = runscript(”luamplibinfig{"&t&"}") enddef;

61

1751 let

VerbatimTeX =

1752 extra_beginfig :=

1757 "luamplib.in_the_fig=false" &ditto& ");";

1758 11,

special

VerbatimTeX;

extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&
1753 "runscript(” &ditto& "luamplib.in_the_fig=true" &ditto& ");";
1754 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1755 "runscript(” &ditto&
1756 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&

1759 textextlabel = [[
1760 let luampliboriginalinfont = infont;
1761 primarydef s infont f =

1762 if

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775 el
1776
1777 fi

(s < char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char
or (s = char

32)

35) % #
36) % $
37) % %
38) % &
92) %\
94) %
95) % _
123) % {
125) % }
126) % ~
127) :

”n,

s luampliboriginalinfont f

se :
rawtextext(s)

1778 enddef';
1779 def fontsize expr f =
1780 begingroup
1781 save size; numeric size;

ze := mplibdimen("1em");

1783 if size = 0: 10pt else: size fi
1784 endgroup
1785 enddef’;

1782 si

1786 11,
1787 3
1788

process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.

1789 luamplib.verbatiminput =
1790 luamplib.everymplib =
1791 luamplib.everyendmplib =
1792 function luamplib.process_mplibcode (data, instancename)
1793 texboxes.localid = 4096

false
setmetatable({ [""1 = "" },{ __index
setmetatable({ [""]1 = "" },{ __index

This is needed for legacy behavior

1794 if luamplib.legacyverbatimtex then
luamplib.figid, tex_code_pre_mplib =1, {}

1795

62

function(t) return t[""] end })
function(t) return t[""] end })

1796 end

1797 local everymplib luamplib.everymplib[instancename]

1798 local everyendmplib = luamplib.everyendmplib[instancename]

1799 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1800 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.

1801 if luamplib.verbatiminput then

1802 data = data:gsub("\\mpcolor%s+(.-%b{3})", "mplibcolor(\"%1\")")
1803 cgsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")

1804 cgsub("\\mpdim%s+(\\%a+)", "mplibdimen(\"%1\")")

1805 :gsub(btex_etex, "btex %1 etex ")
1806 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1807 else

If not mplibverbatim, expand mplibcode data, so that users can use TgX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.

1808 local t = { } -- to store btex, verbatimtex, string

1809 data = data:gsub(btex_etex, function(str)

1810 t[#t+1] = str

1811 return format("btex \\unexpanded{!1l!ula!%s!m!p!1!} etex ", #t) -- space
1812 end)

1813 :gsub(verbatimtex_etex, function(str)

1814 t[#t+1] = str

1815 return format("verbatimtex \\unexpanded{!1!u!a!%s!m!p!1!} etex;"”, #t) -- semicolon
1816 end)

1817 :gsub('"(.-)"", function(str)

1818 t[#t+1] = str

1819 return format('"\\unexpanded{!1!ula!%s!m!p!1!}"" #t)

1820 end)

1821 :gsub("\\%%", "\@PerCent\0")

1822 :gsub("%%.-\n","\n")

1823 :gsub("%zPerCent%z", "\\%%")

1824 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1825 data = texgettoks"mplibtmptoks”

Next line to address issue #55
1826 :gsub("#E", "#")

1827 cgsub("!1tulal (5d+)!m!p!1!"”, function(str) return t[tonumber(str)] or str end)
1828 end

1829 process(data, instancename)

1830 end

1831

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.

1832 local figcontents = { post = { } }
1833 local function put2output(a,...)
1834 figcontents[#figcontents+1] = type(a) == "string” and format(a,...) or a

63

1835 end

1836 local function pdf_startfigure(n,llx,lly,urx,ury)

1837 put2output("\\mplibstarttoPDF{%f H{%fH{ % H{%f}",11x,11y,urx,ury)
1838 end

1839 local function pdf_stopfigure()

1840 put2output(”\\mplibstoptoPDF")

1841 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.

1842 local function pdf_literalcode (...)

1843 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1844 end

1845 local start_pdf_code = pdfmode

1846 and function() pdf_literalcode”"q"” end

1847 or function() put2output”\\special{pdf:bcontent}" end
1848 local stop_pdf_code = pdfmode

1849 and function() pdf_literalcode”Q" end

1850 or function() put2output”\\special{pdf:econtent}" end
1851

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.

1852 local function put_tex_boxes (object,prescript)
1853 local box = prescript.mplibtexboxid:explode”:"

1854 local n,tw,th = box[1], tonumber(box[2]1), tonumber(box[31)
1855 if n and tw and th then

1856 local op = object.path

1857 local first, second, fourth = op[1], op[2], op[4]

1858 local tx, ty = first.x_coord, first.y_coord

1859 local sx, rx, ry, sy =1, 0, 0, 1

1860 if tw ~= @ then

1861 sx = (second.x_coord - tx)/tw
1862 rx = (second.y_coord - ty)/tw
1863 if sx == 0 then sx = 0.00001 end
1864 end

1865 if th ~= @ then

1866 sy = (fourth.y_coord - ty)/th
1867 ry = (fourth.x_coord - tx)/th
1868 if sy == @ then sy = 0.00001 end
1869 end

1870 start_pdf_code()

1871 pdf_literalcode("%f %f %f %f %f %f cm”, sx,rx,ry,sy,tx,ty)
1872 put2output("\\mplibputtextbox{%i}",n)

1873 stop_pdf_code()

1874 end

1875 end

1876

Colors

1877 local do_preobj_CR
1878 do

64

1879 local prev_override_color
1880 function do_preobj_CR(object,prescript)

1881 if object.postscript == "collect” then return end
1882 local override = prescript and prescript.mpliboverridecolor
1883 if override then

1884 if pdfmode then

1885 pdf_literalcode(override)

1886 override = nil

1887 else

1888 put2output(”\\special{%s}",override)

1889 prev_override_color = override

1890 end

1891 else

1892 local cs = object.color

1893 if cs and #cs > @ then

1894 pdf_literalcode(luamplib.colorconverter(cs))
1895 prev_override_color = nil

1896 elseif not pdfmode then

1897 override = prev_override_color

1898 if override then

1899 put2output(”\\special{%s}",override)

1900 end

1901 end

1902 end

1903 return override

1904 end

1905 end

1906

For transparency, shading, fading, and pattern

1907 local pdfmanagement = is_defined’'pdfmanagement_add:nnn’

1908 local pdfobjs, pdfetcs = {3}, {3}

1909 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain”

1910 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain”

1911 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspacese@plain’
1912 local function update_pdfobjs (os, stream)

1913 local key = os

1914 if stream then key = key..stream end

1915 local on = key and pdfobjs[key]

1916 if on then

I

1917 return on,false

1918 end

1919 if pdfmode then

1920 if stream then

1921 on = pdf.immediateobj("stream”,stream,os)
1922 elseif os then

1923 on = pdf.immediateobj(os)

1924 else

1925 on = pdf.reserveobj()

65

1926 end

1927 else

1928 on = pdfetcs.cnt or 1

1929 if stream then

1930 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1931 elseif os then

1932 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,0s))
1933 else

1934 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1935 end

1936 pdfetcs.cnt = on + 1

1937 end

1938 if key then

1939 pdfobjs[key] = on

1940 end

1941 return on,true

1942 end

1943 pdfetcs.resfmt = pdfmode and "%s @ R" or "@mplibpdfobj%s”
1944 if pdfmode then

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
local getpageres = pdfetcs.getpageres
local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
local initialize_resources = function (name)
local tabname = format("%s_res",name)
pdfetcs[tabname] = { }
if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
local obj = pdf.reserveobj()
setpageres(format("%s/%s %i @ R", getpageres() or "", name, obj))
luatexbase.add_to_callback("finish_pdffile”, function()
pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabnamel)))
end,
format("luamplib.%s.finish_pdffile" name))
end
end
pdfetcs. fallback_update_resources = function (name, res)
local tabname = format("%s_res"”,name)
if not pdfetcs[tabname] then
initialize_resources(name)
end
if luatexbase.callbacktypes.finish_pdffile then
local t = pdfetcs[tabname]
t[#t+1] = res
else
local tpr, n = getpageres() or "", 0
tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)

nn

if n == @ then

tpr = format("%s/%s<<%s>>", tpr, name, res)
end
setpageres(tpr)

66

1975 end

1976 end

1977 else

1978 texsprint {

1979 "\\luamplibatfirstshipout{",

1980 "\\special{pdf:obj @MPlibTr<<>>}",

1981 "\\special{pdf:obj @MPlibSh<<>>}",

1982 "\\special{pdf:obj @MP1libCS<<>>}",

1983 "\\special{pdf:obj @MPlibPt<<>>}}",

1984 }

1985 pdfetcs.resadded = { }

1986 pdfetcs.fallback_update_resources = function (name,res,obj)
1987 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
1988 if not pdfetcs.resadded[name] then

1989 texsprint{"”\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
1990 pdfetcs.resadded[name] = obj
1991 end
1992 end
1993 end
1994
Transparency

1995 local function add_extgs_resources (on, new)
1996 local key = format("MPlibTr%s"”, on)

1997 if new then

1998 local val = format(pdfetcs.resfmt, on)
1999 if pdfmanagement then

2000 texsprint {

2001 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "H", val, "}"
2002 }

2003 else

2004 local tr = format("/%s %s", key, val)

2005 if is_defined(pdfetcs.pgfextgs) then

2006 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2007 elseif is_defined"TRP@list” then

2008 texsprint(catat11,{

2009 [[\ifefilesw\immediate\write\@auxout{1],

2010 [[\string\g@addto@macro\string\TRP@list{1],

2011 tr,

2012 COINfi1d,

2013)

2014 if not get_macro”TRP@list”:find(tr) then

2015 texsprint(catat11, [[\global\TRP@reruntruel])

2016 end

2017 else

2018 pdfetcs. fallback_update_resources("ExtGState”,tr,"@MP1libTr")
2019 end

2020 end

2021 end

67

2022 return key

2023 end

2024

2025 local do_preobj_TR

2026 do

2027 local transparancy_modes = {
2028 [@] = "Normal”,

2029 "Normal”, "Multiply”, "Screen”, "Overlay”,

2030 "SoftLight”, "HardLight", "ColorDodge”, "ColorBurn”,

2031 "Darken”, "Lighten”, "Difference”, "Exclusion”,

2032 "Hue", "Saturation”, "Color”, "Luminosity”,

2033 "Compatible”,

2034 normal = "Normal”, multiply = "Multiply”, screen = "Screen”,
2035 overlay = "Overlay”, softlight = "SoftlLight”, hardlight = "HardLight",
2036 colordodge = "ColorDodge", colorburn = "ColorBurn”, darken = "Darken",
2037 lighten = "Lighten", difference = "Difference”, exclusion = "Exclusion”,
2038 hue = "Hue", saturation = "Saturation”, color = "Color”,
2039 luminosity = "Luminosity"”, compatible = "Compatible”,

2040 }

2041 function do_preobj_TR(object,prescript)

2042 if object.postscript == "collect” then return end

2043 local opaq = prescript and prescript.tr_transparency

2044 if opag then

2045 local key, on, 0s, new

2046 local mode = prescript.tr_alternative or 1

2047 mode = transparancy_modes[tonumber(mode) or mode:lower()]

2048 if not mode then

2049 mode = prescript.tr_alternative

2050 warn("unsupported blend mode: '%s'", mode)

2051 end

2052 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)

2053 for i,v in ipairs{ {mode,opaq},{"Normal”,1} } do

2054 os = format("<</BM/%s/ca %s/CA %s/AIS false>>" v[1],v[2],v[2])

2055 on, new = update_pdfobjs(os)

2056 key = add_extgs_resources(on,new)

2057 if i == 1 then

2058 pdf_literalcode("/%s gs", key)

2059 else

2060 return format("/%s gs",key)

2061 end

2062 end

2063 end

2064 end

2065 end

2066

Shading with metafun format.

2067 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates, steps, fractions)
2068 for _,v in ipairs{ca,cb} do

68

2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

2117

for i,vv in ipairs(v) do
for ii,vvv in ipairs(vv) do
v[i][ii] = tonumber(vvv) and format("%.3f",vwv) or vvv
end
end
end
local fun2fmt,os = "<</FunctionType 2/Domain[%s]/CO[%s]1/C1[%s]/N 1>>"
if steps > 1 then
local list,bounds,encode = { },{ },{ }
for i=1,steps do
if i < steps then
bounds[i] = format("%.3f", fractions[i] or 1)

end
encode[2*i-1] = @
encode[2*i] =1

os = fun2fmt: format(domain, tableconcat(calil,' '),tableconcat(cb[i],’ "))
:gsub(decimals, rmzeros)
list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
end
0s = tableconcat {
"<</FunctionType 3",

format("/Bounds[%s]1", tableconcat(bounds,’ ')),
format("/Encode[%s]", tableconcat(encode, ' ")),
format("/Functions[%s]", tableconcat(list, ' ')),

format("/Domain[%s]>>", domain),
} :gsub(decimals,rmzeros)
else
os = fun2fmt:format(domain,tableconcat(cal1],' '),tableconcat(cb[1]1,' "))
:gsub(decimals, rmzeros)
end
local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
os = tableconcat {
format("<</ShadingType %i", shtype),
format("/ColorSpace %s", colorspace),
format("/Function %s", objref),
format("/Coords[%s]", coordinates),
"/Extend[true truel/AntiAlias true>>",
} :gsub(decimals,rmzeros)
local on, new = update_pdfobjs(os)
if new then
local key, val = format("MP1libSh%s”, on), format(pdfetcs.resfmt, on)
if pdfmanagement then
texsprint {

"\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}{", val,

3

else

local res = format("/%s %s", key, val)

pdfetcs. fallback_update_resources(”Shading”,res,"@PlibSh")
end

69

u}u

2118 end

2119 return on

2120 end

2121

2122 local do_preobj_SH

2123 do

2124 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2125 run_tex_code({

2126 [[\color_model_new:nnn]],

2127 format("{mplibcolorspace_%s}", names:gsub(",","_")),
2128 format("{DeviceN}{names={%s}}", names),

2129 [[\edef\mplib_@tempa{\pdf_object_ref_last:}1],

2130 }, ccexplat)

2131 local colorspace = get_macro'mplib_@tempa’

2132 t[names] = colorspace

2133 return colorspace

2134 end })

2135 local function color_normalize(ca,cb)
2136 if #cb == 1 then

2137 if #ca == 4 then

2138 cb[1]1, cb[2], cb[3]1, cb[4] =0, 0, 0, 1-cb[1]
2139 else -- #ca =3

2140 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2141 end

2142 elseif #cb == 3 then -- #ca ==

2143 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], @
2144 end

2145 end

2146 function do_preobj_SH(object,prescript)

2147 local shade_no

2148 local sh_type = prescript and prescript.sh_type
2149 if not sh_type then

2150 return

2151 else

2152 local domain = prescript.sh_domain or "0 1"

2153 local centera = (prescript.sh_center_a or "0 0"):explode()
2154 local centerb = (prescript.sh_center_b or "0 0"):explode()
2155 local transform = prescript.sh_transform == "yes"

2156 local sx,sy,sr,dx,dy = 1,1,1,0,0

2157 if transform then

2158 local first = (prescript.sh_first or "0 0"):explode()
2159 local setx = (prescript.sh_set_x or "0 0"):explode()
2160 local sety = (prescript.sh_set_y or "0 0"):explode()
2161 local x,y = tonumber(setx[1]) or @, tonumber(sety[1]) or @
2162 if x ~=0 and y ~= 0 then

2163 local path = object.path

2164 local pathix = path[1].x_coord

2165 local pathly = path[1].y_coord

2166 local path2x = path[x].x_coord

70

2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

2215

local path2y = path[y].y_coord
local dxa = path2x - pathix
local dya = path2y - pathly
local dxb = setx[2] - first[1]
local dyb = sety[2] - first[2]
if dxa ~= @ and dya ~= @ and dxb ~= @ and dyb ~= @ then
sx = dxa / dxb ; if sx < @ then sx = - sx end
sy = dya / dyb ; if sy < @ then sy = - sy end
sr = math.sqrt(sx*2 + sy*2)
dx = pathlx - sxxfirst[1]
dy = pathly - sy*first[2]
end
end
end
local ca, cb, colorspace, steps, fractions
ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode”:" }
cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode”:" }
steps = tonumber(prescript.sh_step) or 1
if steps > 1 then
fractions = { prescript.sh_fraction_1 or 0 }
for i=2,steps do
fractions[i] = prescript[format("sh_fraction_%i",i)] or (i/steps)
cali] = (prescript[format("”sh_color_a_%i",i)] or "0"):explode"”:"
cb[i] = (prescript[format("sh_color_b_%i",i)] or "1"):explode"”:"
end
end
if prescript.mplib_spotcolor then
ca, cbo={3 {3
local names, pos, objref = { }, -1,
local script = object.prescript:explode”\13+"
for i=#script,1,-1 do
if script[i]:find"mplib_spotcolor” then
local t, name, value = script[i]:explode”="[2]:explode":"
value, objref, name = t[1], t[2], t[3]
if not names[name] then
pos = pos+1
names[name] = pos
names[#names+1] = name
end
t={3
for j=1,names[name] do t[#t+1] = @ end
t[#t+1] = value
tableinsert(#ca == #cb and ca or cb, t)
end
end
for _,t in ipairs{ca,cb} do
for _,tt in ipairs(t) do
for i=1,#names-#tt do tt[#tt+1] = @ end
end

nn

71

2216 end

2217 if #names == 1 then

2218 colorspace = objref

2219 else

2220 colorspace = pdfetcs.clrspcs[tableconcat(names,"”,”)]
2221 end

2222 else

2223 local model = @

2224 for _,t in ipairs{ca,cb} do

2225 for _,tt in ipairs(t) do

2226 model = model > #tt and model or #tt

2227 end

2228 end

2229 for _,t in ipairs{ca,cb} do

2230 for _,tt in ipairs(t) do

2231 if #tt < model then

2232 color_normalize(model == 4 and {1,1,1,1} or {1,1,13},tt)
2233 end

2234 end

2235 end

2236 colorspace = model == 4 and "/DeviceCMYK"

2237 or model == 3 and "/DeviceRGB"

2238 or model == 1 and "/DeviceGray”

2239 or err"unknown color model”

2240 end

2241 if sh_type == "linear"” then

2242 local coordinates = format("%f %f %f %f",

2243 dx + sx*centera[1], dy + syxcentera[2],

2244 dx + sx*centerb[1], dy + syxcenterb[2])

2245 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates, steps, fractions)
2246 elseif sh_type == "circular” then

2247 local factor = prescript.sh_factor or 1

2248 local radiusa = factor * prescript.sh_radius_a

2249 local radiusb = factor * prescript.sh_radius_b

2250 local coordinates = format("%f %f %f %f %f %f",

2251 dx + sx*centera[1], dy + syxcentera[2], srxradiusa,
2252 dx + sx*centerb[1], dy + syxcenterb[2], srxradiusb)
2253 shade_no = sh_pdfpageresources(3,domain, colorspace,ca,cb,coordinates, steps, fractions)
2254 else

2255 err”unknown shading type"

2256 end

2257 end

2258 return shade_no

2259 end

2260 end

2261

Shading Patterns: we can apply shading to textual pictures as well as paths.

2262 if not pdfmode then

72

2263 pdfetcs.patternresources = {}

2264 end

2265 1local function add_pattern_resources (key, val)
2266 if pdfmanagement then

2267 texsprint {

2268 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}", val, "}"
2269 }

2270 else

2271 local res = format("/%s %s", key, val)

2272 if is_defined(pdfetcs.pgfpattern) then

2273 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2274 else

2275 pdfetcs. fallback_update_resources("Pattern”,res,"@PlibPt")

2276 if not pdfmode then

2277 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2278 end

2279 end

2280 end

2281 end

2282 function luamplib.dolatelua (on, os)

2283 local h, v = pdf.getpos()

2284 h = format("%f", h/factor) :gsub(decimals,rmzeros)

2285 v = format("%f", v/factor) :gsub(decimals,rmzeros)

2286 if pdfmode then

2287 pdf.obj(on, format("<<%s/Matrix[1 @ @ 1 %s %s]>>", os, h, v))

2288 pdf.refobj(on)

2289 else

2290 local shift = os:explode()

2291 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then

2292 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shadingll, h, v)
2293 end

2294 end

2295 end

2296 local function do_preobj_shading (object, prescript)

2297 if not prescript or not prescript.sh_operand_type then return end

2298 local on = do_preobj_SH(object, prescript)

2299 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))

2300 on = update_pdfobjs()

2301 if pdfmode then

2302 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,”,[[",0s,"]11) }" })
2303 else

Why @xpos @ypos do not work properly???
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth, \the\paperheight}

2304 if is_defined"RecordProperties” then

73

2305 put2output(tableconcat{

2306 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z
2307 \\special{pdf:put @mplibpdfobj”,on,” <<",6os,"/Matrix[1 @ @ 1 \z

2308 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2309 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2310 >3

2311 b

2312 else

2313 local shift = prescript.sh_matrixshift or "0 0"

2314 texsprint{ "\\special{pdf:put @mplibpdfobj",on,” <<", os,”/Matrix[1 @ @ 1 ", shift,"]>>}" }
2315 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,”,[[",shift,”]11) }" })

2316 end

2317 end

2318 local key, val = format("MPlibPt%s"”, on), format(pdfetcs.resfmt, on)
2319 add_pattern_resources(key,val)
2320 pdf_literalcode(”/Pattern cs/%s scn”, key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2321 prescript.sh_type = nil
2322 end
2323
Tiling Patterns

2324 pdfetcs.patterns = { }

2325 1local function gather_resources (optres)

2326 local t, do_pattern = { }, not optres

2327 local names = {"ExtGState”,"ColorSpace”,"Shading"}
2328 if do_pattern then

2329 names[#names+1] = "Pattern”

2330 end

2331 if pdfmode then

2332 if pdfmanagement then

2333 for _,v in ipairs(names) do

2334 if 1tx.__pdf.Page.Resources[v] then

2335 t[#t+1] = format("/%s %s @ R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2336 end

2337 end

2338 else

2339 local res = pdfetcs.getpageres() or ""

2340 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2341 res = res .. texgettoks'mplibtmptoks'

2342 if do_pattern then return res end

2343 res = res:explode”/+"

2344 for _,v in ipairs(res) do

2345 v = v:match"*%sx(.-)%sx$"

2346 if not v:find"Pattern” and not optres:find(v) then

2347 tl#t+1] = "/" .. v

2348 end

2349 end

2350 end

74

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

else
if pdfmanagement then
for _,v in ipairs(names) do
run_tex_code ({
"\\mplibtmptoks\\expanded{{",

"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v,
"{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",

},ccexplat)
t[#t+1] = texgettoks'mplibtmptoks’
end
elseif is_defined(pdfetcs.pgfextgs) then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",

"\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
"\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or

"3
3}, catatl1)
t[#t+1] = texgettoks'mplibtmptoks’
if pdfetcs.resadded. Shading then

t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)

end
else
for _,v in ipairs(names) do
local vv = pdfetcs.resadded[v]
if vv then
tl#t+1] = format("/%s %s", v, vv)
end
end
end
end
if do_pattern then return tableconcat(t) end
-- get pattern resources
local mytoks
if pdfmanagement then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",

"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}”,
"{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "}}",

},ccexplat)
mytoks = texgettoks”mplibtmptoks”
if not pdfmode then

nyn

’

nn

mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?

end
elseif is_defined(pdfetcs.pgfextgs) then
if pdfmode then

mytoks = get_macro”pgf@sys@pgf@resource@list@patterns”

else
local tt, abc = {3}, get_macro”pgfutil@abc” or

75

nn

2400 for v in abc:gmatch"@pgfpatterns¥sx<<(.-)>>" do

2401 tt[#tt+1] = v

2402 end

2403 mytoks = tableconcat(tt)

2404 end

2405 else

2406 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2407 mytoks = tt and tableconcat(tt)

2408 end

2409 if mytoks and mytoks ~= "" then

2410 tl#t+1] = format("/Pattern<<%s>>" mytoks)
2411 end

2412 return tableconcat(t)

2413 end

2414 function luamplib.registerpattern (boxid, name, opts)

2415 local box = texgetbox(boxid)

2416 local wd = format("%.3f",box.width/factor)

2417 local hd = format("%.3f", (box.height+box.depth)/factor)

2418 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2419 if opts.xstep == @ then opts.xstep = nil end

2420 1if opts.ystep == @ then opts.ystep = nil end

2421 if opts.colored == nil then

2422 opts.colored = opts.coloured

2423 if opts.colored == nil then

2424 opts.colored = true

2425 end

2426 end

2427 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix,” ") end

2428 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox,” ") end
2429 1if opts.matrix and opts.matrix:find"%a" then

2430 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2431 process(data, "@mplibtransformmatrix")
2432 local t = luamplib.transformmatrix

2433 opts.matrix = format("%f %f %f %f", t[11, t[2], t[3], t[4])
2434 opts.xshift = opts.xshift or format("%f",t[5])
2435 opts.yshift = opts.yshift or format("%f",t[6]1)

2436 end

2437 local attr = {

2438 "/Type/Pattern”,

2439 "/PatternType 1",

2440 format("/PaintType %i"”, opts.colored and 1 or 2),
2441 "/TilingType 2",

2442 format("/XStep %s", opts.xstep or wd),

2443 format("/YStep %s", opts.ystep or hd),

2444 format("/Matrix[%s %s %s1", opts.matrix or "1 @ @ 1", opts.xshift or @, opts.yshift or 0),
2445 }

2446 local optres = opts.resources or
2447 optres = optres .. gather_resources(optres)
2448 local patterns = pdfetcs.patterns

nn

76

2449 1if pdfmode then
2450 if opts.bbox then

2451 attr[#attr+1] = format("/BBox[%s]", opts.bbox)

2452 end

2453 attr = tableconcat(attr) :gsub(decimals,rmzeros)

2454 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2455 patterns[name] = { id = index, colored = opts.colored }

2456 else

2457 local cnt = #patterns + 1

2458 local objname = "@mplibpattern” .. cnt

2459 local metric = format("bbox %s", opts.bbox or format(”@ @ %s %s",wd,hd))
2460 texsprint {

2461 "\\expandafter\\newbox\\csname luamplib.patternbox."”, cnt, "\\endcsname”,
2462 "\\global\\setbox\\csname luamplib.patternbox.”, cnt, "\\endcsname",
2463 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",

2464 "\\special{pdf:bcontent}"”,

2465 "\\special{pdf:bxobj ", objname, " ", metric, "}",

2466 "\\raise\\dp\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2467 "\\box\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2468 "\\special{pdf:put @resources <<", optres, ">>}",

2469 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2470 "\\special{pdf:econtent}}",

2471 3

2472 patterns[cnt] = objname

2473 patterns[name] = { id = cnt, colored = opts.colored }

2474 end

2475 end

2476

2477 local do_preobj_PAT

2478 do

2479 local function pattern_colorspace (cs)
2480 local on, new = update_pdfobjs(format("”[/Pattern %s]"”, cs))

2481 if new then

2482 local key, val = format("MP1ibCS%i",on), format(pdfetcs.resfmt,on)

2483 if pdfmanagement then

2484 texsprint {

2485 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}{", val, "}"
2486 }

2487 else

2488 local res = format("/%s %s", key, val)

2489 if is_defined(pdfetcs.pgfcolorspace) then

2490 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2491 else

2492 pdfetcs. fallback_update_resources("ColorSpace”,res, "@MP1ibCS")

2493 end

2494 end

2495 end

2496 return on

2497 end

77

2498 function do_preobj_PAT(object, prescript)

2499 local name = prescript and prescript.mplibpattern
2500 if not name then return end
2501 local patterns = pdfetcs.patterns
2502 local patt = patterns[name]
2503 local index = patt and patt.id or err(”cannot get pattern object '%s'"”, name)
2504 local key = format("MPlibPt%s",index)
2505 if patt.colored then
2506 pdf_literalcode("/Pattern cs /%s scn”, key)
2507 else
2508 local color = prescript.mpliboverridecolor
2509 if not color then
2510 local t = object.color
2511 color = t and #t>0 and luamplib.colorconverter(t)
2512 end
2513 if not color then return end
2514 local cs
2515 if color:find” cs " or color:find"@pdf.obj" then
2516 local t = color:explode()
2517 if pdfmode then
2518 cs = format("%s @ R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2519 color = t[3]
2520 else
2521 cs = t[2]
2522 color = t[3]:match"%[(.+)%]"
2523 end
2524 else
2525 local t = colorsplit(color)
2526 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2527 color = tableconcat(t,” ")
2528 end
2529 pdf_literalcode("”/MP1ibCS%i cs %s /%s scn”, pattern_colorspace(cs), color, key)
2530 end
2531 if not patt.done then
2532 local val = pdfmode and format("%s @ R",index) or patterns[index]
2533 add_pattern_resources(key,val)
2534 end
2535 patt.done = true
2536 end
2537 end
2538
Fading

2539 pdfetcs. fading = { }

2540 local function do_preobj_FADE (object, prescript)

2541 local fd_type = prescript and prescript.mplibfadetype
2542 local fd_stop = prescript and prescript.mplibfadestate
2543 if not fd_type then

2544 return fd_stop -- returns "stop” (if picture) or nil

78

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593

end
local bbox = prescript.mplibfadebbox:explode”:"
local dx, dy = -bbox[1], -bbox[2]
local vec = prescript.mplibfadevector; vec = vec and vec:explode”:"
if not vec then
if fd_type == "linear” then
vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right
else
local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4]1)/2
vec = {centerx, centery, centerx, centery} -- center for both circles
end
end
local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
if fd_type == "linear"” then
coords = format("%f %f %f %f", tableunpack(coords))
elseif fd_type == "circular” then
local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]
local radius = (prescript.mplibfaderadius or "0:"..math.sqrt(width*2+height*2)/2):explode”:"”
tableinsert(coords, 3, radius[1])
tableinsert(coords, radius[2])
coords = format("%f %f %f %f %f %f", tableunpack(coords))
else
err("unknown fading method '%s'", fd_type)
end
fd_type = fd_type == "linear” and 2 or 3
local opaq = (prescript.mplibfadeopacity or "1:0"):explode”:"
local on, os, new
on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray”, {{opaq[1]1}}, {{opaq[2]1}}, coords, 1)
os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
on = update_pdfobjs(os)
bbox = format("@ @ %f %f", bbox[3]+dx, bbox[4]+dy)
local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
:gsub(decimals, rmzeros)
os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
on = update_pdfobjs(os)
local resources = format(pdfetcs.resfmt, on)
on = update_pdfobjs”<</S/Transparency/CS/DeviceGray>>"
local attr = tableconcat{
"/Subtype/Form”,
"/BBox[", bbox, "1",
"/Matrix[1 @ @ 1 ", format("%f %f", -dx,-dy), "1",
"/Resources ", resources,
"/Group ", format(pdfetcs.resfmt, on),
} :gsub(decimals,rmzeros)
on = update_pdfobjs(attr, streamtext)
0s = "<</SMask<</S/Luminosity/G " .. format(pdfetcs.resfmt, on) .. ">>>>"
on, new = update_pdfobjs(os)
local key = add_extgs_resources(on,new)
start_pdf_code()

79

2594 pdf_literalcode("/%s gs", key)

2595 if fd_stop then return "standalone” end
2596 return "start”

2597 end

2598

Transparency Group

2599 pdfetcs.tr_group = { shifts = { } }

2600 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2601 local function do_preobj_GRP (object, prescript)
2602 local grstate = prescript and prescript.gr_state
2603 if not grstate then return end

2604 local trgroup = pdfetcs.tr_group

2605 if grstate == "start” then

2606 trgroup.name = prescript.mplibgroupname or "lastmplibgroup”
2607 trgroup.isolated, trgroup.knockout = false, false

2608 for _,v in ipairs(prescript.gr_type:explode”,+") do

2609 trgroup[v] = true

2610 end

n,.n

2611 trgroup.bbox = prescript.mplibgroupbbox:explode”:
2612 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2613 elseif grstate == "stop” then

2614 local 11x,1ly,urx,ury = tableunpack(trgroup.bbox)

2615 put2output(tableconcat{

2616 "\\egroup",

2617 format("\\wd\\mplibscratchbox %fbp"”, urx-11x),

2618 format("\\ht\\mplibscratchbox %fbp"”, ury-1ly),

2619 "\\dp\\mplibscratchbox opt”,

2620 1D)

2621 local grattr = format("/Group<</S/Transparency/I %s/K %s>>" trgroup.isolated,trgroup.knockout)
2622 local res = gather_resources()

2623 local bbox = format("%f %f %f %f", 11x,lly,urx,ury) :gsub(decimals,rmzeros)
2624 if pdfmode then

2625 put2output(tableconcat{

2626 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",

2627 "/BBox[", bbox, "1", grattr, "} resources{"”, res, "}\\mplibscratchbox”,

2628 "\\luamplibtagasgroupput{",trgroup.name,”}{",

2629 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}1],
2630 [[\wd\mplibscratchbox @pt\ht\mplibscratchbox @pt\dp\mplibscratchbox optl],
2631 [[\box\mplibscratchbox]],

2632 "N \endgroup”,

2633 "\\expandafter\\xdef\\csname luamplib.group.”, trgroup.name, "\\endcsname{",
2634 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2635 "\\useboxresource \\the\\lastsavedboxresourceindex”,

2636 "IN\ \wd\\mplibscratchbox”,urx-11x, "bp\\ht\\mplibscratchbox",ury-1ly, "bp",
2637 "\\box\\mplibscratchbox}",

2638 »

2639 else

2640 trgroup.cnt = (trgroup.cnt or @) + 1

80

2641 local objname = format("@mplibtrgr%s”, trgroup.cnt)

2642 put2output(tableconcat{

2643 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",

2644 "\\unhbox\\mplibscratchbox",

2645 "\\special{pdf:put @resources <<", res, ">>}",

2646 "\\special{pdf:exobj <<", grattr, ">>}",

2647 "\\luamplibtagasgroupput{", trgroup.name,”}{",

2648 "\\special{pdf:uxobj ", objname, "}",

2649 "MN\endgroup”,

2650 »

2651 token. set_macro("luamplib.group.”..trgroup.name, tableconcat{

2652 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2653 "\\special{pdf:uxobj ", objname, "3}",

2654 "IN\ \wd\\mplibscratchbox”,urx-11x, "bp\\ht\\mplibscratchbox",ury-1ly, "bp",
2655 "\\box\\mplibscratchbox",

2656 }, "global™)

2657 end

2658 trgroup.shifts[trgroup.name] = { 11x, 1lly }

2659 end

2660 return grstate

2661 end

2662 function luamplib.registergroup (boxid, name, opts)

2663 local box = texgetbox(boxid)

2664 local wd, ht, dp = node.getwhd(box)

2665 local res = (opts.resources or "") .. gather_resources()

2666 local attr = { "/Type/X0bject/Subtype/Form/FormType 1" }

2667 1if type(opts.matrix) == "table"” then opts.matrix = tableconcat(opts.matrix,” ") end
2668 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox,” ") end
2669 1if opts.matrix and opts.matrix:find"%a" then

2670 local data = format("mplibtransformmatrix(%s);",opts.matrix)

2671 process(data, "@mplibtransformmatrix")

2672 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2673 end

2674 local grtype = 3

2675 if opts.bbox then

2676 attr[#attr+1] = format("/BBox[%s]", opts.bbox)

2677 grtype = 2

2678 end

2679 if opts.matrix then

2680 attrl#attr+1] = format("/Matrix[%s]", opts.matrix)

2681 grtype = opts.bbox and 4 or 1

2682 end

2683 if opts.asgroup then

2684 local t = { isolated = false, knockout = false }

2685 for _,v in ipairs(opts.asgroup:explode”,+") do t[v] = true end

2686 attr[#attr+1] = format("/Group<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout)
2687 end

2688 local trgroup = pdfetcs.tr_group

2689 trgroup.shifts[name] = { get_macro'MP1llx’, get_macro'MPlly’' }

81

2690 local whd
2691 if pdfmode then

2692 attr = tableconcat(attr) :gsub(decimals,rmzeros)

2693 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2694 token.set_macro(”luamplib.group.”..name, tableconcat{

2695 "\\useboxresource ", index,

2696 }, "global™)

2697 whd = format("#%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2698 else

2699 trgroup.cnt = (trgroup.cnt or @) + 1

2700 local objname = format("@mplibtrgr%s”, trgroup.cnt)

2701 texsprint {

2702 "\\expandafter\\newbox\\csname luamplib.groupbox.”, trgroup.cnt, "\\endcsname",
2703 "\\global\\setbox\\csname luamplib.groupbox."”, trgroup.cnt, "\\endcsname”,

2704 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",

2705 "\\special{pdf:bcontent}"”,

2706 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}"”,
2707 "\\unhbox\\csname luamplib.groupbox.”, trgroup.cnt, "\\endcsname”,

2708 "\\special{pdf:put @resources <<", res, ">>}",

2709 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2710 "\\special{pdf:econtent}}",

2711 }

2712 token. set_macro("luamplib.group.”. .name, tableconcat{

2713 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "3}}",

2714 "\\wd\\mplibscratchbox ", wd, "sp”,

2715 "\\ht\\mplibscratchbox ", ht, "sp",

2716 "\\dp\\mplibscratchbox ", dp, "sp”,

2717 "\\box\\mplibscratchbox",

2718 }, "global™)

2719 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2720 end

2721 info("w/h/d of group '%s': %s", name, whd)

2722 end

2723

luamplib.convert: flushing figures

2724 do
2725 local function stop_special_effects(fade,opaq,over)
2726 if fade then -- fading

2727 stop_pdf_code()

2728 end

2729 if opag then -- opacity

2730 pdf_literalcode(opaq)

2731 end

2732 if over then -- color

2733 if over:find"pdf:bc” then

2734 put2output”\\special{pdf:ec}"
2735 else

2736 put2output”\\special{color pop}"

82

2737 end

2738 end
2739 end
2740

For parsing prescript materials.

2741 local function script2table(s)
2742 local t = {}
2743 for _,i in ipairs(s:explode(”\13+")) do

2744 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2745 if k and v and k ~= "" and not t[k] then

2746 tlk] = v

2747 end

2748 end

2749 return t

2750 end

2751

Codes below to insert PDF lieterals are mostly from ConTgXt general, with small changes when
needed.

2752 local function pdf_textfigure(font,size,text,width,height,depth)

2753 text = text:gsub("."”,function(c)

2754 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2755 end)

2756 put2output("\\mplibtextext{%sH{%f H{%sH{%sH%s}", font,size,text,0,0)

2757 end

2758

2759 local bend_tolerance = 131/65536

2760

2761 local rx, sx, sy, ry, tx, ty, divider =1, 0, 0, 1, 0, 0, 1
2762

2763 local function pen_characteristics(object)

2764 local t = mplib.pen_info(object)

2765 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty
2766 divider = sx*sy - rx*ry

2767 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2768 end

2769

2770 local function concat(px, py) -- no tx, ty here

2771 return (sy*px-ryxpy)/divider, (sx*xpy-rxxpx)/divider

2772 end

2773

2774 local function curved(ith,pth)

2775 local d = pth.left_x - ith.right_x

2776 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and

2777 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2778 d = pth.left_y - ith.right_y

2779 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2780 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2781 return false

33

2782 end

2783 end

2784 return true
2785 end

2786

2787 local function flushnormalpath(path,open)
2788 local pth, ith
2789 for i=1,#path do

2790 pth = path[i]

2791 if not ith then

2792 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2793 elseif curved(ith,pth) then

2794 pdf_literalcode("%f %f %f %f %f %f c",

2795 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2796 else

2797 pdf_literalcode("%f %f 1",pth.x_coord,pth.y_coord)
2798 end

2799 ith = pth

2800 end

2801 if not open then

2802 local one = path[1]

2803 if curved(pth,one) then

2804 pdf_literalcode("%f %f %f %f %f %f c",

2805 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2806 else

2807 pdf_literalcode("%f %f 1", one.x_coord,one.y_coord)
2808 end

2809 elseif #path == 1 then -- special case .. draw point
2810 local one = path[1]

2811 pdf_literalcode("%f %f 1",one.x_coord,one.y_coord)
2812 end

2813 end

2814

2815 local function flushconcatpath(path,open)

2816 pdf_literalcode("%f %f %f %f %f %f cm”, sx, rx, ry, sy, tx ,ty)
2817 local pth, ith

2818 for i=1,#path do

2819 pth = path[i]

2820 if not ith then

2821 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2822 elseif curved(ith,pth) then

2823 local a, b = concat(ith.right_x,ith.right_y)

2824 local c, d = concat(pth.left_x,pth.left_y)

2825 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2826 else

2827 pdf_literalcode("%f %f 1", concat(pth.x_coord, pth.y_coord))
2828 end

2829 ith = pth

2830 end

34

2831 if not open then

2832 local one = path[1]

2833 if curved(pth,one) then

2834 local a, b = concat(pth.right_x,pth.right_y)

2835 local c, d = concat(one.left_x,one.left_y)

2836 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2837 else

2838 pdf_literalcode("%f %f 1", concat(one.x_coord,one.y_coord))
2839 end

2840 elseif #path == 1 then -- special case .. draw point

2841 local one = path[1]

2842 pdf_literalcode("%f %f 1",concat(one.x_coord,one.y_coord))
2843 end

2844 end

2845

Finally, flush figures by inserting PDF literals.

2846 local function flush (result,flusher)
2847 if result then

2848 local figures = result.fig

2849 if figures then

2850 for f=1, #figures do

2851 info("flushing figure %s",f)

2852 local figure = figures[f]

2853 local objects = figure:objects()

2854 local fignum = tonumber(figure:filename():match(”([%d]+)$") or figure:charcode() or @)
2855 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

2856 local bbox = figure:boundingbox()

2857 local 11x, 1ly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2858 if urx < 11lx then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.

(issue #70) Original code of ConTEXt general was:

-- invalid
pdf_startfigure(fignum,9,0,0,0)
pdf_stopfigure()

2859 else

For legacy behavior, insert ‘pre-fig’ TgX code here.

2860 if tex_code_pre_mplib[f] then

2861 put2output(tex_code_pre_mplib[f])
2862 end

2863 pdf_startfigure(fignum,11x,1ly,urx,ury)
2864 start_pdf_code()

2865 if objects then

2866 local savedpath = nil

2867 local savedhtap = nil

2868 for o=1,#objects do

2869 local object = objects[o]

35

2870

local objecttype = object.type

The following 10 lines are part of btex. . .etex patch. Again, colors are processed at this stage.

2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890

local prescript = object.prescript
prescript = prescript and script2table(prescript) -- prescript is now a table
local cr_over = do_preobj_CR(object,prescript) -- color
local tr_opag = do_preobj_TR(object,prescript) -- opacity
local fading_ = do_preobj_FADE(object,prescript) -- fading
local trgroup = do_preobj_GRP(object,prescript) -- transparency group
local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
local shading_ = do_preobj_shading(object,prescript) -- shading pattern
if prescript and prescript.mplibtexboxid then
put_tex_boxes(object,prescript)
elseif objecttype == "start_bounds” or objecttype == "stop_bounds"” then --skip
elseif objecttype == "start_clip” then
local evenodd = not object.istext and object.postscript == "evenodd"”
start_pdf_code()
flushnormalpath(object.path, false)
pdf_literalcode(evenodd and "Wx n” or "W n")
elseif objecttype == "stop_clip” then
stop_pdf_code()
miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
elseif objecttype == "special” then

Collect TEX codes that will be executed after flushing. Legacy behavior.

2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

if prescript and prescript.postmplibverbtex then
figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
end
elseif objecttype == "text" then
local ot = object.transform -- 3,4,5,6,1,2
start_pdf_code()
pdf_literalcode("%f %f %f %f %f %f cm”,o0t[3],0t[4],0t[5],0t[6],0t[1],0t[2])
pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
stop_pdf_code()
elseif not trgroup and fading_ ~= "stop” then
local evenodd, collect, both = false, false, false
local postscript = object.postscript
if not object.istext then

if postscript == "evenodd” then
evenodd = true
elseif postscript == "collect” then

collect = true
elseif postscript == "both"” then
both = true
elseif postscript == "eoboth” then
evenodd = true
both = true
end
end
if collect then

86

2916 if not savedpath then

2917 savedpath = { object.path or false }

2918 savedhtap = { object.htap or false }

2919 else

2920 savedpath[#savedpath+1] = object.path or false
2921 savedhtap[#savedhtap+1] = object.htap or false
2922 end

2923 else

Removed from ConTgXt general: color stuff.

2924 local ml = object.miterlimit

2925 if ml and ml ~= miterlimit then

2926 miterlimit = ml

2927 pdf_literalcode("%f M",ml)

2928 end

2929 local 1j = object.linejoin

2930 if 1j and 1j ~= linejoin then

2931 linejoin = 1j

2932 pdf_literalcode("%i j",13)

2933 end

2034 local 1lc = object.linecap

2935 if 1c and 1lc ~= linecap then

2936 linecap = 1c

2937 pdf_literalcode("%i J",1c)

2938 end

2939 local dl = object.dash

2940 if dl then

2941 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2942 if d ~= dashed then

2943 dashed = d

2044 pdf_literalcode(dashed)

2945 end

2946 elseif dashed then

2947 pdf_literalcode("[] @ d")

2948 dashed = false

2949 end

2950 local path = object.path

2951 local transformed, penwidth = false, 1
2952 local open = path and path[1].left_type and path[#path].right_type
2953 local pen = object.pen

2954 if pen then

2955 if pen.type == 'elliptical’ then
2956 transformed, penwidth = pen_characteristics(object) -- boolean, value
2957 pdf_literalcode("%f w",penwidth)
2958 if objecttype == 'fill’' then

2959 objecttype = 'both’

2960 end

2961 else -- calculated by mplib itself
2962 objecttype = 'fill’

37

2963 end

2964 end

Added : shading

2965 local shade_no = do_preobj_SH(object,prescript) -- shading
2966 if shade_no then

2967 pdf_literalcode"q /Pattern cs”

2968 objecttype = false

2969 end

2970 if transformed then

2971 start_pdf_code()

2972 end

2973 if path then

2974 if savedpath then

2975 for i=1,#savedpath do

2976 local path = savedpath[i]

2977 if transformed then

2978 flushconcatpath(path,open)

2979 else

2980 flushnormalpath(path,open)

2981 end

2982 end

2983 savedpath = nil

2084 end

2985 if transformed then

2986 flushconcatpath(path,open)

2987 else

2988 flushnormalpath(path, open)

2989 end

2990 if objecttype == "fill" then

2991 pdf_literalcode(evenodd and "h f*" or "h f")
2992 elseif objecttype == "outline” then

2993 if both then

2994 pdf_literalcode(evenodd and "h B*" or "h B")
2995 else

2996 pdf_literalcode(open and "S" or "h S")
2997 end

2998 elseif objecttype == "both" then

2999 pdf_literalcode(evenodd and "h B*" or "h B")
3000 end

3001 end

3002 if transformed then

3003 stop_pdf_code()

3004 end

3005 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.

3006 if path then
3007 if transformed then
3008 start_pdf_code()

88

3009 end

3010 if savedhtap then

3011 for i=1,#savedhtap do

3012 local path = savedhtap[i]

3013 if transformed then

3014 flushconcatpath(path,open)

3015 else

3016 flushnormalpath(path,open)

3017 end

3018 end

3019 savedhtap = nil

3020 evenodd = true

3021 end

3022 if transformed then

3023 flushconcatpath(path,open)

3024 else

3025 flushnormalpath(path,open)

3026 end

3027 if objecttype == "fill" then

3028 pdf_literalcode(evenodd and "h f*" or "h f")
3029 elseif objecttype == "outline” then

3030 pdf_literalcode(open and "S" or "h S")
3031 elseif objecttype == "both" then

3032 pdf_literalcode(evenodd and "h B*" or "h B")
3033 end

3034 if transformed then

3035 stop_pdf_code()

3036 end

3037 end

Added to ConTgXt general: post-object colors and shading stuff. Beware q ... Q scope.

3038 if shade_no then -- shading

3039 pdf_literalcode("W%s n /MPlibSh%s sh Q",evenodd and "*" or "" shade_no)
3040 end

3041 end

3042 end

3043 if fading_ == "start” then

3044 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3045 elseif trgroup == "start"” then

3046 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3047 elseif fading_ == "stop” then

3048 local se = pdfetcs.fading.specialeffects

3049 if se then stop_special_effects(se[1], se[2], se[3]) end

3050 elseif trgroup == "stop” then

3051 local se = pdfetcs.tr_group.specialeffects

3052 if se then stop_special_effects(se[1], se[2], se[3]) end

3053 else

3054 stop_special_effects(fading_, tr_opaq, cr_over)

3055 end

39

3056
3057
3058
3059
3060
3061
3062

if fading_ or trgroup then -- extgs resetted
miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
end
end
end
stop_pdf_code()
pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.

3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081

for _,v in ipairs(figcontents) do
if type(v) == "table"” then
texsprint”\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint”}"
else
texsprint(v)
end
end
if #figcontents.post > @ then texsprint(figcontents.post) end
figcontents = { post = { } }
end
end
end
end
end

function luamplib.convert (result, flusher)
flush(result, flusher)
return true -- done

end

3082 end

3083

3084 function luamplib.colorconverter (cr)

3085 local n = #cr

3086 if n == 4 then

3087 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]

3088 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g @ G"
3089 elseif n == 3 then

3090 local r, g, b = cr[1], cr[2], cr[3]

3091 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3092 else

3093 local s = cr[1]

3004 return format("%.3f g %.3f G",s,s), "0 g 0 G"

3095 end

3096 end

2.2 TgX package

First we need to load some packages.

3097 \ifcsname ProvidesPackage\endcsname

90

We need BIEX 2024-06-01 as we use 1tx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.

3098 \NeedsTeXFormat{LaTeX2e}

3099 \ProvidesPackage{luamplib}

3100 [2026/01/14 v2.38.2 mplib package for LuaTeX]
3101 \fi

3102 \ifdefined\newluafunction\else

3103 \input ltluatex

3104 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by KIgX kernel.
In Plain, atbegshi.sty is loaded.

3105 \ifnum\outputmode=0

3106 \ifdefined\AddToHookNext

3107 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}

3108 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}

3109 \def\luamplibateveryshipout{\AddToHook{shipout/background}}

3110 \else

3111 \input atbegshi.sty

3112 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3113 \let\luamplibatfirstshipout\AtBeginShipoutFirst

3114 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3115 \fi

3116 \fi

Loading of lua code.
3117 \directlua{require("luamplib”)}
legacy commands. Seems we don’t need it, but no harm.
3118 \ifx\pdfoutput\undefined
3119 \let\pdfoutput\outputmode
3120 \fi
3121 \ifx\pdfliteral\undefined

3122 \protected\def\pdfliteral{\pdfextension literal}
3123 \fi

Set the format for METAPOST.
3124 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.

3125 \ifnum\pdfoutput>0

3126 \let\mplibtoPDF\pdfliteral

3127 \else

3128 \def\mplibtoPDF#1{\special{pdf:literal direct #13}}

3129 \ifcsname PackageInfo\endcsname

3130 \PackageInfo{luamplib}{only dvipdfmx is supported currently}

3131 \else

3132 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}

91

3133 \fi
3134 \fi

To make mplibcode typeset always in horizontal mode.

3135 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3136 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3137 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.

3138 \def\mplibsetupcatcodes{%
3139 %catcode'\{=12 %catcode'\}=12
3140 \catcode'\#=12 \catcode'*=12 \catcode'\~=12 \catcode*_=12
3141 \catcode'\&=12 \catcode'\$=12 \catcode'\%=12 \catcode'*"M=12
3142 }
Make btex. . .etex box zero-metric.
3143 \def\mplibputtextbox#1{\vbox to @pt{\vss\hbox to @pt{\raise\dp#1\copy#1\hss}}}

use Transparency Group

3144 \protected\def\usemplibgroup#1#{\usemplibgroupmain}

3145 \def\usemplibgroupmain#1{%

3146 \prependtomplibbox\hbox dir TLT\bgroup

3147 \csname luamplib.group.#1\endcsname

3148 \egroup

3149 3

3150 \protected\def\mplibgroup#1{%

3151 \begingroup

3152 \def\MP11x{0}\def\MP11ly{0}%

3153 \def\mplibgroupname{#13}%

3154 \mplibgroupgetnexttok

3155 }

3156 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3157 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3158 \def\mplibgroupbranch{%

3159 \ifx [\nexttok

3160 \expandafter\mplibgroupopts

3161 \else

3162 \ifx\mplibsptoken\nexttok

3163 \expandafter\expandafter\expandafter\mplibgroupskipspace
3164 \else

3165 \let\mplibgroupoptions\empty

3166 \expandafter\expandafter\expandafter\mplibgroupmain

3167 \fi

3168 \fi

3169 }

3170 \def\mplibgroupopts[#1]1{\def\mplibgroupoptions{#1}\mplibgroupmain}
3171 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3172 \protected\def\endmplibgroup{\egroup

3173 \directlua{ luamplib.registergroup(

3174 \the\mplibscratchbox, '\mplibgroupname’, {\mplibgroupoptions}
3175)%

92

3176 \endgroup
3177 }

Patterns

3178 {\def\:{\global\let\mplibsptoken= } \: }

3179 \protected\def\mppattern#1{%

3180 \begingroup

3181 \def\mplibpatternname{#13}%

3182 \mplibpatterngetnexttok

3183 }

3184 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3185 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3186 \def\mplibpatternbranch{%

3187 \ifx [\nexttok

3188 \expandafter\mplibpatternopts

3189 \else

3190 \ifx\mplibsptoken\nexttok

3191 \expandafter\expandafter\expandafter\mplibpatternskipspace
3192 \else

3193 \let\mplibpatternoptions\empty

3194 \expandafter\expandafter\expandafter\mplibpatternmain

3195 \fi

3196 \fi

3197 }

3198 \def\mplibpatternopts[#11{%

3199 \def\mplibpatternoptions{#1}%

3200 \mplibpatternmain

3201 }

3202 \def\mplibpatternmain{%

3203 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3204 }

3205 \protected\def\endmppattern{%

3206 \egroup

3207 \directlua{ luamplib.registerpattern(

3208 \the\mplibscratchbox, '\mplibpatternname’, {\mplibpatternoptions}

3209)}%
3210 \endgroup
3211 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3212 \def\mpfiginstancename{@mpfig}

3213 \protected\def\mpfig{%

3214 \begingroup

3215 \futurelet\nexttok\mplibmpfigbranch
3216 }

3217 \def\mplibmpfigbranch{%

3218 \ifx *\nexttok

3219 \expandafter\mplibprempfig

3220 \else

3221 \ifx [\nexttok

93

3222 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig

3223 \else

3224 \expandafter\expandafter\expandafter\mplibmainmpfig
3225 \fi

3226 \fi

3227 }

3228 \def\mplibgobbleoptsmpfig[#11{\mplibmainmpfig}
3229 \def\mplibmainmpfig{%

3230 \begingroup

3231 \mplibsetupcatcodes

3232 \mplibdomainmpfig

3233 }

3234 \long\def\mplibdomainmpfig#1\endmpfig{%

3235 \endgroup

3236 \directlua{

3237 local legacy = luamplib.legacyverbatimtex

3238 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""

3239 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""

3240 luamplib.legacyverbatimtex = false

3241 luamplib.everymplib["\mpfiginstancename"] = ""

3242 luamplib.everyendmplib["\mpfiginstancename"] = ""

3243 luamplib.process_mplibcode(

3244 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===]1.." "..everyendmpfig.."” endfig;",
3245 "\mpfiginstancename")

3246 luamplib.legacyverbatimtex = legacy
3247 luamplib.everymplib["\mpfiginstancename"] = everympfig

3248 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3249 1%

3250 \endgroup

3251}

3252 \def\mplibprempfig#1{%

3253 \begingroup

3254 \mplibsetupcatcodes

3255 \mplibdoprempfig

3256 3

3257 \long\def\mplibdoprempfig#1\endmpfig{%
3258 \endgroup

3259 \directlua{

3260 local legacy = luamplib.legacyverbatimtex

3261 local everympfig = luamplib.everymplib["\mpfiginstancename"]

3262 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]
3263 luamplib.legacyverbatimtex = false

3264 luamplib.everymplib["\mpfiginstancename”] = ""

3265 luamplib.everyendmplib["\mpfiginstancename"] = ""

3266 luamplib.process_mplibcode([===[\unexpanded{#1}]===1, "\mpfiginstancename")
3267 luamplib.legacyverbatimtex = legacy

3268 luamplib.everymplib["\mpfiginstancename"] = everympfig
3269 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3270 %

94

3271 \endgroup
3272 }
3273 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.

3274 \unless\ifcsname ver@luamplib.sty\endcsname

3275 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3276 \protected\def\mplibcode{%

3277 \begingroup

3278 \futurelet\nexttok\mplibcodebranch

3279}

3280 \def\mplibcodebranch{%

3281 \ifx [\nexttok

3282 \expandafter\mplibcodegetinstancename
3283 \else

3284 \global\let\currentmpinstancename\empty
3285 \expandafter\mplibcodeindeed

3286 \fi

3287 }

3288 \def\mplibcodeindeed{%
3289 \begingroup

3290 \mplibsetupcatcodes
3291 \mplibdocode
3202}

3293 \long\def\mplibdocode#1\endmplibcode{%

3294 \endgroup

3295 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===], "\currentmpinstancename")}%
3296 \endgroup

3297
3298 \protected\def\endmplibcode{endmplibcode}
3299 \else

The KIEX-specific part: a new environment.

3300 \newenvironment{mplibcode}[11[1{%

3301 \xdef\currentmpinstancename{#13}%
3302 \mplibtmptoks{}\1txdomplibcode
3303 M}

3304 \def\ltxdomplibcode{%

3305 \begingroup

3306 \mplibsetupcatcodes

3307 \1txdomplibcodeindeed

3308 }

3309 \def\mplib@mplibcode{mplibcode}

3310 \long\def\ltxdomplibcodeindeed#1\end#2{%

3311 \endgroup

3312 \mplibtmptoks\expandafter{\the\mplibtmptoks#13}%
3313 \def\mplibtemp@a{#2}%

3314 \ifx\mplib@mplibcode\mplibtemp@a

3315 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3316 \end{mplibcode}%

95

3317 \else

3318 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3319 \expandafter\1ltxdomplibcode

3320 \fi

3321}

3322 \fi

User settings.

3323 \def\mplibshowlog#1{\directlua{
3324 local s = string.lower("#1")

3325 if s == "enable" or s == "true" or s ==
3326 luamplib.showlog = true

3327 else

3328 luamplib.showlog = false

3329 end

3330 }}

3331 \def\mpliblegacybehavior#1{\directlua{

3332 local s = string.lower("#1")

3333 if s == "enable” or s == "true" or s ==
3334 luamplib.legacyverbatimtex = true
3335 else

3336 luamplib.legacyverbatimtex = false
3337 end

3338 1}

3339 \def\mplibverbatim#1{\directlua{
3340 local s = string.lower("#1")

3341 if s == "enable" or s == "true" or s ==
3342 luamplib.verbatiminput = true

3343 else

3344 luamplib.verbatiminput = false

3345 end

3346 }}

3347 \newtoks\mplibtmptoks

"yes" then

"yes" then

"yes" then

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables

3348 \ifcsname ver@luamplib.sty\endcsname
3349 \protected\def\everymplib{%

3350 \begingroup

3351 \mplibsetupcatcodes

3352 \mplibdoeverymplib

3353)

3354 \protected\def\everyendmplib{%
3355 \begingroup

3356 \mplibsetupcatcodes

3357 \mplibdoeveryendmplib

3358

3359 \newcommand\mplibdoeverymplib[2][J1{%
3360 \endgroup

3361 \directlua{

3362 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===

96

3363 %

3364 }

3365 \newcommand\mplibdoeveryendmplib[2]1[1{%
3366 \endgroup

3367 \directlua{

3368 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}1===]
3369 1%

3370

3371 \else

3372 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#13}}

3373 \protected\def\everymplib#1#{%

3374 \ifx\empty#1\empty \mplibgetinstancename[J\else \mplibgetinstancename#1\fi
3375 \begingroup

3376 \mplibsetupcatcodes

3377 \mplibdoeverymplib

3378}

3379 \long\def\mplibdoeverymplib#1{%

3380 \endgroup

3381 \directlua{

3382 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===
3383 %

3384 }

3385 \protected\def\everyendmplib#1#{%

3386 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3387 \begingroup

3388 \mplibsetupcatcodes

3389 \mplibdoeveryendmplib

3390 }

3391 \long\def\mplibdoeveryendmplib#1{%

3392 \endgroup

3393 \directlua{

3394 luamplib.everyendmplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===
3395 %

3396}

3397 \fi

TEX macros for dimen/color

3398 \def\mpdim#1{ runscript(”luamplibdimen{#13}") }
3399 \def\mpcolor#1#{\domplibcolor{#1}}
3400 \def\domplibcolor#1#2{ runscript(”luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.

3401 \def\mplibnumbersystem#1{\directlua{
3402 local t = "#1"

3403 if t == "binary” then t = "decimal” end
3404 luamplib.numbersystem = t
3405 }}

Settings for .mp cache files.
3406 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,3}

97

3407 \def\mplibdomakenocache#1,{%
3408 \ifx\empty#1\empty

3409 \expandafter\mplibdomakenocache

3410 \else

3411 \ifx*x#1\else

3412 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3413 \expandafter\expandafter\expandafter\mplibdomakenocache
3414 \fi

3415 \fi

3416 }

3417 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,
3418 \def\mplibdocancelnocache#1,{%
3419 \ifx\empty#1\empty

3420 \expandafter\mplibdocancelnocache

3421 \else

3422 \ifx*x#1\else

3423 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%

3424 \expandafter\expandafter\expandafter\mplibdocancelnocache
3425 \fi

3426 \fi

3427 }

3428 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.

3429 \def\mplibtextextlabel#1{\directlua{
3430 local s = string.lower("#1")

3431 if s == "enable” or s == "true” or s == "yes" then
3432 luamplib. textextlabel = true

3433 else

3434 luamplib. textextlabel = false

3435 end

3436 1}

3437 \def\mplibcodeinherit#1{\directlua{
3438 local s = string.lower("#1")

3439 if s == "enable” or s == "true” or s == "yes" then
3440 luamplib.codeinherit = true

3441 else

3442 luamplib.codeinherit = false

3443 end

3444 33

3445 \def\mplibglobaltextext#1{\directlua{
3446 local s = string.lower("#1")

3447 if s == "enable” or s == "true” or s == "yes" then
3448 luamplib.globaltextext = true

3449 else

3450 luamplib.globaltextext = false

3451 end

3452 }}

The followings are from ConTEXt general, mostly.

98

We use a dedicated scratchbox.
3453 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.

3454 \def\mplibstarttoPDF#1#2#3#4{%

3455 \prependtomplibbox

3456 \hbox dir TLT\bgroup

3457 \xdef\MPL1x{#1}\xdef\MP11ly{#2}%
3458 \xdef\MPurx{#3}\xdef\MPury{#4}%
3459 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3460 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3461 \parskip@pt%

3462 \leftskip@pt%

3463 \parindent@pt%

3464 \everypar{}%

3465 \setbox\mplibscratchbox\vbox\bgroup
3466 \noindent

3467 }

3468 \def\mplibstoptoPDF{%

3469 \par

3470 \egroup %

3471 \setbox\mplibscratchbox\hbox %

3472 {\hskip-\MP11lx bp%

3473 \raise-\MP1ly bp%

3474 \box\mplibscratchbox}%

3475 \setbox\mplibscratchbox\vbox to \MPheight
3476 {\vfill

3477 \hsize\MPwidth

3478 \wd\mplibscratchbox@pt%

3479 \ht\mplibscratchbox@pt%

3480 \dp\mplibscratchbox@pt%

3481 \box\mplibscratchbox}%

3482 \wd\mplibscratchbox\MPwidth

3483 \ht\mplibscratchbox\MPheight

3484 \box\mplibscratchbox

3485 \egroup

3486 }

Text items have a special handler.

3487 \def\mplibtextext#1#2#3#4#5{%
3488 \begingroup

3489 \setbox\mplibscratchbox\hbox
3490 {\font\temp=#1 at #2bp%
3491 \temp

3492 #33%

3493 \setbox\mplibscratchbox\hbox
3494 {\hskip#4 bp%

3495 \raise#5 bp%

3496 \box\mplibscratchbox}%
3497 \wd\mplibscratchbox@pt%

99

3498
3499
3500
3501

3502 }

\ht\mplibscratchbox@pt%
\dp\mplibscratchbox0pt%
\box\mplibscratchbox
\endgroup

Input luamplib.cfg when it exists.

3503 \openin@=luamplib.cfg
3504 \ifeof@ \else

3505
3506

\closein®
\input luamplib.cfg

3507 \fi

Code for tagpdf

3508 \def\luamplibtagtextboxset#1#2{#2}

3509 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3510 \let\luamplibtagasgroupset\relax

3511 \let\luamplibtagasgroupput\luamplibtagtextboxset
3512 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3513 \ifcsname ver@tagpdf.sty\endcsname \else

3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536

\ExplSyntaxOn
\keys_define:nn{luamplib/tagging}
{
,alt .code:n = { }
,actualtext .code:n = { }
,artifact .code:n ={ }
,text .code:n = { }
,off .code:n = { }
,tag .code:n = { }
n={1}

,adjust-BBox .code:
,tagging-setup .code:n = { }

,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
,instancename .meta:n = { instance = {#1} }
, unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
}
\RenewDocumentCommand\mplibcode{0{}}
{

\tl_gclear:N \currentmpinstancename
\keys_set:ne{luamplib/tagging}{#1}
\mplibtmptoks{}\1txdomplibcode
}
\cs_set_eq:NN \mplibalttext \use_none:n
\cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center}raises an Error! as we issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by KIEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@epar, and \endgraf, we here attempt to address
the issue by adding the following line, which IKIEX’s \everypar should have done.

3537

\tl_put_left:Nn \mplibstoptoPDF \@newlistfalse

100

3538 \ExplSyntaxOff

3539 \endinput\fi

3540 \ExplSyntaxOn

3541 \t1_new:N \1__luamplib_tag_envname_t1

3542 \t1_new:N \1__luamplib_tag_alt_tl

3543 \t1l_new:N \1__luamplib_tag_alt_dflt_tl

3544 \t1_new:N \1__luamplib_tag_actual_t1

3545 \t1_new:N \1__luamplib_tag_struct_tl

3546 \t1_set:Nn\1__luamplib_tag_struct_tl {Figure}

3547 \bool_new:N \1__luamplib_tag_usetext_bool

3548 \bool_new:N \1__luamplib_tag_bboxcorr_bool

3549 \seq_new:N \1__luamplib_tag_bboxcorr_seq

3550 \t1_new:N \1__luamplib_tag_bbox_draw_t1

3551 \t1_new:N \1__luamplib_BBox_llx_t1

3552 \t1_new:N \1__luamplib_BBox_lly_t1

3553 \t1_new:N \1__luamplib_BBox_urx_tl

3554 \t1_new:N \1__luamplib_BBox_ury_t1

3555 \msg_new:nnn {luamplib}{figure-text-reuse}

3556 {

3557 tex-text~box~#1~probably~is~incorrectly~tagged.~
3558 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3559 Check~the~resulting~PDF.

3560 }

3561 \msg_new:nnn {luamplib}{mplibgroup-text-mode}

3562 {

3563 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3564 Using~mplibgroup~with~text~mode~is~not~recommended.~
3565 Check~the~resulting~PDF.

3566 }

3567 \msg_new:nnn{luamplib}{alt-text-missing}

3568 {

3569 Alternate~text~for~#1~is~missing.~

3570 Using~the~default~value~'#2'~instead.

3571 }

Sockets for tex-text boxes.

3572 \socket_new:nn{tagsupport/luamplib/textext/set}{2}
3573 \socket_new:nn{tagsupport/luamplib/textext/put}{2}
3574 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3575 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.
3576 \bool_if:NTF \1__luamplib_tag_usetext_bool

3577 {

3578 \tag_mc_end_push:

3579 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}

3580 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.

101

3581 \tag_mc_begin:n{tag=text}

3582 #2

3583 \tag_mc_end:

3584 \tag_struct_end:

3585 \tag_mc_begin_pop:n{}

3586 }

3587 {

3588 \tag_suspend:n{\luamplibtagtextboxset}

3589 #2

3590 \tag_resume:n{\luamplibtagtextboxset}
3591}

3592 }

3593 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}
3594 {

3595 \bool_lazy_and:nnTF

3506 { \l__luamplib_tag_usetext_bool }

3597 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }

3508 {

3599 \tag_resume:n{\mplibputtextbox}

3600 \tag_mc_end:

3601 \cs_if_exist:cTF {luamplib.taggedbox.#1}

3602 {

3603 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3604 #2

3605 \cs_undefine:c {luamplib.taggedbox.#1}

3606 }

3607 {

3608 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3609 \tag_mc_begin:n{}

3610 \int_set:Nn \1_tmpa_int {#1}

3611 \tag_mc_reset_box:N \1_tmpa_int

3612 #2

3613 \tag_mc_end:

3614 }

3615 \tag_mc_begin:n{artifact}

3616 }

3617 {

3618 \int_set:Nn \1_tmpa_int {#1}

3619 \tag_mc_reset_box:N \1_tmpa_int

3620 #2

3621}

3622 }

3623 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3624 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3625 \cs_set_nopar:Npn \luamplibtagtextboxset

3626 {

3627 \tag_socket_use:nnn{luamplib/textext/set}

3628 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in

102

the artifact MC-chunks.

3629 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2

3630 {

3631 \bool_set_eq:NN \1_tmpa_bool \1__luamplib_tag_usetext_bool
3632 \bool_set_false:N \1__luamplib_tag_usetext_bool

3633 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}

3634 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}

3635 \bool_set_eq:NN \1__luamplib_tag_usetext_bool \1_tmpa_bool
3636 }

3637 \cs_set_nopar:Npn \mplibputtextbox #1

3638 {

3639 \vbox to @pt{\vss\hbox to @pt{

3640 \socket_use:nnn{tagsupport/luamplib/textext/put}{#13}{\raise\dp#1\copy#1}
3641 \hss}}

3642 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.

3643 \cs_set_nopar:Npn \luamplibtagasgroupset

3644 {

3645 \bool_set_false:N \1__luamplib_tag_usetext_bool

3646 }

3647 \cs_set_nopar:Npn \luamplibtagasgroupput

3648 {

3649 \bool_if:NT \1__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3650 \tag_socket_use:nnn{luamplib/mplibgroup/put}

3651 }

A socket for mplibgroup. Again, we issue a warning upon text mode.

3652 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3653 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}

3654 {
3655 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3656 {

3657 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}

3658 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}

3659 }

3660 \tag_mc_end:

3661 \tag_mc_begin:n{tag=text}

3662 #2

3663 \tag_mc_end:

3664 \tag_mc_begin:n{artifact}

3665 }

3666 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute

3667 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1

3668 {

3669 \tl_set:Ne \1l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3670 \tex_savepos:D

103

3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719

\property_record:ee{\1_tmpa_t1}{xpos, ypos}
\tl_set:Ne \1__luamplib_BBox_11x_t1
{ \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{xpos}@}sp } }
\tl_set:Ne \1__luamplib_BBox_1ly_t1
{ \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{ypos}{@}sp - \dp#1 } }
\tl_set:Ne \1__luamplib_BBox_urx_tl
{ \dim_to_decimal_in_bp:n { \1__luamplib_BBox_l1lx_tl bp + \wd#1 } }
\tl_set:Ne \1__luamplib_BBox_ury_tl
{ \dim_to_decimal_in_bp:n { \1__luamplib_BBox_lly_t1 bp + \ht#1 + \dp#1 } }
\bool_if:NT \1__luamplib_tag_bboxcorr_bool
{
\int_zero:N \1_tmpa_int
\tl_map_inline:nn
{
\1__luamplib_BBox_11x_t1
\1__luamplib_BBox_lly_t1
\1__luamplib_BBox_urx_tl
\1__luamplib_BBox_ury_t1
}
{
\int_incr:N \1_tmpa_int
\tl_set:Ne ##1
{
\fp_eval:n
{
##1
.
\dim_to_decimal_in_bp:n { \seq_item:NV \1__luamplib_tag_bboxcorr_seq \l_tmpa_int }
}
}
}
}
\tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
{
/0 /Layout /BBox [
\1__luamplib_BBox_11x_t1\c_space_t1l
\1__luamplib_BBox_1ly_t1\c_space_tl
\1__luamplib_BBox_urx_t1\c_space_t1
\1__luamplib_BBox_ury_tl
]
}
\bool_if:NT \1__tag_graphic_debug_bool
{
\iow_log:e
{
luamplib/tagging~debug: ~BBox~of~structure~\tag_get:n{struct_num}~is~
\1__luamplib_BBox_11x_t1\c_space_t1
\1__luamplib_BBox_1ly_t1\c_space_tl
\1__luamplib_BBox_urx_t1\c_space_t1

104

3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760

3761 }

\1__luamplib_BBox_ury_tl
3
\sys_if_output_pdf:TF
{
\tl_set:Ne \1__luamplib_tag_bbox_draw_t1
{
\pdfextension save\relax
\opacity_select:n{0.5} \color_select:n{red}
\pdfextension literal~text
{
\1__luamplib_BBox_11x_t1\c_space_tl
\1__luamplib_BBox_1ly_t1\c_space_tl
\fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_11x_t1 }~
\fp_eval:n { \1__luamplib_BBox_ury_tl - \1__luamplib_BBox_lly_t1 }~
re~f
3
\pdfextension restore\relax
3
}
{
\tl_set:Ne \1__luamplib_tag_bbox_draw_t1
{
\special{pdf:bcontent}
\opacity_select:n{0.5} \color_select:n{red}
\special{pdf:code~
1~0~0~1~
-\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{xpos}{@}sp + \wd#1 }~
-\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{ypos}{0}sp }~
cm
}
\special{pdf:code~
\1__luamplib_BBox_11x_t1\c_space_tl
\1__luamplib_BBox_1ly_t1\c_space_t1l
\fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_llx_t1 3}~
\fp_eval:n { \1__luamplib_BBox_ury_tl - \1__luamplib_BBox_lly_t1 }~
re~f
3
\special{pdf:econtent}
3
}
}

Sockets for main process

3762 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}

3763 \socket_new:nn{tagsupport/luamplib/figure/end}{2}

3764 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3765 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}

3766 {

105

3767 \tag_mc_end_push:
3768 \tl_if_empty:NT\1__luamplib_tag_alt_tl

3769 {

3770 \tl_if_empty:eTF{#1}

3771 { \tl_set:Nn \1__luamplib_tag_alt_tl {metapost~figure} }

3772 { \tl_set:Ne \1__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#13}} }
3773 \msg_warning:nnVV{luamplib}{alt-text-missing}

3774 \1__luamplib_tag_envname_t1 \1__luamplib_tag_alt_t1l
3775 3

3776 \tag_struct_begin:n

3777 {

3778 tag=\1__luamplib_tag_struct_tl,

3779 alt=\1__luamplib_tag_alt_t1,

3780 3

3781 \tag_mc_begin:n{}

3782 }

3783 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}

3784 {

3785 __luamplib_tag_bbox_attribute:n {#1}

3786 #2

3787 \tl_use:N \1__luamplib_tag_bbox_draw_t1

3788 \tag_mc_end:

3789 \tag_struct_end:

3790 \tag_mc_begin_pop:n{}

3791 }

3792 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3793 {

3794 \tag_mc_end_push:

3795 \tag_struct_begin:n

3796 {

3797 tag=Span,

3798 actualtext=\1__luamplib_tag_actual_t1,
3799 }

3800 \tag_mc_begin:n{}

3801 }

3802 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3803 {

3804 #2

3805 \tag_mc_end:

3806 \tag_struct_end:

3807 \tag_mc_begin_pop:n{}

3808 }

3809 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3810 {

3811 \tag_mc_end_push:

3812 \tag_mc_begin:n{artifact}

3813 }

3814 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3815 {

106

3816 #2

3817 \tag_mc_end:

3818 \tag_mc_begin_pop:n{}
3819 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/taggingl{. ..} anywhere in
the document.

3820 \socket_new:nn{tagsupport/luamplib/figure/init}{0}

3821 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}

3822 {

3823 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}

3824 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}

3825}

3826 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3827

3828 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3829 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.

3830 \prependtomplibbox \mplibnoforcehmode

3831 \mode_if_vertical:T { \noindent \aftergroup\par }

3832}

3833 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}

3834 {

3835 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3836 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3837 }

3838 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}

3839 {

3840 \bool_set_true:N \1__luamplib_tag_usetext_bool

3841 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3842 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3843 \prependtomplibbox \mplibnoforcehmode

3844 \mode_if_vertical:T { \noindent \aftergroup\par }

3845 }

3846 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}

3847 {

3848 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3849 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3850 }

3851 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options

3852 \keys_define:nn{luamplib/tagging}

3853 {

3854 ,alt .code:n =

3855 {

3856 \tl_set:Ne\l__luamplib_tag_alt_t1{\text_purify:n{#1}}

3857 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3858 }

107

3859 ,actualtext .code:n =

3860 {

3861 \tl_set:Ne\l__luamplib_tag_actual_t1{\text_purify:n{#1}}

3862 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}

3863 }

3864 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3865 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }

3866 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3867 ,tag .code:n =

3868 {

3869 \str_case:nnF {#1}

3870 {

3871 {false} { \keys_set:nn {luamplib/tagging} {off} }

3872 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3873 3

3874 {

3875 \tl_set:Nn\1__luamplib_tag_struct_t1{#1}

3876 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3877 }

3878

3879 ,adjust-BBox .code:n =

3880 {

3881 \bool_set_true:N \1__luamplib_tag_bboxcorr_bool

3882 \seq_set_split:Nnn \1__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3883

3884 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3885 }

3886 \keys_define:nn {luamplib/instance}

3887 {

3888 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }

3889 ,instancename .meta:n = { instance = {#1} }

3890 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
3891 }

Redefine our macros

3892 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3893 {

3894 \prependtomplibbox

3895 \hbox dir~TLT\bgroup

3896 \tag_socket_use:nn{luamplib/figure/begin}\1__luamplib_tag_alt_dflt_tl
3897 \xdef\MPLIx{#1}\xdef\MP11y{#2}%

3898 \xdef\MPurx{#3}\xdef\MPury{#43}%

3899 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3900 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3901 \parskipopt

3902 \leftskipopt

3903 \parindent@pt

3904 \everypar{}%

3905 \setbox\mplibscratchbox\vbox\bgroup

108

3906 \tag_suspend:n{\mplibstarttoPDF}

3907 \noindent

3908 }

3909 \cs_set_nopar:Npn \mplibstoptoPDF
3910 {

3911 \par

3912 \egroup
3913 \setbox\mplibscratchbox\hbox

3914 {\hskip-\MP11x bp

3915 \raise-\MP1ly bp

3916 \box\mplibscratchbox}%

3917 \setbox\mplibscratchbox\vbox to \MPheight
3918 {\vfill

3919 \hsize\MPwidth

3920 \wd\mplibscratchbox@pt

3921 \ht\mplibscratchbox@pt

3922 \dp\mplibscratchbox@pt

3923 \box\mplibscratchbox}%

3924 \wd\mplibscratchbox\MPwidth

3925 \ht\mplibscratchbox\MPheight

3926 \tag_socket_use:nnn{1luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3927 \egroup

3928 }

3929 \RenewDocumentCommand\mplibcode{0{}}

3930 {

3931 \tl_set:Nn \1__luamplib_tag_envname_t1l {mplibcode}

3932 \tl_gclear:N \currentmpinstancename

3933 \keys_set_known:neN {luamplib/tagging} {#1} \1_tmpa_tl

3934 \keys_set:nV {luamplib/instance} \1_tmpa_tl

3935 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \currentmpinstancename
3936 \tag_socket_use:n{luamplib/figure/init}

3937 \mplibtmptoks{}\1txdomplibcode

3938 }

3939 \RenewDocumentCommand\mpfig{s 0{}}

3940 {

3941 \begingroup

3942 \tl_set:Nn \1__luamplib_tag_envname_t1 {mpfig}

3943 \keys_set_known:ne {luamplib/tagging} {#23}

3944 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \mpfiginstancename
3945 \tag_socket_use:n{luamplib/figure/init}

3946 \IfBooleanTF{#1} { \mplibprempfig * }

3947 { \mplibmainmpfig }
3948 }

3949 \RenewDocumentCommand\usemplibgroup{0{} m}
3950 {

3951 \begingroup

3952 \tl_set:Nn \1__luamplib_tag_envname_t1 {usemplibgroup}
3953 \keys_set_known:ne {luamplib/tagging} {#1}

3954 \tag_socket_use:n{luamplib/figure/init}

109

3955 \prependtomplibbox\hbox dir~TLT\bgroup

3956 \tag_socket_use:nn{luamplib/figure/begin}{#2}

3957 \setbox\mplibscratchbox\hbox\bgroup

3958 \bool_if:NF \1__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }

3959 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
3960 \egroup

3961 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
3962 \egroup

3963 \endgroup

3964 }

Allow setting alt/actual text within METAPOST code. Of course we can use them in TEX code as
well.

3965 \cs_new_nopar:Npn \mplibalttext #1

3966 {
3967 \tl_set:Ne \1__luamplib_tag_alt_tl {\text_purify:n{#1}}

3968 }
3969 \cs_new_nopar:Npn \mplibactualtext #1

3970 {
3971 \tl_set:Ne \1__luamplib_tag_actual_t1 {\text_purify:n{#1}}

3972 3
3973 \ExplSyntax0ff

That’s all folks!

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if

you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 021101301, USA

Everyone s permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

totake aw
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applis to most of the Free Software Foundation’s software and to
any other program whaose authors commit to using it. (Some other Free Software Foun-

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to cach and
every part regardless of who wrote it

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;

(a) Accompany it with
which must be distributed under the terms of Sections 1 and 2 above on a

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
aversion number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally

No WARRANTY

a el v fe 12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
dation software is covered by the GNU Library General Public License instead.) You can ‘medium customarily used for software interchange; or. A
apply it to your programs, too. (b) Accompany it with a written offer, valid for at least three years, to give any e A ree I ComE TorEIe ANDon OTHiEn PANAIRS -
When we speak of free software, we are referring to freedom, not price. Our General Pub- third party, for a charge no more than your cost of physically performing oy "
i y Y VIDE THE PROGRAM "AS 1s” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
lic Licenses are designed to make sure that you have the freedom to distribute copies of source distribution, a complete machine-readable copy of the corresponding s A Y
free software (and charge for this service if you wish), that you receive source code or source code, to be distributed under the terms of Sections 1 and 2 above on a - N .
N ’ . CCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
can get it if you want it, that you can change the software or use picces of it in new frec ‘medium customarily used for software interchange; or, A R
programs; and that you know you can do Ihe?e things. (€) Accompany it with the information you received as to the offer to distribute GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
To proteet your rights, we necd to make restrictions that forbid anyone to deny you these corresponding source code. (This alternative is allowed only for noncommer- o Commeron:
rights or to ask you to surrender the rights. These restrictions translate to certain respon- cial distribution and only if you received the program in object code or exe-
sibilities for you if you distribute copies of the software, or if you modify it cutable form with such an offer,in accord with Subsection b above.) 13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
For example, if you distribute copics of such a program, whether gratis or for a fec, you ANY COPYRIGIT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
must give the recipients all the rights that you have. You must make sure that they, too, “The source code for a work means the preferred form of the work for making mod- CRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
receive or can get the source code. And you must show them these terms so they know ifications to it. For an executable work, complete source code means all the source CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
their rights. code for all modules it contains, plus any associated interface definition files, plus OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
We protect your rights with two steps: (1) copyright the software, and (2) offer you this the scripts used to control compilation and installation of the executable. However, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
license which gives you legal permission to copy, distribute and/or modify the software. as a special exception, the source code distributed need not include anything that is OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
Also, for each author's protection and ours, we want to make certain that everyone un- normally distributed (in cither source or binary form) with the major components PROGRANS), EVEN IF SUCH HOLDER O OTHER PARTY HAS BEEN ADVISED OF THE POS-
derstands that there is no warranty for this free software. If the software is modified by (compiler, kernel, and so on) of the operating system on which the executable runs, SIBILITY OF SUCH DAMAGES.
someone else and passed on, we want its recipients to know that what they have is not the unless that component itself accompanies the executable.
°"g‘!“a‘¥' 5o that any problems introduced by others will not reflect on the original authors' If distribution of executable or object code is made by offering access to copy from END OF TERMS AND CONDITIONS
reputations. a designated place, then offering equivalent access to copy the source code from the
Finally, any free program is threatencd constantly by software patents. We wish to avoid
same place counts as distribution of the source code, even though third parties are
the danger that redistributors of a free program will individually obtain patent licenses,
: i I not compelled to copy the source along with the object code.
in effect making the program proprietary. To prevent this, we have made it clear that any Append How to Apply These Terms to Your New Programs
patent must be licensed for everyone's free use or not licensed at al 5. You may not copy, modify, sublicense, or distribute the Program except as expressly
‘The precise terms and conditions for copying, distribution and modification follow. provided under this License. Any attempt otherwise to copy, modify, sublicense or If you d new program, and you f e tothe pub-

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MoDIFICATION

“This License applies to any program o other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program’, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that i to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term “modification”)
Each licensee is addressed as “you'.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program s not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

‘You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty: keep
intact all the notices that refer to this License and to the absence of any warranty:
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. Youmay modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

z

You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself s interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

‘These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

You are not required to accept this License, since you have not signed it. However,

grants you permission to Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all ts terms and
conditions for copying, distributing or modifying the Program or works based on it

Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

Itis not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

‘This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among.
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

‘The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

lic, the best way to achieve this s to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of cach source file to most effectively convey the exclusion of warranty; and cach file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does,
Copyright (C) yyyy name of author

“This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version

Tl-m program is distributed in the hope that it will be useful, but WITHOUT

/ARRANTY; without even the implied warranty of MERCHANTABIL-
n 'Y or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details

You should have received a copy of the GNU General Public License along with
this program if not. write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program s interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
“show W'

“This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show ¢’ for details

‘The hypothetical commands shon w and shon ¢ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever s
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 mpliblength, mplibuclength
	1.2.15 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

